中考数学圆总复习教案
九年级数学上人教版《圆》教案

《圆》教案
一、教学目标
(一)知识与技能
了解圆的有关基本概念,掌握圆的基本性质,理解垂径定理、弧、弦的关系以及圆心角、弧、弦的关系,并能运用这些性质进行简单的计算。
(二)过程与方法
通过观察、操作、推理、交流等活动,发展学生的空间观念和推理能力,同时培养学生的观察力和动手操作能力。
(三)情感态度和价值观
让学生在学习过程中感受圆在生活中的广泛应用,体会数学的价值,同时培养学生的合作精神和独立思考的习惯。
二、教学重难点
(一)教学重点
1.掌握圆的基本性质,理解垂径定理、弧、弦的关系以及圆心角、弧、弦的
关系。
2.能运用圆的相关性质进行简单的计算。
(二)教学难点
1.理解垂径定理及其推论。
2.理解弧、弦的关系以及圆心角、弧、弦的关系。
3.能运用圆的相关性质解决实际问题。
三、教学准备
教师准备多媒体课件、圆规、直尺等教学工具;学生准备圆规、直尺等学习工具。
四、教学过程
(一)导入新课
教师通过多媒体展示一些与圆有关的图片或动画,引导学生观察并思考:什么是圆?圆有哪些基本性质?如何画出一个标准的圆?……从而引出本节课的主题——圆。
(二)学习新课
1.了解圆的基本概念
教师通过多媒体展示一些与圆有关的图片或动画,引导学生观察并思考:什么是圆?圆有哪些基本性质?如何画出一个标准的圆?……从而引出本节课的主题——圆。
中考数学冲刺:总复习八圆的总复习

中考冲刺:总复习八圆的总复习一、考点分析:《圆》一章的内容,它是初中数学中最核心的内容之一。
在近年各省市的考题中,其分值平均占到19.66%左右,试题所反映出的考点主要有:1、准确理解与圆有关的概念及性质,能正确辨别一类与圆有关的概念型试题。
2、既会从距离与半径的数量关系,确定点与圆、直线与圆、圆与圆的位置关系,又能从点与圆、直线与圆、圆与圆的位置关系,探索相应半径与距离的数量关系。
3、利用圆心角、圆周角、弦切角的定义及其它们之间特有的关系,解答或证明与角、线段有关的几何问题。
4、会运用垂径定理、切线长定理、相交弦定理、切割线定理、割线定理证明一类与圆相关的几何问题。
5、会利用圆内接正多边形的性质,圆的周长、扇形的弧长,圆、扇形、弓形的面积公式解决一类与圆柱、圆锥、圆台展开图有关的计算问题,并会借助分割与转化的思想方法求阴影部分的面积。
6、会准确表述有关点的轨迹问题。
7、会用T形尺找出圆形工件的圆心,会选用作垂直平分线的方法寻找有实际背景中的圆心问题,会作满足题设条件的圆和圆的切线、圆内接正多边形,并会以圆弧或圆的基本元素设计各种优美图案。
8、综合运用圆、方程、函数、三角、相似形等知识解决一类与圆有关的中考压轴题。
二、精选例题:例1.(1)在半径为5cm的⊙O中,弦A B的长等于6cm.若弦AB的两个端点A、B在⊙O上滑动(滑动过程中A B长度不变),则弦A B的中点C的轨迹是_________。
(2)如图,⊙O的直径为10,弦A B=8,P是弦A B上的一个动点,那么OP长的取值范围是________。
析解:本考题着重考查学生对点的轨迹概念的理解。
(1)由于在定圆中,弦A B长度不变,且弦A B的两个端点A、B在⊙O上滑动,根据垂径定理,可知OC⊥A B,且OC===4(定值)。
这说明弦A B的中点C的轨迹应是以O为圆心,4cm长为半径的圆。
(2)依据点到直线间垂线段最短公理,可过O作OC⊥AB,交A B于点C,由勾股定理,可知OC===3,又P是弦A B上的一个动点,则OP长满足OC≤OP≤OB,即3≤OP≤5。
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)

