火力发电厂电气主接线设计方案~EDD

合集下载

30MW热电厂电气主接线设计

30MW热电厂电气主接线设计
2.1.3具有一定的灵活性和方便性
电力系统是一个紧密联系的整体。发电厂和变电所由中心调度所和地区调度所统一调度指挥。发电厂和变电所电气主接线的运行方式随整个电力系统的运行要求而改变。因此,所设计的电气主接线应能灵活地投入和切除某些机组、变压器或线路,从而达到调配电源盒负荷的目的;并能满足电力系统在事故运行方式、检修运行方式和特殊运行方式下的调度要求。当需要检修时,应能很方便的使断路器、母线及继电保护设备退出运行进行检修,而不致影响电力网的运行或停止对用户供电。此外,电气主接线方案还必须能够容易地从初期接线过渡到最终接线,以满足扩建的要求。该工程受外部条件影响,前期只能单回出线,待外部条件满足时要过渡到双回出线,因此能够在不全厂停电条件下完成线路过渡显得尤为重要,在设计时必须优先考虑。
1.3
1.3.1学习关于电气主接线和厂用电接线的设计方法和流程。
1.3.2根据各设计规范选择各主要设备、导体的型式,并了解校核方法。
1.3.3通过设计和探讨,加深对所学知识的掌握,为以后运用于实践中打好基础。
第2章电气主接线设计要求及方案确定
2.1电气主接线设计的要求
发电厂的主接线设计要求非常严格,在设计时不仅要按照国家相关的法律法规严格执行外,其经济性、合理性、可靠性等都直接关系到以后的运行安全和经济效益。所以,对发电厂电气主接线设计一般应满足以下几点:
3.1.3低压厂用电接线设计…………………………ቤተ መጻሕፍቲ ባይዱ………………………………5
3.1.4全厂辅助系统厂用电接线………………………………………………………5
3.2厂用电接线方案的论证………………………………………………………………6
第4章主要设备选型………………………………………………………………………6

火力发电厂电气主接线课程设计

火力发电厂电气主接线课程设计

前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。

它直接影响电力生产运行的可靠性、灵活性。

对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。

本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。

可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。

灵活性包括:操作的方便性;调度的方便性;扩建的方便性。

经济性包括:节省投资;降低损耗等。

综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。

1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。

所以Pmax=700MW;机组年利用小时Tmax=6500h。

设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。

说明该厂在系统中的作用和地位至关重要。

由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。

该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。

10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。

220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。

500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。

500KV电压级的界限可靠性要求相当高。

2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。

利用断路器将双母线中的一组母线分为W1和W2两段,在分段处装有电抗器,另一组母线不分段。

火力发电厂电气主接线方式分析

火力发电厂电气主接线方式分析

火力发电厂电气主接线方式分析[摘要]针对火力发电厂而言,其内部的电气系统主接线方式是否可靠、合理,往往直接影响火力发电厂的总体运行效率,这就需技术员能够结合实际情况,合理选择主接线方式,确保火力发电厂实现高效可靠的运行。

鉴于此,本文主要探讨火力发电厂当中电气系统的主接线方式,仅供业内参考。

[关键词]发电厂;火力;主接线;电气;接线方式;前言:火力发电厂内部电气系统主接线,其属于电气系统接线重要部分,涉及变压装置、发电装置、线路等接线方式,且体现着变压装置、发电装置、线路等电气设施设备数量。

合理确定好电气系统主接线方式,这对于火力发电厂实现高效稳定运行较为有利。

因而,针对火力发电厂当中电气系统的主接线方式开展综合分析,有着一定的现实意义和价值。

1、工况某地区大型火电厂机组为4*200MW总体装机容量是800MW,主要为220kV传输,呈较长传输距离及较大功率,倘若发生停电情况,波及范围则相对较大。

故本期新增设350 MW超临界2台供热机组,以发电装置和变压装置组形式,将220kV电气系统接入,出线依照着2回,期间需合理确定好电气系统主接线方式,以便于维持整个系统线路稳定安全地运行。

2、实例分析2.1基本原则(1)在可靠性原则层面运行是否具备良好的可靠性,其属于火电厂开展电力生产及其分配基本要求。

电气系统主接线总体可靠性,指的是各构成元件,包含着一次及二次部分运行过程满足可靠性实际需求。

主接线方式选用过程当中,应当充分考虑到如互感装置、母线、隔离开关及断路装置等一次设施设备故障发生率与对供电运行影响情况,且需充分考虑到继电保护的二次设施设备故障发生率情况,便于确定最具可靠性的主接线相应方式。

