离散数学第2章 集合-简化

合集下载

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。

离散数学 集合

离散数学 集合
18
离散数学
无重复性是集合的四大性质之一。 五.空集(empty,null,void set):记为 空集是没有成员的集合。即 注.将空集作为集合实 际上是集合运算的封 x(x)(所谓的空集公理); 闭性所要求的 ! 所以={ }; 空集是集合(作这点规定是运算封闭性的要求)。 空集是唯一的。因为若有两个空集,则它们有完全 相同的元素(都没有任何元素),所以它们相等,是同 一集合。 六.全集(universe of discourse):记为X 全集是所要研究的问题所需的全部对象(元素) 所构成的集合。 全集给个体(研究的对象)划定适当的范围。
12
离散数学
两个集合不相等,记为AB ; 根据这个定义,关于集合我们可得下列性质: (1) 无序性:集合中的元素是无序的。例如 {a,b,c}= {b, a, c} = {b , c, a} 因此,为了使用方便,我们可任意书写集合中元 素的顺序。 但一般情况下,通常采用字母序、字典序;有时, 还需要强行命名一种序; 无序性是集合的四大性质之一。 (2)无重复性:集合中元素的重复是无意义的。例如 {a, a, a, a, b, b, b, c , c}= {a, b, c} 包(bag):若允许元素重复称为包。例如 {a, a, a, a, b, b, b, c , c} 一般记布尔系统 图论
2
离散数学 Discrete Mathematics
序言:
离散数学是现代数学的一个重要分支,计算机科学 基础理论的核心课程。它充分描述了计算机科学的 离散性特点,是随着计算机科学的发展而逐步建立 起来的新兴的基础性学科。 本课程作为计算机科学的基础性课程,把握离散数 学的关键性问题,介绍五大块内容:集合论、代数 系统、布尔代数、图论、数理逻辑。 这些和计算机科学密切相关的理论的结构按排,既 着重于各部分之间的紧密联系,又深入探讨各部分 内容的概念、例子、理论、算法、以及实际应用。

离散数学第二章

离散数学第二章
23

注意:
有些关系既不是对称的也不是反对称的;
0 1 0 1 0 1 0 0 0
可以是既是对称的,也是反对称的

如相等关系
24
定义2.10:在集合X上的关系R,如果有:
x, y R且 y, z R ,则必有 x, z R ,
即非对角线上的1, 对称位置必须是0; 而非对角线上的0 不做要求
判断方法:
1. 如果如果存在a到b的有向边,就不存在b到a的有向边。 (逆命题不成立,即可以两条有向边都不存在); 2. 关系矩阵中,如果 a j ,i 1则ai , j 0,这里i j
(注意:a j ,i 0不一定ai , j 1)
n个
容易证明: n m nm m n i: R R R , R R mn ,m,n均为正整数 0 ii: R 是相等关系,即: R0 ={(x,x)|x∈A} 1 iii: R R
13

逆关系
由于关系中的元素是有序偶,则如果将该有序偶的顺
序颠倒,会得到一个新的关系,称之为逆关系。
~ ~ ~
~
补集的逆关系
~ ~ ~
(5) R S R S , R S R S
注意,这个跟德· 摩根律不一样
(6) R S R S
~
~
~
18
关系的重要性质

定义2.6:在集合X上的关系R,如果对任意 x X , 有 x, x R ,则称R是自反的。
如:整数集合上的相等关系、" " 关系等;

如果 miq mqj 1 即mij 0 ,则 miq mqj 1 即 ai , aq R且 aq , a j R 由传递性的定义可知,如果R为传递的, 必有 ai , a j R ,即应有 mij 1 2 即:当R是A上的传递关系时,如果 M R 中的元素 bij 0 , 则必须有 mij 1 ,反之亦然

