传感器计算题详解

合集下载

传感器例题[技巧]

传感器例题[技巧]

例1:已知某传感器静态特性方程y=ex,试分别用切线法、端基法及最小二乘法,在0<x<1范围内拟合刻度直线方程,并求出相应的线性度。

解:切线法选41.79%100%12100%max e 1,2max 11|1,01|e y 00x 0x x =⨯--=⨯∆=∴-=-=∆+=∴=∂∂=====e e y e y e x y xe x FS FS x 线性度为)点则经过(点做切线, 0端基法方程端点坐标为19.09%100%10.33100%max e )(max ,51.0(33.0max 10]1)1([1)1()1(1011),1(),1,0(=⨯-=⨯∆=∴--=∆==∆∴-=⇒=∂---+-=⇒+-=∴-=--=∴e y b kx e x e e xx e e d x e y b x e y e e k e FS x x x 线性度为拟合刻度直线为0例2:(动态特性)有一温度传感器,当被测介质温度为t1,测温传感器显示温度为t2时,可用下列方程表示:)/(2021ττd dt t t += 。

当被测介质温度从25℃突然变化到300℃时,测温传感器时间数s 1200=τ。

试求经过350s 后该传感器的动态误差解:设)/(,30020211ττd dt t t s t +==所以79.229350/)25(120300222=⇒-+=t t t 则动态误差为21.70300473630021=⨯-=-t t 0例3:(一阶传感器)某玻璃水银温度计微分方程为i Q Q dtdQ 30010224-⨯=+式中0Q 为水银柱高度(m );i Q 为被测温(℃),试确定该温度计的时间常数和静态灵敏度系数。

解:对方称拉氏变换可得02,3101124102)()()()(102)(2)]0()([430300=-⨯=∴+=+⨯==⇒⨯=++--ττ时间常数静态灵敏度系数k s ks s Q s Q s H s Q s Q Q s SQ i i例4:(二阶传感器)某压电式加速度计动态特性可用下述微分方程描述:a q dtdqdt q d 1010322100.111025.2100.3/⨯=⨯+⨯+式中,q 为输出电荷量(pc );a 为输入加速度(m/℃)。

传感器计算题详解之欧阳歌谷创编

传感器计算题详解之欧阳歌谷创编

《传感器与传感器技术》计算题欧阳歌谷(2021.02.01)解题指导(供参考) 第1章 传感器的一般特性1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差(以mV 计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论?解:满量程(F •S )为50~10=40(mV) 可能出现的最大误差为:m =402%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为:1-6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度K 。

(1) T y dtdy5105.1330-⨯=+ 式中,y 为输出电压,V ;T 为输入温度,℃。

(2) x y dtdy6.92.44.1=+ 式中,y ——输出电压,V ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K =1.5105/3=0.5105(V/℃);(2) τ=1.4/4.2=1/3(s), K =9.6/4.2=2.29(V/Pa)。

1-7 设用一个时间常数=0.1s 的一阶传感器检测系统测量输入为x (t )=sin4t +0.2sin40t 的信号,试求其输出y (t )的表达式。

设静态灵敏度K =1。

解 根据叠加性,输出y (t )为x 1(t )=sin4t 和x 2(t )= 0.2sin40t 单独作用时响应y 1(t )和y 2(t )的叠加,即y (t )= y 1(t )+ y 2(t )。

由频率响应特性: 所以y (t )= y 1(t )+y 2(t )=0.93sin(4t 21.8)0.049sin(40t 75.96)1-8 试分析)()(d )(d t Cx t By tt y A =+传感器系统的频率响应特性。

《传感器与检测技术》第二版部分计算题解答

《传感器与检测技术》第二版部分计算题解答

第一章 传感器与检测技术概论作业与思考题1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

依题意:已知X 1=4.5mm ; X 2=5.5mm ; Y 1=; Y 2=求:S ;解:根据式(1-3) 有:15.45.55.35.21212-=--=--=∆∆=X X Y Y X Y S V/mm 答:该仪器的灵敏度为-1V/mm 。