(2)在灵活性原则层面应当严格遵守灵活性基本原则,合理选定火电厂内部电气系统主接线方式,即为充分满足于系统调度需求,火电厂内部电气系统主接线应当具备灵活操作优势,能够灵活投入及切除部分机组、线路及变压装置等,确保系统能够处于故障运行、检修运行等方式下可满足于调度要求[1];同时,充分满足安全检修相关需求,火电厂内部电气系统主接线务必可以开展断路装置、继电保护系统装置及母线等停止运行操作,且不会对火电厂的正常运行和供电造成不良影响。

火力发电厂1000kV特高压送出电气主接线方案研究_郑相华

火力发电厂1000kV特高压送出电气主接线方案研究_郑相华
对于两级升压方案,本期 500 kV 规模为 2 回 变压器进线,1 回出线,根据 500 kV 侧接线方式 的不同,本期电气主接线同样提出三种方案进行 分析比较: 方案 2. 1 为三角形接线 ( 远期 3 /2 接 线) ; 方案 2. 2 为 3 /2 断路器接线; 方案 2. 3 为双 母线接线。
案,均存在这种可能。
电机变压器组断路器故障或检修将会导致相关机
总的来 说,角 形 接 线 本 期 投 资 省,可 靠 性 组停运,出线断路器故障或检修将会导致全厂停
较高。
电,且停运时间较长。
( 2) 3 /2 断路器接线
总的来说,双母线接线在断路器检修或故障
本期电厂两机一线,共配置一个完整串和一 时均存在全厂或部分机组停运的可能性,一般情
郑相华 刘淑君 段宗周 彭 哲 /河北省电力勘测设计研究院
目前国内、外 500 ~ 1 000 kV 接线 方式主要有 3 /2 接线、角形接线 ( 包括 3 ~ 5 角形接线) 、双母线分段接线及发电机 - 变压器 - 线路组直接接入系统等形式。
电厂要求 1 000 kV 出线,初步考虑两
国家电网公司在 “十二五” 规划 中提出,我国将建设连接大型能源基地 与主要负荷中心的 “三纵三横” 特高 压骨干网络,以 1 000 kV 输电网为骨 干网架的特高压、超高压和高压输电网 以及特高压、高压直流输电和配电网构 成的分层、分区、结构清晰的现代化大 电网正在逐步形成。为适应超高压电网
的输 送 能 力,一 些 单 机 容 量 为 1 000 再由 500 kV 通过联络变压器升压至 1 000 kV,
MW 的超大型发电厂作为其配套的电源 厂内同时设置 500 kV 和1 000 kV升压站。
郑相华 /高级工程师

第六章 火电厂电气主接线及厂用电

第六章 火电厂电气主接线及厂用电

三、厂用电源分类 1. 工作电源
•含义: – 保证正常运行的基本电源
•要求: – 供电可靠 – 电压和容量满足要求 •引接方式: – 有机压母线的机组:从该母线上引接。 – 单元接线的机组:从主变低压侧引接。 – 扩大单元接线的机组:从发电机出口或主变低压侧引接。 发电厂的工作电源包括:6kV、10kV高压工作电源、380V 低压工作电源、110V、220V直流工作电源和220V交流不间断 电源(UPS)。
五、电气设备的主要倒闸操作内容 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 电力线路或负荷的送电/停电操作; 发电机的并列/解列操作; 电力变压器的投运/停运操作; 工作电源与启/备电源互换操作; 倒母线和倒旁路操作; 直流电源启用/停用操作; 改变中性点接地方式操作; 继电保护装置启用/停用操作; 电气自动装置启用/停用操作; 测量、监视、控制和信号装置的启用/停用操作。
• 3. 对操作断路器的要求 • (1)在一般情况下,断路器不允许就地带电手动合闸。
这是因为手动合闸慢,易产生电弧,但特殊需要时例外。
• (2)当远距离操作断路器时,不得用力过猛,以防止损 坏控制开关,也不得返回太快,以防止断路器合闸后又跳闸。
• (3)在断路器操作后,应检查有关信号及测量仪表的指
④ 事故保安负荷:
• 根据对电源的要求不同,事故保安负荷又可分为: – 直流保安负荷:如发电机组的直流润滑油泵、事故氢密 封油泵等; – 交流保安负荷:如盘车电动机、交流密封油泵、实时控 制用的电子计算机等。 • 事故保安负荷的供电方式: – 直流保安负荷的直流电源由蓄电池组供电。
– 交流保安负荷的交流电源由快速自启动柴油发电机组且 有自动投入装置功能,或燃气轮机组,或具有可靠的外 部独立电源供电。对交流不间断供电负荷,可接于蓄电 池组的逆变装置。