离散数学(本)主要概念

离散数学(本)主要概念

《离散数学(本)》主要概念、定理与方法第1章集合及其运算一、概念集合(元素)——集合是一些具有确定的、可以区分的若干事件的全体,而集合中的事件称为元素.因此,集合是由若干元素组成的.若a是集合A中的元素,则称a属于A,记作a∈A;若a不是集合A中的元素,则称a不属于A,记作a∉A.定义1.1.1(子集)对任意两个集合A和B,若B中的每个元素都是A中的元素,则称B 为A的子集,记作B⊆A或A⊇B.若B是A的子集,也称A包含B,或B被A包含.若B不是A的子集,即B⊆A不成立时,记作B⊆A.定义1.1.2(集合相等)对任意两个集合A和B,若有A⊆B且B ⊆A,则称A与B相等,记作A= B.定义1.1.3(真子集)对任意两个集合A和B,若B⊆A且B≠A,则称B为A的真子集,记作B⊂A或A⊃B.定义1.1.4(空集)不含任何元素的集合称为空集,记作∅.空集的定义也可以写成≠} (1.1.1)∅={x x xn元集(m元子集)——含有n个元素的集合简称n元集,它的含有m(m≤n)个元素的子集叫做它的m元子集.定义1.1.5(全集)在一个具体问题中,如果所涉及的集合都是某个集合的子集,则将这个集合称为全集,记作E.定义1.1.6(幂集)设A是一个集合,由A的所有子集组成的集合,称为A的幂集,记作P(A)或2A.定义1.2.1(并集、交集、差集、补集、对称差)设E为全集,A和B是E中任意两个子集.(1)所有属于A或属于B的元素组成的集合,称为集合A与B的并集,记作A⋃B.即∈}(1.2.1){或x BA B x x A⋃=∈⋂.即(2)既属于A又属于B的所有元素组成的集合,称为集合A与B的交集,记作A B∈}(1.2.2){且x B⋂=∈A B x x A如果两个集合A和B没有公共元素,即A B⋂=∅,称为集合A与B不相交.-.即(3)属于A而不属于B的所有元素组成的集合,称为A与B的差集,记作A B-=∈∉A B且(1.2.3)x x A x B{}(4)由E中所有不属于A的元素组成的集合,称为A的补集,记作~A.即~A={}且(1.2.4)x x E x A∈∉补集~A可以看作全集E与集合A的差集,即~A = E -A.(5)集合(A - B )⋃(B - A )称为集合A和B的对称差,记作A⊕B.即A⊕B = (A - B )⋃(B - A ).(1.2.5)对称差运算的另一种定义是A⊕B = (A⋃B ) - (B ⋂A ).(1.2.5’)二、定理与性质集合包含关系的自反性:对于任意集合A,有A⊆A.集合包含关系的反对称性:对任意两个集合A和B,若有A⊆B且B⊆A,则A=B.集合包含关系的传递性:对任意三个集合A,B和C,若有A⊆B,B⊆C,则A⊆C.定理1.1.1空集是一切集合的子集.定理1.1.1的推论空集是唯一的.集合运算的交换律:A B B A⋃=⋃⋂=⋂A B B A集合运算的结合律:()()A B C A B C ⋃⋃=⋃⋃()()A B C A B C ⋂⋂=⋂⋂集合运算的分配律:A B C A B A C ⋃⋂=⋃⋂⋃()()()A B C A B A C ⋂⋃=⋂⋃⋂()()()集合运算的幂等律:A ⋃A = AA ⋂A = A集合运算的同一律:A A ⋃∅=A E A ⋂=集合运算的零律:A ⋃E = EA ⋂∅=∅集合运算的补余律:A ⋃~A = EA ⋂~A =∅集合运算的吸收律:A A B A ⋃⋂=()A AB A ⋂⋃=()集合运算的摩根律:A - (B ⋃C ) = (A - B )⋂(A - C )A - (B ⋂C ) = (A - B )⋃(A - C )~ (B ⋃C ) = ~ B ⋂~ C~ (B ⋂C ) = ~ B ⋃~ C~∅= E~E =∅集合运算的双补律:~(~A ) = A对称差的交换律:A B B A ⊕=⊕对称差的结合律:()()A B C A B C ⊕⊕=⊕⊕对称差的分配律:A B C A B A C ⋂⊕=⋂⊕⋂()()()对称差的同一律:A A ⊕∅=对称差的零律:A ⊕A = ∅对称差的性质:A ⊕(A ⊕B ) = B定理1.2.1 对任意两个有限集合A 和B ,用S 表示有限集合S 中的元素数,则(1) A B ⋃≤A +B ; (2) A B ⋂≤min (A +B ) ;(3) A B -≥A -B ; (4) A B ⊕=A +B - 2A B ⋂ .定理1.2.2(容斥定理) 对任意两个有限集合A 和B ,有A B ⋃= A +B - A B ⋂ (1.2.6) 其中A ,B 分别表示A ,B 的元素个数.定理1.2.2的推广结论:对于任意三个有限集合A , B , C ,有A B C ⋃⋃ = A +B +C -A B ⋂-A C ⋂-B C ⋂+A B C ⋂⋂(1.2.7)三、方法1.集合的三种表示方法列举法是列出集合的所有元素,并用花括号括起来.例如A = {a b c d ,,,},N = {0, 1, 2, 3, …}.描述法是将集合中元素的共同属性描述出来.例如B = {x x x R 210-=∈且},D = {x x 是正整数}.文氏图法是用一个简单的平面区域表示一个集合,用区域内的点表示集合内的元素.2.有限集合的计数方法首先根据已知条件把对应的文氏图画出来,然后将已知集合的元素填入表示该集合的区域内.通常从几个集合的交集填起,根据计算结果将数字逐步填入所有的空白区域内.如果交集的数字是未知的,可以将其设为x ,再根据已知条件列出方程或方程组,解出未知数x .第2章 关系与函数一、概念有序对——有序对是指两个元素x 和y (允许x = y ) 按给定顺序排列组成的二元组合,记作<x , y > .其中x 是它的第一元素,y 是它的第二元素.定义2.1.1(笛卡尔积、直乘积) 设A 和B 是任意两个集合,用A 中元素为第一元素,B 中元素为第二元素构成有序对,所有这样的有序对组成的集合称为集合A 和B 的笛卡尔积,或称为集合A 和B 的直乘积,记作A ⨯B .即A ⨯B = {< x , y >x A ∈且y B ∈}定义2.1.2(二元关系) 任何一个有序对集合,称为一个二元关系,简称关系,记作R .对于二元关系R ,若<a ,b >∈R , 可记作aRb ;若<a ,b >∉R , 则记作a R b .定义2.1.3(从A 到B 的二元关系) 设A 和B 是两个集合,A ⨯B 的任一子集所定义的二元关系R 称为从A 到B 的二元关系.当A =B 时,称R 为A 上的二元关系.定义2.1.4(定义域、值域) 关系R 中有序对的第一元素所允许选取对象集合称为关系R 的定义域,记作Dom (R ),第二元素所允许选取对象集合称为关系R 的值域,记作Ran (R ). 定义2.1.5(空关系、全关系、恒等关系) 对任何集合A ,(1) 因为空集∅是A ⨯A 的子集,所以定义了A 上的关系,称为A 上的空关系;(2) 定义 E A ={<a ,b >⎢a ∈A 且b ∈A }= A ⨯A ,称为A 上的全关系;(3) 定义I A ={<a ,a >⎢a ∈A },称为A 上的恒等关系.定义2.1.6(关系矩阵) 设集合A ={a 1,a 2,…,a m },B ={b 1,b 2,…,b n },(1) 若R 是从A 到B 的一个关系,则R 的关系矩阵是m ⨯n 矩阵M R =()nm j i r ⨯, 其中 ⎪⎩⎪⎨⎧=ji j i j i b R a Rb a r 当当,0,1,(i =1, 2, …, m ;j =1, 2, …, n ). (2) 若R 是A 上一个关系,则R 的关系矩阵是m 阶矩阵M R =()mm j i r ⨯, 其中 ⎪⎩⎪⎨⎧=ji j i j i b R a Rb a r 当当,0,1,(i , j =1, 2, …, m ). 