中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。
中考复习——圆的有关概念及性质

圆的有关概念及性质复习【课标要求】:1.理解圆的定义和圆的有关概念;2.理解圆心角、弧、弦、弦心距之间的关系,并能运用它们之间的关系解决有关问题;3.掌握垂径定理及其应用【复习目标】:1.知道圆、弧、弦、圆心角、圆周角等基本概念;认识圆的对称性;了解圆锥的侧面展开图是扇形。
2.能用垂径定理,圆心角、弧、弦之间关系定理,圆周角定理及推论,等进行简单的运算和推理;会通过作图的方法理解确定圆的条件。
3.会用折叠、旋转、圆的对称性及分类讨论的思想方法探索图形的有关性质,能将有关弦长、半径的实际计算问题转化成解直角三角形问题解决。
【知识梳理】:考点导航1.与圆有关的概念(1)圆的定义_________________________________图形叫做圆.(2)弦:连结圆上___________的线段叫做弦.(3)直径:___________的弦叫做直径.(4)弧:圆上任意两点间的部分叫做___________.(5)优弧:___________叫做优弧.(6)劣弧:___________叫做劣弧.(7)同心圆:圆心相同、半径不相等的圆的叫做同心圆.(8)等圆:___________叫做等圆.(9)等弧:在同圆或等圆中,___________的弧叫做等弧.2.过三点的圆(1)经过___________三点不能作圆.(2)不在同一直线上的三点确定___________个圆.3.垂径定理及推论(1)垂径定理垂直于弦的直径___________,并且___________.(2)推论平分弦(不是直径)的直线___________,并且___________.弦的垂直平分线____________________________________________________.平分弦所对的一条弧的直径,______________________________________.4.圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,相等的圆心角所对的弧___________,所对的弦___________,所对的弦的弦心距___________.5.圆周角定理及推论(1)定理:在___________或___________中,同弧或等弧所对的圆周角___________,都等于这条弧所对___________的一半.(2)推论:___________(或___________)所对的圆周角是___________,90°的圆周角所对的弦是___________.6.圆内接四边形圆内接四边形的对角___________,一个外角等于它的___________.考点点拨1.注意相关概念的区分(1)弧与半圆:半圆是弧,但弧不一定是半圆.(2)弦与直径:直径是弦,但弦不一定是直径,直径是圆中最长的弦.(3)等弧与长度相等的弧:等弧的长度一定相等,但长度相等的弧不一定是等弧.(4)等圆和同心圆:等圆是半径相等圆心不同的圆,而同心圆是半径不等圆心相同的圆.2.常用的辅助线(1)作半径,利用同圆的半径相等;(2)作弦心距,利用垂径定理进行计算或推理,或利用圆心角、弧、弦、弦心距之间的关系进行证明;(3)作半径和弦心距,构造直角三角形进行计算;(4)构造直径所对的圆周角——直角;(5)构造同弧或等弧所对的圆周角;(6)遇到三角形的外心常连结外心和三角形各顶点.3.分类讨论解“圆”题,防止漏解如:一条弦所对的圆周角有两种,所以在同圆或等圆中,等弦所对的圆周角相等或互补.圆内两条平行弦与圆心的位置关系有两种等.【考题研究】考点 1 圆的概念和性质例1 下列命题中,假命题是( )A .两条弧的长度相等,它们是等弧B .等弧所对的圆周角相等C .直径所对的圆周角是直角D .一条弧所对的圆心角等于它所对的圆周角的两倍意图:本题是考查圆的基本概念和性质,要结合图形深刻理解和熟练记忆.考点 2 圆的弦、半径、弦心距的计算例2 如图1-9-1,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,若大圆半径为10 cm ,小圆半径为6 cm ,则弦AB 的长为___________.意图:在一个圆中,若已知圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+2a 2⎛⎫ ⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.考点 3 圆心角、弧、弦之间的关系例3 (2011·河南)如图1-9-3所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于___________.意图:相同弧所对的周围角相等.考点 4 圆心角与圆周角的关系及应用例4 (2011·芜湖)如图1-9-5,已知点E是圆O上的点,B、C分别是劣弧AD的三等分点,∠BOC=46°,则∠AED的度数为___________.意图:本题主要考查秀点,一是在同圆或等圆中,等弧所对圆心角相等,二是同弧所对圆周角等于圆心解的一半.【中考链接】1.(2011浙江绍兴,4,4分)如图,AB为圆O的直径,点C在圆O上,若16∠=︒,C则B O C∠的度数是()A.74︒B. 48︒C. 32︒D. 16︒2.(2011浙江绍兴,6,4分)一条排水管的截面如图所示.已知排水管的截面圆半径10O B=,截面圆圆心O到水面的距离O C是6,则水面宽AB是()A.16B.10C.8D.63.(2011四川凉山州,9,4分)如图,100上,且点C不与A、∠= ,点C在OAOBB重合,则A C B∠的度数为()A.50 B.80 或50 C.130 D.50 或1304.(2011湖北荆州,12,4分)如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是.5.(2011浙江杭州,14,4)如图,点A,B,C,D都在⊙O上,的度数等于84°,CA 是∠OCD的平分线,则∠ABD十∠CAO= °6. (2011四川乐山6,3分)如图(3),CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=( )A.40°B.60°C.70°D.80°7. (2011江西,21,8分)如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC 所对优弧上任意一点(B,C两点除外)。
初中数学中考圆教案