火力发电厂电气一次部分设计方案(参考)

火力发电厂电气一次部分设计方案(参考)

4×200MW火力发电厂电气一次部分设计Design of 4x200MWThermal Power Plant Primary System学生姓名:专业班级:指导教师:职称:起止日期:摘要由发电、配电、输电、变电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。

火力本文主要完成了电气主接线的方案设计及其经济型分析,主要电气设备的选择,包括主变压器的容量计算。

在发电厂短路电流计算的基础上,进行配电装置的选型方案的设计。

回路。

在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性、经济性和电能质量的关键,并直接影响着电气部分的投资。

本文主要完成了电气主接线的方案设计及其经济型分析,主要电气设备的选择,包括主变压器的容量计算。

在发电厂短路电流计算的基础上,进行配电装置的选型方案的设计。

关键词:发电厂;电气主接线;电气设备目录摘要II第1章绪论01.1 电力工业的发展简况01.2 发电厂预设规模01.3 发电厂接入系统的原则1第2章电气主接线设计22.1 概述22.1.1 电气主接线设计的基本要求22.1.2 220kV电压等级常用接线方式22.2 拟定可行的主接线方案32.2.1 方案一32.2.2 方案二32.2.3 方案的比较与选定42.3 变压器的选型4第3章火电厂厂用电接线的选择53.1 概述53.1.1 方案的比较与选定53.1.2 厂用电的电压等级53.1.3 厂用电系统中性点接地方式53.1.4 厂用电源及其引接73.2 厂用电系统的设计及确定7第4章短路电流的计算94.1 概述94.2 短路电流计算条件94.2.1 短路计算的基本假定94.2.2 短路计算的一般规定104.3 短路计算104.3.1 画等值网络图104.3.2 化简等值网络图,求短路电流124.3.3 短路计算结果19第5章电气设备的选择与校验205.1 电气设备选择的概述205.1.1 一般原则205.1.2 有关的几项规定205.1.3 按额定电压选择的要求215.1.4 按额定电流选择的要求215.1.5 短路热稳定校验的要求215.1.6 校验动稳定校验的要求215.2 电气设备的选择与校验215.2.1 回路最大持续工作电流的确定215.2.2 高压断路器的选择与校验225.2.3 隔离开关的选择与校验245.2.4 导体的选择与校验25结论29参考文献29致谢30第1章 绪 论由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

毕业设计600MW火力发电厂电气部分设计

毕业设计600MW火力发电厂电气部分设计

600MW火力发电厂电气部分设计学生指导老师:600MW substation electric one design ofequipmentStudents: Counselor:摘要发电厂是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济。

本文为600MW火力发电厂电气部分设计,通过对任务书上所给系统与线路及我市的50万千瓦电力缺口,并从我市负荷增长方面阐明了建厂的必要性,然后通过对拟建火力发电厂的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了35kV,220kV以及厂用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了厂用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了600MW火力发电厂电气部分设计。

关键词:火力发电厂变压器主接线AbstractsThis text, according to the parameters of all system , circuit and load given on task book at first, analyse the load development trend. Increase from load respect expound necessity that build a station , then through build generalization of transformer substation and qualify for the next round of competitions direction is it consider to come planning, and through an analysisof load materials, safe, the economy and dependability are considered, confirm 110kV , 35kV , 10kV and is it spend main wiring of cable to stand, calculate and supply power range not to confirm main voltage transformer platform count through load, capacity and type , the capacity and type which use the voltage transformer that confirmed standing at the same time , finally, according to heavy lasting job electric current short out the result of calculation of calculating most, to the high-pressure fuse box , isolate the switch , the bus bar, insulator and wall bushing, voltage mutual inductor, the mutual inductor of electric current has carried on the selecting type, thus finished the electric design of a part of 110kV. Keyword: Transformer substation Voltage transformer Wiring目录摘要 (2)概述 (6)第一章电气主接线 (8)1.135kv电气主接线 (9)1.2220kv电气主接线 (10)1.36kv厂用电气主接线 (12)第二章负荷计算及变压器选择 (15)2.1 负荷计算 (15)2.2 主变台数、容量和型式的确定 (16)2.3 站用变台数、容量和型式的确定 (18)第三章最大持续工作电流及短路电流的计算 (19)3.1 各回路最大持续工作电流 (19)3.2 短路电流计算点的确定和短路电流计算结果 (20)第四章主要电气设备选择 (21)4.1 高压断路器的选择 (23)4.2 隔离开关的选择 (24)4.3 母线的选择 (25)4.4 绝缘子和穿墙套管的选择 (26)4.5 电流互感器的选择 (26)4.6电压互感器的选择 (28)4.7各主要电气设备选择结果一览表 (31)附录I设计计算书 (32)附录II电气主接线图 (39)10kv配电装置配电图 (41)参考文献 (43)概述1、待设计变电所地位及作用按照先行的原则,依据远期负荷发展,决定在本区兴建1中型110kV变电所。