定义2.1.7(结点、关系图、自回路) 设集合A ={a 1,a 2,…,a m },B ={b 1,b 2,…,b n },若R 是从A 到B 的一个关系,则用m 空心点表示a 1,a 2,…,a m ,用n 空心点表示b 1,b 2,…,b n ,这些空心点统称为结点.如果a i Rb j ,那么由结点a i 到结点b j 作一条有向弧,箭头指向b j ;如果<a i ,b j >∉R ,那么结点a i 与b j 之间没有弧连结,这样的图形称为R 的关系图. 若R 是A 上一个关系,如果a i Ra j (i ≠j ),有向弧的画法与上面相同;如果a i Ra i ,则画一条从结点a i 到结点 a i 的带箭头的封闭弧,称为自回路.定义2.2.1(复合关系) 设A ,B ,C 是三个集合,R 是从A 到B 的一个二元关系,S 是从B 到C 的一个二元关系,则R 与S 的复合关系为R ·S ={<a , c >⎢a ∈A ,c ∈C ,且存在b ∈B ,使<a , b >∈R ,<b , c >∈S }这个复合关系是从A 到C 的一个二元关系.布尔运算——布尔运算只涉及数字0和1,规定:加法:0+0 = 0, 0+1 = 1+0 = 1+1 = 1;乘法:1⨯1 = 1, 1⨯0 = 0⨯1 = 0⨯0 = 0 .定义2.2.2(复合关系矩阵) 设集合A ={a 1,a 2,…,a m },B = {b 1,b 2,…,b n },C = {c 1,c 2,…,c p },从A 到B 的二元关系R 的关系矩阵M R 是一个m 行n 列的矩阵,从B 到C 的二元关系S 的关系矩阵M S 是一个n 行p 列矩阵,则从A 到C 的复合关系R ·S 的关系矩阵S R M •是一个m 行p 列矩阵,并且S R M •= M R ⨯ M S (2.2.1)其中⨯表示按布尔运算进行矩阵乘法运算.定义2.2.3(二元关系的幂) 设R 是集合A 上的一个二元关系,n ∈N ,则关系R 的n 次幂R n 定义为:(1) R 0= I A ,即R 0是集合A 上的恒等关系;(2) R n +1 = R n ·R .定义2.2.4(逆关系) 设R 是从集合A 到B 的二元关系,则从集合B 到A 的二元关系R –1:R –1 = {<b , a > <a , b >∈R } (2.2.3) 称为R 的逆关系.定义2.3.1(自反关系、反自反关系) 设R 是集合A 上的二元关系,若对任意a ∈A ,都有aRa ,即<a , a >∈R ,则称R 为A 上自反的关系;若对任意a ∈A ,都有a R a ,即<a , a >∉R ,则称R 为A 上反自反的关系.定义2.3.2(对称关系、反对称关系) 设R 是集合A 上的二元关系,对任意a ,b ∈A ,若有<a , b >∈R ,就必有<b , a >∈R ,则称R 为A 上对称的关系;若有<a , b >∈R ,且<b , a >∈R ,就必有b = a ,则称R 为A 上反对称的关系.定义2.3.3(传递关系) 设R 是集合A 上的二元关系,对任意a ,b ,c ∈A ,若有<a , b >∈R ,且<b , c >∈R ,就必有<a , c >∈R ,则称R 为A 上传递的关系.定义2.3.4(自反闭包、对称闭包,传递闭包) 设非空集合A 上的二元关系R ,若有A 上的另一个二元关系R '满足:(1) R '是自反的(对称的,传递的);(2) R ⊆R ';(3) 对A 上任何包含R 的自反(对称,传递)关系R ''都有R '⊆R '';则称关系R '为R 的自反(对称,传递)闭包,记作r (R )(s (R ),t (R )).定义2.4.1(等价关系) 设R 是非空集合A 上的二元关系,如果R 是自反的、对称的和传递的,则称R 是A 上的等价关系.设R 是一个等价关系,如果<a , b >∈R ,称a 等价于b ,记作a ~ b .定义2.4.2(等价类) 设R 是非空集合A 上的等价关系,对任意a ∈A ,令[a ]R = {b ⎪b ∈A 且aRb } (2.4.1)则称集合[a ]R 为a 关于R 的等价类,简称a 的等价类,简记作[a ]或a .定义2.4.3(商集) 设R 是非空集合A 上的等价关系,以R 的所有等价类作为元素的集合,成为A 关于R 的商集,记作A/R .即A/R = {[a ]R ⎪a ∈A } (2.4.2) 定义2.4.4(划分块) 设A 是非空集合,若A 的子集族π满足:(1) π∉∅;(2) π中任何两个子集都不相交;(3) π中所有子集的并集就是A .则称π为A 的一个划分,称π中的元素为A 的划分块.定义2.5.1(相容关系) 设R 是非空集合A 上的二元关系,如果R 是自反的、对称的,则称R 是A 上的相容关系.定义2.5.2(相容类) 设R 是非空集合A 上的相容关系,B 是A 的子集,如果在B 中的任意两个元素都是相关的,则称为由相容关系R 产生的相容类.最大相容类——R 是A 上的相容关系,B 是相容类,若在差集A -B 中没有一个元素能和B 中所有元素都是相关的,则称B 为最大相容类.定义2.5.3(覆盖) 设A 是非空集合,若A 的子集族π满足:(1) π∉∅;(2) π中所有子集的并集就是A .则称π为A 的一个覆盖,称π中的元素为A 的覆盖块.定义2.5.4(完全覆盖) 设集合A 的子集族π={A 1 , A 2 , … , A n }是A 的覆盖,且对π中任意元素A i ,不存在其它元素A j ,使得A i 是A j 的子集,则称π为A 的一个完全覆盖.定义2.5.5(偏序关系) 设R 是非空集合A 上的二元关系,如果R 是自反的、反对称的和传递的,则称R 是A 上的偏序关系,或称序关系,记作≤.设≤是偏序关系,如果<a , b >∈≤,则记作a ≤b ,读作a “小于等于”b .定义2.5.6(拟序关系) 设R 是非空集合A 上的二元关系,如果R 是反自反的和传递的,则称R 是A 上的拟序关系,记作<.设<是拟序关系,如果<a , b >∈<,则记作a <b ,读作a “小于”b .定义2.5.7(全序关系、线序关系) 设R 是非空集合A 上的偏序关系,如果对任意a ,b ∈A ,必有a ≤b 或b ≤a ,则称R 是A 上的全序关系,或称线序关系.定义2.5.8(偏序集) 集合A 和A 上的偏序关系≤一起称为偏序集,记作<A ,≤>. 哈斯图——对于给定的偏序集<A ,≤>,用一个简化的偏序关系图来表示,我们将这种简化的关系图称为哈斯(Hasse )图.它的作图规则为:(1) 去掉每个结点的自回路,只用一个空心点表示集合A 的元素;(2) 适当排列结点的顺序,即对任意a ,b ∈A ,若a ≤b ,则将a 画在b 的下方;(3) 对任意a ,b ∈A ,若a <b ,且不存在c ∈A ,使得a <c <b ,则就在a ,b 之间画一条无向弧.定义2.5.9(盖住) 设R 是非空集合A 上的偏序关系,a 和b 是A 中两个不同的元素,如果<a , b > ∈R ,且在A 中没有其它元素c ,使得<a , c >∈R 和<c , b >∈R ,则称元素b 盖住元素a . 