2.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:Ω/℃;电桥:Ω;放大器:100(放大倍数);笔式记录仪:0.1cm/V求:(1)测温系统的总灵敏度;(2)纪录仪笔尖位移4cm 时。

所对应的温度变化值。

依题意:已知S 1=Ω/℃; S 2=Ω; S 3=100; S 4=0.1cm/V ; ΔT=4cm求:S ;ΔT解:检测系统的方框图如下:(3分)(1)S=S 1×S 2×S 3×S 4=××100×=(cm/℃)(2)因为:TL S ∆∆=所以:29.114035.04==∆=∆S L T (℃) 答:该测温系统总的灵敏度为0.035cm/℃;记录笔尖位移4cm 时,对应温度变化114.29℃。

3.有三台测温仪表,量程均为0_600℃,引用误差分别为%、%和%,现要测量500℃的温度,要求相对误差不超过%,选哪台仪表合理依题意,已知:R=600℃; δ1=%; δ2=%; δ3=%; L=500℃; γM =%求:γM1 γM2 γM3解:(1)根据公式(1-21)%100⨯∆=Rδ 这三台仪表的最大绝对误差为:0.15%5.26001=⨯=∆m ℃0.12%0.26002=⨯=∆m ℃0.9%5.16003=⨯=∆m ℃(2)根据公式(1-19)%100L 0⨯∆=γ 该三台仪表在500℃时的最大相对误差为:%75.2%10050015%10011=⨯=⨯∆=L m m γ %4.2%10050012%10012=⨯=⨯∆=L m m γ %25.2%1005009%10013=⨯=⨯∆=L m m γ 可见,使用级的仪表最合理。

传感器计算题答案

传感器计算题答案

计算题1 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。

(1)T y dt dy 5105.1330-⨯=+ 式中, y ——输出电压,V ;T ——输入温度,℃。

(2)x y dt dy 6.92.44.1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得(1) τ=30/3=10(s),K=1.5⨯10-5/3=0.5⨯10-5(V/℃);(2) τ=1.4/4.2=1/3(s),K=9.6/4.2=2.29(μV/Pa)。

2 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即x y dt dy dt y d 1010322100.111025.2100.3⨯=⨯+⨯+ 式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。

试求其固有振荡频率ωn 和阻尼比ζ。

解: 由题给微分方程可得 ()()s rad n /105.11/1025.2510⨯=⨯=ω 01.011025.22100.3103=⨯⨯⨯⨯=ξ3 已知某二阶传感器系统的固有频率f 0=10kHz ,阻尼比ζ=0.1,若要求传感器的输出幅值误差小于3%,试确定该传感器的工作频率范围。

解:由f 0=10kHz ,根据二阶传感器误差公式,有 ()[]()%n n 314112222≤-ωωξ+ωω-=γ()[]()069103141122222..n n =≤ωωξ+ωω- 将ζ=0.1代入,整理得()()00645.096.124=+-n n ωω⎩⎨⎧=⇒⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛0.183(388.10335.0927.12舍去)n nωωωω ()kHz f f f f f f o o o n 83.110183.0183.0183.022=⨯==⇒===ππωω4 设有两只力传感器均可作为二阶系统来处理,其固有振荡频率分别为800Hz 和1.2kHz ,阻尼比均为0.4。

传感器计算题详细讲解

传感器计算题详细讲解

范文范例指导参考《传感器与传感器技术》计算题解题指导(供参考)第 1 章传感器的一般特性1-5 某传感器给定精度为2%F·S,满度值为 50mV,零位值为10mV,求可能出现的最大误差( 以 mV计 ) 。

当传感器使用在满量程的1/2 和 1/8 时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论?解:满量程( F? S)为 50~10=40(mV)可能出现的最大误差为:m= 40 2%=0.8(mV)当使用在1/2 和 1/8 满量程时,其测量相对误差分别为:1 20.8100% 4% 40 120.8100% 16% 40 181-6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度 K。