火力发电厂电气主接线设计

火力发电厂电气主接线设计

火力发电厂电气主接线设计一、背景介绍火力发电厂是以燃煤、燃气等化石能源为原料,通过燃烧产生高温高压蒸汽驱动汽轮机发电的设施。

电气主接线设计是火力发电厂中非常重要的一环,它直接关系到整个发电系统的运作效率和安全稳定性。

二、电气主接线设计的作用1. 保证电气系统的安全稳定运行;2. 实现各个部分之间的协调配合,确保整个系统的高效运转;3. 优化设计,降低成本。

三、电气主接线设计流程1. 确定负荷特性:根据负荷特性确定变压器容量和数量。

2. 设计配电方案:根据变压器容量和数量,设计相应的配电方案。

3. 编制单线图:根据配电方案编制单线图,并进行检查、修改。

4. 设计系统保护:根据单线图确定各种保护装置及其参数。

5. 设计接地系统:根据国家规范和标准,确定接地方式及其参数。

6. 制定施工方案:制定施工方案,并进行现场勘察和技术交底。

7. 安装调试:按照施工方案进行安装调试,并进行验收。

四、电气主接线设计要点1. 各部分之间的协调配合;2. 保证电气系统的安全稳定运行;3. 设计合理,降低成本;4. 确定负荷特性,根据变压器容量和数量设计相应的配电方案;5. 编制单线图,并进行检查、修改;6. 设计系统保护及接地系统;7. 制定施工方案,并进行现场勘察和技术交底;8. 安装调试,并进行验收。

五、电气主接线设计注意事项1. 严格按照国家规范和标准进行设计;2. 考虑负荷特性,避免过载或欠载情况发生;3. 合理安排变压器容量和数量,确保整个系统的高效运转;4. 设计保护措施,防止电气故障和事故发生。

六、总结火力发电厂电气主接线设计是整个发电系统中非常重要的一环。

它直接关系到整个系统的运作效率和安全稳定性。

在设计过程中,需要考虑负荷特性、变压器容量和数量、保护措施等因素,严格按照国家规范和标准进行设计,确保整个系统的高效运转和安全稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。

在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。

在本次设计中,主要针对了一次接线的设计。

从主接线方案的确定到厂用电的设计以及电气设备的选择,都做了较为详尽的阐述。

设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。

关键词:凝汽式火电厂电气主接线第一章发电厂电气主接线设计1-1设计要求及原始资料分析1、凝汽式发电机的规模<1)装机容量装机5台容量3×25MW+2×50MW,UN=10.5KV<2)机组年利用小时 TMAX=6500h/a<3)厂用电率按8%考虑<4)气象条件发电厂所在地最高温度38℃,年平均温度25℃。

气象条件一般无特殊要求<台风、地震、海拔等)2、电力负荷及电力系统连接情况<1)10.5KV电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2MW,10KV最大负荷25MW,最小负荷16.8MW,COSφ = 0.8,Tmax= 5200h/a。

<2)35KV电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6MW。

35KV电压级最大负荷33.6MW,最小负荷为22.4MW。

COSφ=0.8,Tmax =5200h/a。

<3)110KV电压级架空线4回与电力系统连接,接受该厂的剩余功率,电力系统容量为3500MW,当取基准容量为100MVA时,系统归算到110KV母线上的电抗X*S=0.083。