定义2.5.10(最大元、最小元、极大元、极小元) 设<A ,≤>为序集,集合B ⊆A ,存在元素b ∈B ,(1) 若对任意a ∈B ,都有a ≤b ,则称b 为B 的最大元;(2) 若对任意a ∈B ,都有b ≤a ,则称b 为B 的最小元;(3) 若对任意a ∈B ,且b ≤a ,都有a = b ,则称b 为B 的极大元;(4) 若对任意a ∈B ,且a ≤b ,都有a = b ,则称b 为B 的极小元.定义2.5.10(上界、下界、最小上界、上确界、最大下界、下确界) 设<A ,≤>为偏序集,集合B ⊆A ,存在元素b ∈A ,(1) 若对任意a ∈B ,都有a ≤b ,则称b 为B 的上界;(2) 若对任意a ∈B ,都有b ≤a ,则称b 为B 的下界;(3) 若集合C = {b ⎪b 为B 的上界},则C 的最小元称为B 的最小上界或上确界;(4) 若集合D = {b ⎪b 为B 的下界},则D 的最大元称为B 的最大下界或下确界. 定义2.6.1(函数、映射) 对集合A 到集合B 的二元关系f ,若满足下列条件:(1) 对任意a ∈Dom(f ),都存在唯一的b ∈Ran(f ),使<a , b >∈f ,(即afb )成立;(2) Dom(f ) = A ;则称f 为从A 到B 的函数,或称为映射,记作f :A →B .若有afb ,则可记作b = f (a ).定义2.6.2(函数相等) 设f 和g 是从集合A 到B 的两个函数,若对任意a ∈A ,都有f (a ) = g (a ),则称函数f 和g 相等,记作f = g .定义2.6.3(函数的象) 设f 是从集合A 到B 的函数,且A 1⊆A ,则将f (A 1) = {f (a ) a ∈A 1}称为A 1在f 下的象.特别地,称f (A )为函数的象.定义2.6.4(满射、单射、双射) 设f 是从集合A 到B 的函数,(1) 若Ran(f ) = B ,则称f 为从A 到B 的满射;(2) 若对任意b ∈Ran(f ),都存在唯一的a ∈Dom(f ),使得f (a ) = b ,则称f 为从A 到B 的单射,或称一对一的;(3) 若f 从A 到B 既是满射又是单射的,则称f 为从A 到B 的双射,或称一一对应的.定义2.6.5(常数函数、恒等函数、单调递增、严格单调递增、单调递减、严格单调递减、特征函数、自然映射)(1) 设f 是从集合A 到B 的函数,若存在一个b ∈B ,使得对所有的a ∈A 都有f (a ) = b ,则称f 是从A 到B 的常数函数.(2) 集合A 上的恒等关系I A 称为A 上的恒等函数.即对所有的a ∈A 都有I A (a ) = a .(3) 设f 是实数集R 上的函数,对任意的a 1,a 2∈A ,如果由a 1< a 2,可得f (a 1)≤ f (a 2),则称f 为单调递增的;如果由a 1< a 2,可得f (a 1)< f (a 2),则称f 为严格单调递增的.类似地,可以定义单调递减的和严格单调递减的函数.(4) 设A 为集合,对任意子集A '⊆ A ,A '的特征函数A 'χ:E →{0 , 1}定义为A 'χ(a )=⎩⎨⎧'-∈'∈A A a A a ,0,1 (2.6.1) (5) 设R 是集合A 上的等价关系,令g 为从A 到A/R 的函数,即g (a ) =[a ],则称g 为从A 到商集A/R 的自然映射.定义2.6.6(复合函数)设函数f:A→B,g:B→C,则将复合关系g•f = {<a , c> a∈A,c∈C,且存在b∈B,使f(a) = b,g(b) = c}称为函数f和g的复合函数.定义2.6.7(反函数)设函数f:A→B是双射的,则将f的逆关系称为反函数,记作f–1:B →A.可逆函数——如果函数f 存在反函数f–1,称f是可逆的.二、定理与性质有序对性质1 当x≠y时,有序对< x , y >≠< y , x > .有序对性质2有序对< x , y > = < a , b > 的充分必要条件是x = a,y = b.笛卡尔积性质1对任意集合A,有A⨯∅= ∅,∅⨯A= ∅.笛卡尔积性质2 笛卡尔积运算不满足交换律,即当集合A≠∅,B≠∅且A≠B时,A⨯B≠B⨯A.笛卡尔积性质3笛卡尔积运算不满足结合律,即当集合A≠∅,B≠∅且C≠∅时,(A⨯B )⨯C≠A⨯(B⨯C ).笛卡尔积性质4对并集的分配律:A⨯(B⋃C ) = (A⨯B)⋃(A⨯C );(B⋃C )⨯A= (B⨯A)⋃(C⨯A );笛卡尔积性质5对交集的分配律:A⨯(B⋂C ) = (A⨯B)⋂(A⨯C );(B⋂C )⨯A= (B⨯A)⋂(C⨯A ).定理2.1.1对任意三个集合A, B和C,若有C≠∅,则(1)A⊆B的充分必要条件是A⨯C⊆B⨯C;(2)A⊆B的充分必要条件是C⨯A⊆C⨯B.定理2.1.2对任意四个非空集合A, B, C和D,则A⨯B⊆C⨯D的充分必要条件是A⊆C,B⊆D.定理2.2.1设R和S从A到B的两个二元关系,那么R和S的R⋃S,R⋂S,R-S,~R,R⊕S仍然是从A到B的二元关系.定理2.2.2设R是从集合A到B的二元关系,S和T分别是从集合B到C的二元关系,U 是从集合C到D的二元关系,则(1) R·(S⋃T) = R·S⋃R·T;(2) R·(S⋂T)⊆R·S⋂R·T;(3)(S⋃T)·U = S·U⋃T·U;(4)(S⋂T)·U⊆S·U⋂T·U.定理2.2.3设R,S,T,分别表示从集合A到B,从集合B到C,从集合C到D的二元关系,则(R·S)·T= R·(S·T) (2.2.2)定理2.2.4设R是集合A上的二元关系,m,n∈N,则(1) R m·R n = R m + n;(2) (R m)n = R m n.定理2.2.5设R和S分别是从集合A到B的二元关系,则(1) (R –1)-1 = R(2) (R⋃S)-1 = R -1⋃S -1(3) (R⋂S)-1 = R -1⋂S -1(4) (R -S)-1 = R –1 -S -1(5) (~R)–1 = ~R -1(6) (A⨯B)-1 = B⨯A(7) ∅-1 =∅(8) R=S⇔R –1=S –1 (9) R⊆S⇔R -1⊆S -1定理2.2.6设R是从集合A到B的二元关系,S是从集合B到C二元关系,则(R·S)-1 = S -1·R –1定理2.3.1设R是非空集合A上的二元关系,则(1) R是自反的当且仅当r (R) = R;(2) R是对称的当且仅当s (R) = R;(3) R是传递的当且仅当t (R) = R;定理2.3.2设R是非空集合A上的二元关系,I A是A上的恒等关系,则r (R) = R⋃I A.(2.3.1)定理2.3.3设R是非空集合A上的二元关系,则s (R) = R⋃R –1(2.3.3)定理2.3.4 设R是非空集合A上的二元关系,则t (R) =∞=⋃1iR i=R⋃R 2⋃R 3⋃… (2.3.5)定理2.3.4的推论设R是非空有限集合A上的二元关系,且A有n个元素,则t (R ) = ni 1=⋃R i =R ⋃R 2⋃…⋃R n (2.3.6) 定理2.4.1 设R 是非空集合A 上的等价关系,对任意a , b ∈A ,(1) [a ]∅≠,且[a ]⊆A ; (2) 若aRb ,则[a ]= [b ];(3) 若a R b ,则[a ]⋂[b ]= ∅; (4) ⋃{[a ]⎪a ∈A }= A .定理2.5.1 设R 是集合A 上的拟序关系,则R 是反对称的.