()dy3y1.5105T1 30y T dt式中,为输出电压,;为输入温度,℃。

V(2) 1.4 dy 4.2y9.6xdt式中, y——输出电压,V; x——输入压力,Pa。

解:根据题给传感器微分方程,得( 1)τ=30/3=10(s),K=1.5105 5/3=0.5 10 (V/ ℃) ;(2)τ=1.4/4.2=1/3(s) ,K=9.6/4.2=2.29( V/Pa) 。

1-7 设用一个时间常数=0.1s 的一阶传感器检测系统测量输入为x( t )=s in4t +0.2sin40 t 的信号,试求其输出y( t ) 的表达式。

设静态灵敏度K=1。

解根据叠加性,输出 y( t ) 为 x1( t )=sin4 t 和x2( t )= 0.2sin40 t 单独作用时响应y ( t ) 和 y ( t ) 的叠加,即y( t )= y( t )+y ( t ) 。

1 2 12由频率响应特性:word 版整理范文 范例 指导 参考y 1( t)Ksin[ 4t arctan( 1 )]1 ( 1 ) 21 sin[ 4t arctan(4 0.1)1 (4 0.1)20.93sin( 4t 21.8 )y2 (t)10.2sin[ 40t arctan(40 0.1)]1 (40 0.1)20.049sin(40t 75.96 )所以y( t )= y 1( t )+ y2( t )=0.93sin (4 t 21.8 ) 0.049sin(40 t75.96 )1-8 试分析 A dy(t) By(t ) Cx (t) 传感器系统的频率响应特性。

传感器计算题

传感器计算题

1、已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。

试求该热电偶输出的最大值和最小值。

以及输入与输出之间的相位差和滞后时间。

解:依题意,炉内温度变化规律可表示为x (t) =520+20sin(ωt)℃由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为y(t)=520+Bsin(ωt+ϕ)℃热电偶为一阶传感器,其响应的幅频特性为()()786010********22.B A =⎪⎪⎭⎫ ⎝⎛⨯π+=ωτ+==ω因此,热电偶输出信号波动幅值为B=20⨯A(ω)=20⨯0.786=15.7℃由此可得输出温度的最大值和最小值分别为y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃输出信号的相位差ϕ为 ϕ(ω)= -arctan(ωτ)= -arctan(2π/80⨯10)= -38.2︒相应的时间滞后为∆t =()s 4.82.3836080=⨯2、用一个一阶传感器系统测量100Hz 的正弦信号时,如幅值误差限制在5%以内,则其时间常数应取多少?若用该系统测试50Hz 的正弦信号,问此时的幅值误差和相位差为多?解: 根据题意()%51112-≥-+=ωτγ(取等号计算)()0526.195.01%51112==-=+ωτ解出 ωτ =0.3287所以()s 310523.010023287.0/3287.0-⨯=⨯==πωτ=0.523ms当用该系统测试50Hz 的正弦信号时,其幅值误差为()()%32.1110523.050211111232-=-⨯⨯⨯+=-+=-πωτγ相位差为ϕ=﹣arctan(ωτ)=﹣arctan(2π×50×0.523×10-3)=﹣9.3°3、在材料为钢的实心圆柱试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R 1和R 2,把这两应变片接人差动电桥(参看习题图2—11)。

传感器计算题详解

传感器计算题详解

《传感器与传感器技术》计算题解题指导(供参考)第1章传感器的一般特性1-5某传感器给定精度为2%F·S,满度值为50mV,零位值为10mV,求可能出现的最大误差(以mV计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论?解:满量程(F?S)为50~10=40(mV)可能出现的最大误差为:m=402%=0.8(mV)当使用在1/2和1/8满量程时,其测量相对误差分别为:10.840 12100%4%20.840 18100%16%1-6有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度K。

dy5(1)303y1.510Tdt式中,y为输出电压,V;T为输入温度,℃。

dy(2)1.44.2y9.6xdt式中,y——输出电压,V;x——输入压力,Pa。

解:根据题给传感器微分方程,得(1)τ=30/3=10(s,)K=1.510 5/3=0.5105(V/℃);(2)τ=1.4/4.2=1/3(s,)K=9.6/4.2=2.29(V/Pa)。