初中数学中考圆教案教学目标:1. 理解圆的定义及基本概念,掌握圆的性质和运算方法。
2. 能够运用圆的相关知识解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 圆的定义及基本性质。
2. 圆的运算方法。
3. 圆的实际应用。
教学难点:1. 圆的证明和推导。
2. 圆的方程和不等式。
教学准备:1. 教学课件或黑板。
2. 圆规和直尺。
3. 练习题和答案。
教学过程:一、导入(5分钟)1. 引入话题:探讨圆的定义和性质。
2. 学生分享对圆的理解,教师总结并板书。
二、新课讲解(15分钟)1. 讲解圆的定义:圆是平面上所有到定点距离相等的点的集合。
2. 讲解圆的基本性质:圆心到圆上任意一点的距离等于半径;圆上任意两条切线垂直;圆的周长和面积公式。
3. 讲解圆的运算方法:圆的加减法、乘除法。
4. 举例说明圆的实际应用,如圆的周长和面积计算、圆的切割等。
三、课堂练习(10分钟)1. 学生独立完成练习题,教师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
四、课堂小结(5分钟)1. 学生总结本节课所学内容,教师补充。
2. 强调圆的重要性质和运算方法。
五、课后作业(课后自主完成)1. 巩固圆的定义和性质。
2. 熟练掌握圆的运算方法。
3. 尝试解决实际问题。
教学反思:本节课通过讲解和练习,使学生掌握了圆的定义、性质和运算方法,并能应用于实际问题。
在教学过程中,注意引导学生主动探究和思考,培养学生的空间想象能力和逻辑思维能力。
同时,通过课堂练习和课后作业,巩固所学知识,提高学生的解题能力。
但在教学过程中,也发现部分学生对圆的证明和推导较为困难,需要在今后的教学中加强指导和练习。
中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
人教版数学九年级初三上册 中考复习圆的综合题 名师教学教案 教学设计反思

《中考复习圆的综合题》微课敎學设计玉州区名山中学庞业献敎學过程∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B= ,⊙O的半径是4,求EC 的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.四、玉林中考23题总结满分技法1.解有关切线问题的基本思路:抓“相切”,连接圆心与切点2.证明切线的方法:①若已知直线与圆的公共点,则连接圆心与公共点,证出所连半径垂直于已知直线即可.即“连半径,证垂线”;②若未给出直线与圆的公共点,则过圆心作已知直线的垂线段,证出所作垂线段的长度与圆的半径相等即可,即“作垂直,证半径”3.证明两角相等的方法①在两个直角三角形中通过同角或等角的余角相等来证明②利用半径相等,转化到等腰三角形中利用等边对等角来证明4.证明两线段相等的方法:敎學过程①若所证两线段相连不共线,则可以考虑将两条线段放到一个三角形中,利用等腰或等边三角形等角对等边来证明;②若所证两线段相连共线,则可以考虑等腰三角形三线合一或直角三角形斜边上的中线等于斜边的半来证明;③若所证两线段平行,则可以考虑特殊四边形对边相等来证明5.求线段长时②题干中出现三角函数时,一般考虑用三角函数解题;②若题于中不含三角函数,一般考虑用相似三角形或勾股定理解题。
五、玉林中考23题练习(2019.玉林)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O 分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.敎學过程让学生先做后点评。
中考数学复习·圆的全部内容·名校名师全解全练精品课件