定理2.6.1 设函数f :A →B ,g :B →C ,那么复合函数g •f 是一个从A 到C 的函数,而且,对任意一个a ∈A ,都有(g •f )(a ) = g (f (a )).定理2.6.2 设函数f :A →B ,g :B →C ,h :C →D ,那么h •(g •f ) = (h •g )•f (2.6.2)定理2.6.3 设函数f :A →B ,g :B →C ,且g •f :A →C ,那么(1) 若f 和g 都是满射的,则g •f 也是满射的;(2) 若f 和g 都是单射的,则g •f 也是单射的;(3) 若f 和g 都是双射的,则g •f 也是双射的.定理2.6.4 设函数f :A →B ,g :B →C ,且g •f :A →C ,那么(1) 若g •f 是满射的,则g 也是满射的;(2) 若g •f 是单射的,则f 也是单射的;(3) 若g •f 是双射的,则g 是满射的,f 是单射的.定理2.6.5 设函数f :A →B 是双射的,则f -1:B →A 也是双射的.定理2.6.6 如果函数f :A →B 是双射的,则有(1) f –1•f = I A , f •f –1= I B ;(2) (f –1)-1 = f . (2.6.4) 定理2.6.7 设函数f :A →B ,g :B →C ,且f 和g 都是双射的,则有(g •f )-1 = f –1•g –1 (2.6.5)定理2.6.8 设函数f :A →B ,g :B →C ,且f 和g 都是双射的,则有(g •f )-1 = f –1•g –1三、方法1.关系的矩阵表示法设集合A ={a 1 , a 2 , … , a m },B ={b 1 , b 2 , … , b n },(1) 若R 是从A 到B 的一个关系,则R 的关系矩阵是m ⨯n 矩阵M R =()n m j i r ⨯,其中⎪⎩⎪⎨⎧=ji j i j i b R a Rb a r 当当,0,1 ,(i =1, 2, …, m ;j =1, 2, …, n ) (2) 若R 是A 上一个关系,则R 的关系矩阵是m 阶矩阵M R =()m m j i r ⨯,其中 ⎪⎩⎪⎨⎧=ji j i j i b R a Rb a r 当当,0,1 ,(i , j =1, 2, …, m ) 2.关系的图象表示法设集合A ={a 1 , a 2 , … , a m },B ={b 1 , b 2 , … , b n },若R 是从A 到B 的一个关系,则用m 空心点表示a 1 , a 2 , … , a m ,用n 空心点表示b 1 , b 2 , … , b n ,这些空心点统称为结点.如果a i Rb j ,那么由结点a i 到结点b j 作一条有向弧,箭头指向b j ;如果<a i , b j >∉R ,那么结点a i 与b j 之间没有弧连结,这样的图形称为R 的关系图.若R 是A 上一个关系,如果a i Ra j (i ≠j ),有向弧的画法与上面相同;如果a i Ra i ,则画一条从结点a i 到结点 a i 的带箭头的封闭弧,称为自回路.3.复合关系的矩阵运算法设集合A ={a 1,a 2,… ,a n },B = {b 1,b 2,… ,b n },C = {c 1,c 2,… ,c n },从A 到B 的二元关系R 的关系矩阵M R 是一个m 行n 列的矩阵,从B 到C 的二元关系S 的关系矩阵M S 是一个n 行p 列矩阵,则从A 到C 的复合关系R ·S 的关系矩阵S R M •是一个m 行p 列矩阵,并且S R M •= M R ⨯ M S ,其中⨯表示按布尔运算进行矩阵乘法运算.4.二元关系性质的判别法(1) 若R 是集合A 上自反的关系,则有I A ⊆R ⊆E A ;(2) 若R 是集合A 上非自反的关系,则有R ⋂I A =∅;(3) R 为集合A 上对称关系的充分必要条件是R = R -1 ;(4) R 为集合A 上反对称关系的充分必要条件是R ⋂R -1⊆ I A ;(5) R 为集合A 上传递关系的充分必要条件是R ·R ⊆R .5.求闭包的方法(1) 设R 是非空集合A 上的二元关系,I A 是A 上的恒等关系,则r (R ) = R ⋃I A .(2) 设R 是非空集合A 上的二元关系,则s (R ) = R ⋃R –1.(3) 设R 是非空集合A 上的二元关系,则t (R ) = ∞=⋃1i R i =R ⋃R 2⋃R 3⋃… 设R 是非空有限集合A 上的二元关系,且A 有n 个元素,则t (R ) = ni 1=⋃R i =R ⋃R 2⋃…⋃R n . 6.等价关系的判别方法利用等价关系的关系图进行判别,即当关系R 的关系图满足:每个结点都有自回路;两个结点a ,b 之间若有从a 指向b 的弧,就有从b 指向a 的弧;若有从结点a 指向b 的弧,且有从b 指向c 的弧,就有从a 指向c 的弧时,则R 是等价关系.7.哈斯图的作图规则(1) 去掉每个结点的自回路,只用一个空心点表示集合A 的元素;(2) 适当排列结点的顺序,即对任意a ,b ∈A ,若a ≤b ,则将a 画在b 的下方;(3) 对任意a ,b ∈A ,若a <b ,且不存在c ∈A ,使得a <c <b ,则就在a ,b 之间画一条无向弧.第3章 图的基本概念与性质一、概念图——图可以用集合的形式表示,即图可以表示为一个三元组,包含结点集、边集,以及边与结点对集间的映射.如果用结点对来表示边,则图可以表示成一个由结点集与边集组成的二元组.定义3.1.1 图G 是一个三元组<V (G ),E (G ),ϕG >,其中V (G )是一个非空的结点集(或称顶点集),E (G )是边集,ϕG 是从边集E (G )到结点偶对(无序偶或有序偶)集上的函数.图定义中的结点偶对可以是有序的,也可以是无序的.有向边、端点——若图中的边e 所对应的结点偶对是有序的,记为<a ,b >,则称e 是有向边(简称弧).a ,b 分别称为弧的始点与终点,并均称为e 的端点.称e 是关联于结点a 和b 的,结点a 和结点b 是相、邻的,或称结点a 和结点b 是邻接的.无向边、端点——若图中的边e 所对应的结点偶对是无序的,记为(a ,b ),则称e 是无向边(简称棱).a ,b 称为e 的端点.称e 是关联于结点a 和b 的,结点a 和结点b 是相、邻的,或称结点a 和结点b 是邻接的.有向图——每一条边均为有向边的图称为有向图.无向图——每一条边均为无向边的图称为无向图.底图——如果把有向图中每条有向边都看作无向边,就得一个无向图,此无向图称为原有向图的底图.底图只表示出结点间的连接关系而没有表示出连接边的方向.弧立结点——图中不与任何相邻的结点称为弧立结点.零图——全由孤立结点构成的图称为零图.自回路(环)——关联于同一结点的一条边称为自回路或环.重边(平行边)——在有向图中,两结点间(包括结点自身间)若多于一条边,则称这几条边为重边或平行边.多重图——含有重边的图称为多重图.线图——非多重图称为线图.定义3.1.2(简单图)无自回路的线图称为简单图.定义3.1.3(结点的度数、最大度、最小度)图G=<V,E>中,与V中结点v(v∈V)相关联的边数,称为该结点的度数,记作为deg(v).记∆(G)= max{deg(v)| v∈V(G)},δ(G)= min{deg(v)| v∈V(G)},分别称为G=<V,E>的最大度和最小度.定义3.1.4(出度、入度、度数)在有向图中,对于任何结点v,以v为始点的边的条数称为结点v的引出次数(或出度);以v为终点的边的条数称为结点v的引入次数(或入度);结点v的引出次数和引入次数之和称为v的次数(或度数).