<4)发电机出口处主保护动作时间tpr1 = 0.1S,后备保护动作时间tpr2= 4S。

原始资料分析设计电厂总容量3×25+2×50=175MW,在200MW以下,单机容量在50MW以下,为小型凝汽式火电厂。

当本厂投产后,将占系统总容量为175/<3500+175)×100%=4.1%<15%,未超过电力系统的检修备用容量和事故备用容量,说明该电厂在未来供电系统中的地位和作用不是很重要,但Tmax=6500h/a>5000h/a,又为火电厂,在电力系统中将主要承担基荷,从而该电厂主接线的设计务必着重考虑其可靠性。

从负荷特点及电压等级可知,它具有10.5KV,35KV,110KV三级电压负荷。

10.5KV容量不大,为地方负荷。

110KV与系统有4回馈线,呈强联系形式,并接受本厂剩余功率。

最大可能接受本厂送出电力为175-16.8-22.4-175×8%=121.8MW,最小可能接受本厂送出电力为175-25-33.6-175×8%=102.4MW,可见,该厂110KV接线对可靠性要求很高。

35KV架空线出线6回,为提高其供电的可靠性,采用单母线分段带旁路母线的接线形式。

10.5KV电压级共有6回电缆出线其电压恰与发电机端电压相符,采用直馈线为宜。

1-2 主接线方案的拟订在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。

在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。

发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。

同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下:<1)10KV电压级鉴于出线回路多,且为直馈线,电压较低,宜采用屋内配电。

其负荷亦较小,因此采用单母线分段的接线形式。

两台25MW机组分别接在两段母线上,剩余功率通过主变压器送往高一级电压35KV。

由于25MW机组均接于10KV母线上,可选择轻型设备,在分段处加装母线电抗器,各条电缆馈出线上装出线电抗器。

<2)35KV电压级出线6回,采用单母线分段带旁路接线形式。

进线从10KV侧送来剩余容量3×25-[<175×8%)+25]=36MW,不能满足35KV最大及最小负荷的要求。

为此以一台50MW机组按发电机一变压器单元接线形式接至35KV母线上,其剩余容量或机组检修时不足容量由联络变压器与110KV接线相连,相互交换功率。

<3)110KV电压级出线4回,为使出线断路器检修期间不停电,采用双母线带旁路母线接线,并装有专门的旁路断路器,其旁路母线只与各出线相连,以便不停电检修。

其进线一路通过联络变压器与35KV连接,另一路为一台50MW机组与变压器组成单元接线,直接接入110KV,将功率送往电力系统。

据以上分析,接线形式如下:1-3主接线方案的评定该电气主接线的设计始终遵循了可靠性、灵活性、经济性的要求。

在确保可靠性、灵活性的同时,兼顾了经济性。

在可靠性方面该主接线简单清晰,设备少,无论检修母线或设备故障检修,均不致造成全厂停电,每一种电压级中均有两台变压器联系,保证在变压器检修或故障时,不致使各级电压解列。

机组的配置也比较合理,使传递能量在变压器中损耗最小。

但是10KV及35KV母线检修将导致一半设备停运。

在灵活性方面,运行方式较简单,调度灵活性差,但各种电压级接线都便于扩建和发展。

在经济性方面,投资小,占地面积少,采用了单元接线及封闭母线,从而避免了选择大容量出口断路器,节省了投资,有很大的经济性。

通过以上分析,该主接线方案对所设计的这一小型火电厂而言,是比较合理的,可以采纳。

1-4发电机及变压器的选择1、发电机的选择查《电力工程设计手册》<第三册),三台25MW发电机选用QF2-25-3型汽轮发电机,两台50MW的发电机选用QFS-50-2型汽轮发电机。

2、变压器的选择35KV电压母线所接的主变压器容量S = 50/0.8 =62.5MW,查《电力工程设计手册》<第三册),变压器选用SSPL—60000/35型,其短路电压百分数UK%=8.5;110KV电压母线所接的主变器容量S = 50/0.8 =62.5MW,查《电力工程设计手册》<第三册),变压器选用SFPL1—63000/110型,其短路电压百分数为UK%=10.5;用于联络三级电压的联络变压器,通过它向110KV 传输的最大容量为50-22.4+[<25×3)-16.8-175×8%]=71.8MW,当35KV母线所连机组和10.5KV母线所连机组各有一台检修时,通过联络变压器的最大容量为14.2+12=26.2MW。

综合考虑,联络变压器应选48.8÷0.8=61MW,故选SFSL—60000/110型,其中UK(1-2>%=17.5,UK(2-3>%=6.5,UK(3-1>%=10.5。