上一页
下一页
宇轩图书
中考典例精析
是做好此类题的关键.
首页
【点拨】本组题主要考查圆的有关基本知识,掌握有关性质和定理
【解答】(1)B
∵OB=OC,∴∠OBC=∠OCB=40°,
(2)圆是以圆心为对称中心的中心对称图形.
(3)圆是旋转对称图形.圆绕圆心旋转任意角度,都能和原来的图形 重合,这就是圆的 旋转不变性.
上一页
下一页
宇轩图书
考点知识精讲
考点二 垂径定理及推论
首页
1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条
弧.
2.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的 两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所 对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 温馨提示: 1.注意平分弦的直径不一定垂直于弦. 2.等弧指能完全重合的弧,其度数一定相同,但度数相同的弧不一 定是等弧.
2 2.∵CD⊥AB,∴CD=2CE=4 2. CE (2)∵BF 是⊙O 的切线, ∴FB⊥AB, ∴CE∥FB, ∴△ACE∽△AFB, ∴ BF = AE 2 2 2 ,∴ = ,∴BF=6 2. AB BF 6
上一页
下一页
【解答】 (1) 连接 OC ,在 Rt△OCE 中, CE = OC -OE = 9-1 =
上一页
下一页
宇轩图书
中考典例精析
30°.∴AC=OA·cosA=6× (4)5 3 3 =3 3,∴AB=2AC=6 3(cm). 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学圆总复习教案
第七章圆课时24.圆【考点链接】一、圆的有关概念 1. 圆上
各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在
的直线都是它的;圆又是对称图形,是它的对称中心. 3. 垂直
于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,
并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组
量都分别 . 5. 同弧或等弧所对的圆周角,都等于它所对的圆心角
的 . 6. 直径所对的圆周角是,90°所对的弦是 . 二、与圆有关的位置关系 1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的
点到圆心的距离d和半径r之间的数量关系分别为:①d r,②d r,③d r. 2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的
圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d r,②d r,③d r. 3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d R-r,②d R-r,③ R-r d R+r,④d R+r,⑤d R+r. 4. 圆的切线过切点的半径;经过的一端,并且这条的直线是圆的切线. 5. 从圆外一点可以向圆引条切线,相等,相等. 6. 三角形的三个顶点确定个圆,这个圆叫做三角形的外接圆,三角形的
外接圆的圆心叫心,是三角形的交点,它到相等。
7. 与三角形
各边都相切的圆叫做三角形的,内切圆的圆心是三角形的交点,叫做三角形的,它到相等. 三、与圆有关的计算 1. 圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .
2. 圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所
在的扇形面积为S= = = . 3. 圆柱的侧面积公式:S= .(其中为的半径,为的高)。
4. 圆柱的全面积公式:S= + 。
5. 圆锥的侧面积公式:S= .(其中为的半径,为的长)。
6. 圆锥的全面积公式:S= + 。
【河北三年中考试题】 1.(2008年,2分)如图3,
已知⊙O的半径为5,点到弦的距离为3,则⊙O上到弦所在直线
的距离为2的点有() A.1个 B.2个 C.3个 D.4个
2.(2008年,3分)如图7,与⊙O相切于点,的延长线交⊙O于
点,连结.若,则.
3.(2009年,2分)如图2,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于() A.30° B.45° C.60° D.90°
4.(2009年,8分)图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD = 24 m,OE⊥CD 于点E.已测得sin∠DOE = .(1)求半径OD;(2)根据需要,水面要以每小时0.5 m的速度下降,则经过多长时间才能将水排干?
5.(2010年,2分)如图3,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是() A.点P B.点Q C.点R D.点M
6.(2010年,3分)某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB与底面半径OB的夹角为,,则圆锥的底面积是平方米(结果保留π).
7.(2009年,10分)如图13-1至图13-5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图13-1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB = c时,⊙O恰好自转1周.(2)如图13-2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B 旋转的角∠O1BO2 = n°,⊙O在点B处自转周.实践应用:(1)在阅读理解的(1)中,若AB = 2c,则⊙O自转周;若AB = l,则⊙O自转周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B处自转周;若∠ABC = 60°,则⊙O 在点B处自转周.(2)如图13-3,∠ABC=90°,AB=BC= c.⊙O从⊙O1的位置出发,在∠ABC 外部沿A-B-C滚动到⊙O4的位置,⊙O自转周.
拓展联想:(1)如图13-4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.
(2)如图13-5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
8.(2010年,10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且 PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得 OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q与点O间的最小距离是分米;点Q与点O间的最大距离是分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是分米.(2)如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH上时,点P到l 的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.
9.(2010年,8分)如图11-1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图11-2的程序移动.(1)请在图11-1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).。