1-7设用一个时间常数=0.1s的一阶传感器检测系统测量输入为x(t)=sin4t+0.2sin40t的信号,试求其输出y(t)的表达式。

设静态灵敏度K=1。

解根据叠加性,输出y(t)为x1(t)=sin4t和x2(t)=0.2sin40t单独作用时响应y1(t)和y2(t)的叠加,即y(t)=y1(t)+y2(t)。

由频率响应特性:1y( 1 t)1K( 12)sin[4t arctan( 1 )]11(420.1)sin[4tarctan(40.1)0.93sin(4t21.8)y(t)2 11(4020.1)0.2sin[40tarctan(400.1)]0.049sin(40t75.96)所以y(t)=y1(t)+y2(t)=0.93sin(4t21.8)0.049sin(40t75.96)dy(t)1-8试分析A()()传感器系统的频率响应特性。

传感器课后习题答案

传感器课后习题答案

《传感器与测试技术》计算题 解题指导(仅供参考)第1章 传感器的一般特性1—5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论? 解:满量程(F▪S )为50﹣10=40(mV)可能出现的最大误差为:∆m =40⨯2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为:%4%10021408.01=⨯⨯=γ %16%10081408.02=⨯⨯=γ1—6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。

(1)T y dt dy5105.1330-⨯=+ 式中, y ——输出电压,V ;T ——输入温度,℃。

(2)x y dt dy6.92.44.1=+式中,y ——输出电压,μV ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得 (1) τ=30/3=10(s),K=1.5⨯10-5/3=0.5⨯10-5(V/℃);(2) τ=1.4/4.2=1/3(s),K=9.6/4.2=2.29(μV/Pa)。

1—7 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。

试求该热电偶输出的最大值和最小值。

以及输入与输出之间的相位差和滞后时间。

解:依题意,炉内温度变化规律可表示为x (t) =520+20sin(ωt)℃由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为y(t)=520+Bsin(ωt+ϕ)℃热电偶为一阶传感器,其响应的幅频特性为()()786010********22.B A =⎪⎪⎭⎫ ⎝⎛⨯π+=ωτ+==ω因此,热电偶输出信号波动幅值为B=20⨯A(ω)=20⨯0.786=15.7℃由此可得输出温度的最大值和最小值分别为y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃输出信号的相位差ϕ为ϕ(ω)= -arctan(ωτ)= -arctan(2π/80⨯10)= -38.2︒相应的时间滞后为∆t =()s 4.82.3836080=⨯1—8 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即x y dt dy dt y d 1010322100.111025.2100.3⨯=⨯+⨯+式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《传感器与传感器技术》计算题解题指导(供参考)第1章 传感器的一般特性1-5 某传感器给定精度为2%F·S,满度值为50mV ,零位值为10mV ,求可能出现的最大误差(以mV 计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论? 解:满量程(F •S )为50~10=40(mV)可能出现的最大误差为:m =402%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为:%4%10021408.01=⨯⨯=γ%16%10081408.02=⨯⨯=γ1-6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度K 。

(1) T y dtdy5105.1330-⨯=+ 式中,y 为输出电压,V ;T 为输入温度,℃。

(2) x y dtdy6.92.44.1=+ 式中,y ——输出电压,V ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得 (1) τ=30/3=10(s),K =1.5105/3=0.5105(V/℃);(2) τ=1.4/4.2=1/3(s),K =9.6/4.2=2.29(V/Pa)。

1-7 设用一个时间常数=0.1s 的一阶传感器检测系统测量输入为x (t )=sin4t +0.2sin40t 的信号,试求其输出y (t )的表达式。

设静态灵敏度K =1。

解 根据叠加性,输出y (t )为x 1(t )=sin4t 和x 2(t )= 0.2sin40t 单独作用时响应y 1(t )和y 2(t )的叠加,即y (t )= y 1(t )+ y 2(t )。