定义3.1.5(二部图)设G=〈V,E>是n阶无向图,若能将V分成两个互不相交的子集V1与V2使得G中任一边的两端点都不在同一个V i(i=1,2)中,则称G为二部图.记G=<V1,V2,E>.定义3.1.6(完全图)简单图G=<V,E>中,若每一对结点间都有边相连,则称该图为完全图.有n个结点的无向完全图记为K n.定义3.1.7(k-正则图)若无向简单图中,每个结点的度均为某个固定整数k,则称该图为k-正则图.定义3.1.8(赋权图)赋权图G是一个三重组<V,E,g>或四重组<V,E,f,g>,其中V 是结点集合,E是边的集合,f是定义在V上的函数,g是定义在E上的函数.定义3.1.9(补图)设图G=<V,E>有n个顶点,图H=<V,E’>也有同样的顶点,而E’是由n个结点的完全图的边删去E所得,则图H称为图G的补图,记为H=G,显然,G=H.定义3.1.10(子图、真子图、生成子图)设G=<V,E>和G’=<V’,E’>是两个图.(1)若V’⊆V且E’⊆E,则称G’是G的子图;(2)若V’⊂V或E’⊂E,则称G’是G的真子图;(3)若V’=V和E’ ⊆E,则称G’是G的生成子图;(4)若子图G’中没有孤立结点,G’由E’唯一确定,则称G’为由边集E’导出的子图;(5)若子图G’中,对V’中的任意两个结点u,v,当u,v∈V’时有[u,v]∈E’,则G’由V’唯一确定,则称G’为由结点集V’导出的子图.定义3.1.11(补图) 设G’=<V’,E’>是G=<V,E>的子图,若给定另外一个图G’’=<V’’,E’’>,使得E’’=E-E’,且V’’中仅包含E’’的边所关联的结点,则称G’’是子图G’的相对于G的补图.定义3.1.12(同构) 设G=〈V,E>和G’=<V’,E’>是两个图,若存在从V到V’的双射函数f,使对任意[a,b]∈E,当且仅当[f(a),f(b)]∈E’,并且[a,b]和[f(a),f(b)]有相同的重数,则称G 和G’是同构的.定义3.1.13(路径) 在图G=<V,E>中,设v0,v1,…,v n∈V,e1,e2,…., e n∈E,其中e i是关联于结点v i-1,v i的边,交替序列v0 e1 v1 e2…e n v n称为联结v0到v n的路径(或称路).v0与v n 分别称为路的起点与终点,边的数目n称为路的长度.孤立点——长度为0的路定义为孤立点.简单路径——若序列中所有的边e1,e2,…., e n均互不相同,则称此路径为简单路径.基本路径——若序列中所有的点v0,v1,…,v n均互不相同,则称此路径是基本路径.回路——若v0=v n,即路径中的终点与始点相重合,则称此路径为回路.简单回路——没有相同边的回路称为简单回路.基本回路(圈)——各结点均互不相同的回路称为基本回路(或圈).奇圈(偶圈)——长度为奇(偶)数的圈称为奇(偶)圈.定义3.2.1(可达、连通)在图G=<V,E>中,设有结点v j与v k,若从v j到v k存在任何一条路径,则称结点v k从结点v j可达,也称结点v j与v k是连通的.定义3.2.2(连通图、非连通图、分离图)若G是平凡图或G中任意两个结点都是连通的,则称G是连通图,否则称G为非连通图或分离图.定义3.2.3(连通分支) 设G =<V ,E >是图,连通关系的商集为{V 1, V 2,…, V m },则其导出的子图G (V i)(i=1,2,…m )称为图G 的连通分支(图),将图G 的连通分支数记作W (G ).定义3.2.4(短程线) 设u 与v 是图G 的两个结点,若u 与v 连通,则称u 与v 之间的长度最短的路为u 与v 之间的短程线,短程线的长度可作为结点u 与v 间的距离,记作d (u ,v ),其满足下列性质:d (u ,v ) ≥ 0,u =v 时,d (u ,v ) =0 (非负性)d (u ,v ) = d (v ,u ) (对称性)d (u ,v ) + d (v ,w ) ≥ d (u ,w ) (三角不等式)若u 与v 不连通,则通常记d (u ,v ) = ∞ .定义3.2.5(单向连通、强连通、弱连通) 在简单有向图中,如果在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;如果在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;如果图的底图(在图G 中略去边的方向,得到无向图)是连通的,则称图G 是弱连通的. 定义3.2.6(极大强连通子图、极大单向连通子图、极大弱连通子图、强分图、单向分图、弱分图) 在简单有向图G =<V ,E >中,G’是G 的子图,如G’是强连通的(单向连通的,弱连通的),且没有包含G’的更大的子图G’’是强连通的(单向连通的,弱连通的),则称G’是极大强连通子图(极大单向连通子图,极大弱连通子图)又叫强分图(单向分图,弱分图).定义3.2.7(点割集、割点) 设无向图G =<V ,E >为连通图,若有点集V 1⊂V ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图是连通图,则称V 1是G 的一个点割集.若某个结点构成一个点割集,则称该结点为割点.定义3.2.8(点连通度) 若G 为无向连通图且不含Kn 为生成子图,则称k (G )=min{|V 1| ∣V 1是G 的一个点割集}为G 的点连通度(简称连通度).规定:完全图Kn 的点连通度为n ,n ≥1.非连通图的点连通度为0.若k (G ) ≥k ,则称G 为k -连通图.定义3.2.9(边割集、割边、桥) 设无向图G =<V ,E >为连通图,若有边集E 1⊂E ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图是连通图,则称E 1是G 的一个边割集.若某个边构成一个边割集,则称该结点为割边(或桥).定义3.2.10(连通度) 若G 为无向连通图,则称λ(G )=min{|E 1| ∣E 1是G 的一个边割集}为G 的边连通度.规定:非连通图的边连通度为0.若λ(G ) ≥k ,则称G 为k 边-连通图.定义3.3.1(邻接矩阵) 设G =<V ,E >是一个简单图,其中V ={v 1,v 2,…, v n },则n 阶方阵A (G )=(a ij )称为G 的邻接矩阵.其中各元素⎪⎩⎪⎨⎧==ji v v v v a j i j i ij 不相邻或与相邻与01 定义3.3.2(可达性矩阵) 设G =<V ,E >是一个简单图,|V |=n ,假定G 的结点已编序,即V ={v 1,v 2,…, v n },定义一个n ⨯n 方阵P =(p ij ).其中⎪⎩⎪⎨⎧=不存在一条路与从至少存在一条路到从j i j i ij v v v v p 01 则称矩阵P 为图G 的可达性矩阵.最短路径的数学模型——给定一个网络N (有向或无向赋权图),u 0与v 0是N 中指点的两个顶点,在N 中找一条从u 0到v 0且权最小的路.规定N 中的一条路P 的权w (P )称为p 的长度.若N 中存在从u 到v 的路,则将N 中从u 到v 且权最小的路称为u 到v 的最短路,其长度称为u 到v 的距离,记为d N (u ,v ).二、定理定理3.1.1(握手定理) 设G 是一个图,其结点集合为V ,边集合为E ,则∑∈=V v E v ||2)deg(定理3.1.2 图中次数为奇数的结点有偶数个.。