现将发电机和变压器的选择结果列表如下,以供查询:表1-1第二章厂用电设计2-1 负荷的分类与统计发电厂在电力生产过程中,有大量的电动机械,用以保证主要设备和辅助设备的正常运行。

这些电动机及全厂的运行操作、实验、修配、照明等用电设备的总耗电量,统称为厂用电或自用电。

厂用负荷,按其用电设备在生产中的作用和突然中断供电时造成危害程度可分为四类:<1)Ⅰ类厂用负荷凡短时停电会造成设备损坏,危及人身安全,主机停运及大量影响出力的厂用负荷,都属于Ⅰ类负荷。

如火电厂的给水泵,凝结水泵,循环水泵,引风机,送风机,给粉机等以及水泵的调速器,压油泵,润滑油泵等。

通常他们都设有两套设备互为备用,分别接到两个独立电源的母线上。

<2)Ⅱ类厂用负荷允许短时停电,恢复供电后,不致造成生产紊乱的厂用负荷,均属于Ⅱ类负荷。

如火电厂的工业水泵,疏水泵,灰浆泵,输煤设备和化学水处理设备等,一般它们应由两段母线供电,并采用手动切换。

<3)Ⅲ类厂用负荷较长时间停电,不会影响生产,仅造成生产上的不方便者,都属于Ⅲ类厂用负荷。

如实验室,中央修配厂,油处理室等负荷,通常由一个电源供电。

<4)事故保安负荷指在停机过程中及停机后一段时间内仍应保证供电的负荷,否则将引起主要设备损坏,重要的自动控制装置失灵或推迟恢复供电,甚至可能危及人身安全的负荷称为事故保安负荷。

它分为直流保安负荷,如发电机组的直流润滑油泵等,其直流电源由蓄电池组供电;交流保安负荷,如盘车电动机,实时控制用的电子计算机等都属于交流保安负荷。

现将火电厂的主要负荷统计如下<见表2-1)2-2 厂用电接线的设计厂用电接线的设计原则基本上与主接线的设计原则相同。

首先,应保证对厂用电负荷可靠和连续供电,使发电厂主机安全运转;其次,接线应能灵活地适应正常,事故,检修等各种运行方式的要求;还应适当注意经济性和发展的可能性并积极慎重的采用新技术、新设备,使其具有可行性和先进性。

此外,在设计厂用电系统接线时还要对供电电压等级,厂用供电电源及其引接进行分析和论证。

火电厂的辅助机械多、容量大,供电网络复杂,其主要负荷分布在锅炉、气机、电气、输煤、出灰、化学水处理以及辅助车间和公用电气部分,因此,厂用电电压必须由10KV和0.4KV两级电压,以单母线分段接线形式合理地分配厂用各级负荷。

一、厂用供电电压等级的确定发电厂厂用电系统电压等级是根据发电机额定电压,厂用电动机的电压和厂用电网络的可靠运行等诸方面因素,由上一节负荷分析可知,取两级厂用电压,高压级取6KV,由两组厂用主变压器从25MW机组的电压母线上取,低压级取380V,采用母线分段式。

1、6KV电压等级供电分析对同样的厂用系统,6KV网络不仅节省有色金属及费用,且短路电流也较小,同时6KV电压等级电动机功率可制造得较大,满足大量负荷要求。

拟采用两段6KV的厂母线,另外再设置两段6KV备用母线,以提高供电可靠性。

2、380V电压级低压供电分析380V厂用电一般采用动力和照明共用的三相四线制接地系统,在技术经济合理时,采用动力和照明分开供电及其引接。

二、厂用电工作电源及其引接厂内装在二机三炉,发电机电压为10.5KV,6KV厂用高压母线分单母线,按锅炉台分为三段,通过T11、T12、T13厂用高压变压器分别接于主母线上两个分段上,380/220V低压厂用母线,由于机组容量不大,设启动电源和事故保安电源,低压厂用母线分为两段,备用电源采用明备用形式,即专设一台T10备用厂用高压变压器,平时断开,当任一段厂用工作母线的电源回路发生故障时QF3断开,QF1和QF2在备用电源自动投入装置作用下合闸。

于是,T10厂用高压变压器代替T11厂用高压变压器工作。

为了在主母线上发生故障时,仍有可靠的备用电源,运行中可将T10备用厂用高压变压器和主变压器T2都接到备用母线上,并将主母线第段的母联断路器QF4合上,使备用母线和工作母线均带电运行。

相关文档
最新文档