由频率响应特性:)8.214sin(93.0)1.04arctan(4sin[)1.04(11)]arctan(4sin[)(1)(21211ο-=⨯-⋅⨯+=-+⋅+=t t t K t y τωτω)96.7540sin(049.0)]1.040arctan(40sin[2.0)1.040(11)(22ο-=⨯-⨯⨯+=t t t y 所以y (t )= y 1(t )+ y 2(t )=0.93sin(4t 21.8)0.049sin(40t 75.96) 1-8 试分析)()(d )(d t Cx t By t t y A =+传感器系统的频率响应特性。

解 传感器系统的时间常数=A /B ,灵敏度K =C /B 。

所以,其频率响应为2)/(1/)(B A B C A ωω+=相频特性为)/arctan()(B A ωωϕ-=1-9 已知一热电偶的时间常数=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K =1。

试求该热电偶输出的最大值和最小值。

以及输入与输出之间的相位差和滞后时间。

解:依题意,炉内温度变化规律可表示为x (t) =520+20sin(t)℃由周期T =80s ,则温度变化频率f =1/T ,其相应的圆频率 =2f =2/80=/40; 温度传感器(热电偶)对炉内温度的响应y (t )为y (t )=520+B sin(t +)℃热电偶为一阶传感器,其响应的幅频特性为()()7860104011112022.B A =⎪⎪⎭⎫⎝⎛⨯π+=ωτ+==ω 因此,热电偶输出信号波动幅值为B =20⨯A ()=20⨯0.786=15.7℃由此可得输出温度的最大值和最小值分别为y(t )|m ax =520+B=520+15.7=535.7℃ y(t )|m in =520﹣B=520-15.7=504.3℃输出信号的相位差为(ω)= arctan(ωτ)=arctan(2/8010)= 38.2相应的时间滞后为t =()s 4.82.3836080=⨯ 1-10 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即x y dt dy dt y d 1010322100.111025.2100.3⨯=⨯+⨯+式中,y 为输出电荷量,pC ;x 为输入加速度,m/s 2。

试求其固有振荡频率n 和阻尼比。

解: 由题给微分方程可得()()s rad n /105.11/1025.2510⨯=⨯=ω01.011025.22100.3103=⨯⨯⨯⨯=ξ1-11 某压力传感器的校准数据如表1-5所示,试分别用端点连线法和最小二乘法求非线性误差,并计算迟滞和重复性误差;写出端点连线法和最小二乘法拟合直线方程。

(最小二乘法线性拟合原理和方法见末尾附录)压 力 (MPa) 输 出 值 (mV)第一次循环 第二次循环 第三次循环 正行程 反行程 正行程 反行程 正行程 反行程 0 -2.73 -2.71 -2.71 -2.68 -2.68 -2.69 0.02 0.56 0.66 0.61 0.68 0.64 0.69 0.04 3.96 4.06 3.99 4.09 4.03 4.11 0.06 7.40 7.49 7.43 7.53 7.45 7.52 0.08 10.88 10.95 10.89 10.93 10.94 10.99 0.1014.4214.4214.4714.4714.4614.46解 校验数据处理(求校验平均值):压 力 (MPa) (设为x)输 出 值 (mV)第一次循环 第二次循环 第三次循环 校验平均值 (设为y)正行程 反行程 正行程 反行程 正行程 反行程 0 -2.73 -2.71 -2.71 -2.68 -2.68 -2.69 -2.70 0.02 0.56 0.66 0.61 0.68 0.64 0.69 0.64 0.04 3.96 4.06 3.99 4.09 4.03 4.11 4.04 0.06 7.40 7.49 7.43 7.53 7.45 7.52 7.47 0.08 10.88 10.95 10.89 10.93 10.94 10.99 10.93 0.1014.4214.4214.4714.4714.4614.4614.45(1)端点连线法 设直线方程为y =a 0+kx ,取端点(x 1,y 1)=(0,-2.70)和(x 6,y 6)=(0.10,14.45)。