离散数学第二章

离散数学第二章
怎么符号化? 怎么符号化?
5
3 量词的有关概念
1. 全称量词: “所有的”,“任何一个”,“每 全称量词: 所有的” 任何一个” 一个” 凡是” 一切” 一个”,“凡是”,“一切”表示个体域中每一 表示,称为全称量词。 用符号“ 个,用符号“∀”表示,称为全称量词。
如,所有的人都要呼吸。 所有的人都要呼吸。
16
常用一阶逻辑中的基本等值式
1. 有限个体域 有限个体域D={a1, a2, … ,an }中消去量词 中消去量词 等值式: 等值式
1) ∀xA( x) ⇔ A(a1 ) ∧ A(a2 ) ∧⋯∧ A(an );
2) ∃xA( x ) ⇔ A(a1 ) ∨ A(a2 ) ∨ ⋯ ∨ A(an ).
10
指导变项( 指导变项(元)等概念
在合式公式∀ 和 在合式公式∀xA和∃xA中,称x是指导变元,称A为相应量词 中 是指导变元, 为相应量词 作用域或辖域。 的作用域或辖域。 在辖域中x的出现称为 在公式 中的约束出现 在辖域中 的出现称为x在公式 中的约束出现; 的出现称为 在公式A中的约束出现; 公式A中不是约束出现的其它变元称为该变元的自由出现. 中不是约束出现的其它变元称为该变元的自由出现 公式 中不是约束出现的其它变元称为该变元的自由出现 例1 指出下列公式中的指导变项、量词的辖域、个体变项的 指出下列公式中的指导变项、量词的辖域、 自由出现和约束出现. 自由出现和约束出现 1) 2) ∀xF(x,y)→∃x(G(x) ∧¬ ∀zP(x,z)) → ∀x ∃ y(A(x,y)→∃z(B(x) ∧P(x,z))) →
永假式 如果 在任何解释下均为假 称A为矛盾 如果A在任何解释下均为假 解释下均为假,称 为 或称永假式 式(或称永假式 ; 或称永假式); 如果存在一个解释使A为真 则称A为 为真,则称 可满足式 如果存在一个解释使 为真 则称 为 可满足式; 可满足式;