则a 0由x =0时的y 0值确定,即a 0=y 0kx =y 1=-2.70 (mV)k 由直线的斜率确定,即5.171010.0)70.2(45.141616=---=--=x x y y k (mV/MPa )拟合直线方程为y = 2.70+171.5x求非线性误差:压 力(MPa) 校验平均值 (mV) 直线拟合值(mV) 非线性误差 (mV) 最大非线性误差(mV)0 -2.70-2.70 0 -0.12 0.02 0.64 0.73 -0.09 0.04 4.04 4.16 -0.12 0.06 7.47 7.59 -0.12 0.08 10.93 11.02 -0.09 0.1014.4514.45所以,压力传感器的非线性误差为%7.0%100)70.2(45.1412.0±=⨯--±=L δ求重复性误差:压 力 (MPa) 输 出 值 (mV)正行程反行程1 2 3 不重复误差 1 2 3 不重复误差 0 -2.73 -2.71 -2.68 0.05 -2.71 -2.68 -2.69 0.03 0.02 0.56 0.61 0.64 0.08 0.66 0.68 0.69 0.03 0.04 3.96 3.99 4.03 0.07 4.06 4.09 4.11 0.05 0.06 7.40 7.43 7.45 0.05 7.49 7.53 7.52 0.04 0.08 10.88 10.89 10.94 0.06 10.95 10.93 10.99 0.04 0.1014.4214.4714.460.0514.4214.4714.460.05最大不重复误差为0.08 mV ,则重复性误差为%47.0%100)70.2(45.1408.0±=⨯--±=R δ求迟滞误差:压 力 (MPa)输 出 值 (mV)第一次循环 第二次循环 第三次循环 正行程反行程 迟滞 正行程 反行程 迟滞 正行程 反行程 迟滞 0 -2.73 -2.71 0.02 -2.71 -2.68 0.03 -2.68 -2.69 0.01 0.02 0.56 0.66 0.10 0.61 0.68 0.07 0.64 0.69 0.05 0.04 3.96 4.06 0.10 3.99 4.09 0.10 4.03 4.11 0.08 0.06 7.40 7.49 0.09 7.43 7.53 0.10 7.45 7.52 0.07 0.08 10.88 10.95 0.07 10.89 10.93 0.04 10.94 10.99 0.05 0.1014.4214.4214.4714.470.014.4614.460.0最大迟滞为0.10mV ,所以迟滞误差为%58.0%100)70.2(45.1410.0±=⨯--±=H δ(2)最小二乘法 设直线方程为y =a 0+kx数据处理如下表所示。

序号1 2 3 4 5 6 ∑ x 0 0.02 0.04 0.06 0.08 0.10 0.3 y 2.70 0.64 4.04 7.47 10.93 14.45 34.83 x 20 0.0004 0.0016 0.0036 0.0064 0.01 0.022 xy0.01280.16160.44820.87441.4452.942根据以上处理数据,可得直线方程系数分别为:()mV)(77.2042.08826.076626.03.0022.06942.23.083.34022.02222-=-=-⨯⨯-⨯=-⋅-⋅=∑∑∑∑∑∑x x n xy x y x a())MPa /mV (5.1713.0022.0683.343.0942.26222=-⨯⨯-⨯=-⋅-=∑∑∑∑∑x x n y x xy n k所以,最小二乘法线性回归方程为y = 2.77+171.5x求非线性误差:压 力 (MPa) 校验平均值 (mV)直线拟合值(mV) 非线性误差 (mV) 最大非线性误差(mV)0 -2.70 -2.77 0.07 -0.07 0.02 0.64 0.66 -0.02 0.04 4.04 4.09 -0.05 0.06 7.47 7.52 -0.05 0.08 10.93 10.95 -0.02 0.1014.4514.380.07所以,压力传感器的非线性误差为%41.0%100)77.2(38.1407.0±=⨯--±=L δ可见,最小二乘法拟合直线比端点法拟合直线的非线性误差小,所以最小二乘法拟合更合理。

相关文档
最新文档