离散数学导论(第5版)-第二篇 集合论

离散数学导论(第5版)-第二篇 集合论
x2=y2,…,xk=yk而xk+1=yk+1,如果xk+1≤yk+1 ,则我们 说xLy;如yk+1≤xk+1 ,则我们说yLx; • (3)如存在一个最大的K=min (n,m),使得x1=y1,x2 =y2,…,xn=yn ,此时如n≤m,则我们说xLy;如m≤n, 则我们说yLx。 •
18
• • 四个次序关系间的关系: • • • R是拟序则r (R) = R • • • R是偏序则R-Q是拟序 • • • 字典次序关系必为线性次序关系 • • • R是拟序则必反对称 • 八个概念: • • 最大元素(最小元素) • • 极大元素(极小元素) • • 上界(下界) • • 上确界(下确界)
• • |A∪B|=|A|+|B|-|A∩B|
• •|A∪B∪C| = |A|+|B|+|C| - |A∩B| - |A∩C| -|B∩C|+|A∩B∩C| n
i=1 1≤i<j≤n
1≤i<j<k≤n
• •|S1∪S2∪…∪Sn|n-=1∑|Si|-∑ |Si∩Sj|+ ∑
• |Si∩Sj∩Sk|(-1)∑ |S1∩S2∩…∩S n|
§3.1 函数的基本概念
• (1)一个基本概念——函数的基本概念。

函数建立了从一个集合到另一个集合的特殊对应关系。
设有集合X与Y,如果我们有一种对应关系f,使X的任一元素x能
与y中的一个唯一的元素y相对应,则这个对应关系f叫从X到Y的
函数或叫从X到Y的映射。x所对应的y内的元素y叫x的像,而x则
叫y的像源。上述函数我们可以表示成f:XY;或写成XY;
以及y=f(x)。

(2)三种不同性质函数:

• 满射与内射

离散数学第2章ppt课件

离散数学第2章ppt课件
E AA∪B∪BC
C
n
A k A 1A 2 A n
k 1
二、集合的并 (Union)
3、性质
1)幂等律 A∪A =A
2)零律
A∪U =U
3)同一律 A∪ =A
4)交换律 A∪B =B∪A
5)结合律 A∪(B∪C) =(A∪B)∪C
二、集合的并 (Union)
3、性质
, 6)
若A⊆B,C⊆D,则A∪C
是集合,没有元素
有1个元素的集合
2) ∈{}, {}
五、特殊集合
1、空集
定理 空集是任一集合A的子集,即 ⊆A。
下列命题是否为真。
1)√⊆;
2) ∈ ; 3) ⊆{}; 4) ∈{} 。


五、特殊集合
1、空集
推理 空集是唯一的。(绝对唯一)
证明: 设1,2是两个空集, 则1 2,且2 1,
证明唯一性 一般采用反
1、符号表示法
通常用大写字母A, B, C, …代表集合; 用小写字母a, b, c, …代表元素。
1)如果a是集合A的一个元素, 则记为 a∈A, 读做“a属于A”,或 “a在集合A中”。
2)如果a不是集合A的一个元素, 则记为 a∈A, 读做“a不属于A”,或 “a不在集合A中”。
注:任一元素, 对某一集合而言, 或属于该集合, 或不属于该集合, 二者必居其一, 且只居其一。
1) 若b∈A,则b是不给自己刮脸的人, 而由题意,b只给集合A中的人刮脸。 ∴b 要给b 刮脸, 即b ∈ A。
理发师问题
在一个很僻静的孤岛上,住着一些人家,岛上只 有一位理发师,该理发师专给那些并且只给那些自己 不刮脸的人刮脸。那么,谁给这位理发师刮脸?

《离散数学集合》课件

《离散数学集合》课件

满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 如果两个集合有相同的元素,那么不管集合 是如何表示的, 它们都相等。 (1) 列举法中, 元素的次序是无关紧要的。 { x,y,z } 与 { z,x,y } (2) 元素的可重复出现。 { x,y,x }、 { x,y }、 { x,x,x,y } (3) 集合的表示不是唯一的。 { x|x2-3x+2=0 }、 {x|x∈I∧1≤x≤2} 和{1, 2}
鲁东大学 数学与统计科学学院 鲍永平
2013-2014-2
第二章 集 合 例 1 设 A ={ a , b , c,d }和 B ={b ,c ,e} A∪B={ a ,b ,c ,d , e } A∩B={ b ,c } A-B={ a ,d } B-A={ e } 定义 2.2-2 如果 A 和 B 是集合, A∩B= ,那么称
(3) Aபைடு நூலகம் =A (4) A∩ =
x 为假
xA 即:A∪ = A
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合
(5) A- =A
A- ={ x |x A ∧ x }
x 为永真 = { x| x A }= A
即:A- = A (6) A-B A
能用空集构造不同集合的无限序列:
, {}, {{}}, {{{}}},
, { }, { , { }}, { , { }, { , { }}},
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合
例1
(1) 集合 { p,q } 有4个不同子集: { p,q }、{ p }、{ q }、
单元素集合:仅含有一个元素的集合。 A与{A}不同 有限集合:含有有限个元素的集合。 无限集合或无穷集:不是有限集合的集合。 集合的基数或势:有限集合的元素个数。 记为| A|
无限集 Ch5
读作
A={a, b}, 则 | A |= |{A}|=
2013-2014-2
鲁东大学
数学与统计科学学院
定理 2.1-1 对任意集合A,有 A U
论述域
证 对任意元素 x, x∈U 永真,所以
x A x U 是真
后件真(平凡证明法)
x ( x A x U )
所以
A U
用定义 证包含
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定理 2.1-2 设 A 和 B 是集合,A=B 当且仅当 A B和 B A。
证 A = B x(x A x B ) x(x B x A)
AB BA
推论 2.1-2 对任何集合A,恒有A A。 集合、元素之间的关系符 、与 命题联结词∧、∨等的运算优先次序问题
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定理 2.1-3 设A、B、C是集合,若 A B 且 B C, 则 A C。
包含的传递性
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定义 2.1-3 没有元素的集合叫空集, 记为 定理 2.1-4 对任意集合 A ,有 A 证 设 x 是论述域中任意元素, 则
x
所以
永假 真(无义证明法)
x x A
x( x x A)
鲍永平
第二章 集 合 外延公理(集合相等的定义) 两个集合 A 和 B 相等, 即 A = B, 当且仅当它们有相同的成员 (即:A的每一元素是B
的一个元素,而 B的每一元素也是 A 的一个元素)。
用逻辑符号表达:
A B x ( x A x B )

A B x( x A x B) x( x B x A)
(2) 集合{{q}}是单元素集合, 它的子集是
{{q}}、 幂集
一般地, n 个元素的集合有 2n 个不同的子集。
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合
P60 作业 9, 12, 14(1)真; (3)假
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合
主讲:鲍永平 数学与统计科学学院
E-mail:ldbyp@ Tel:186 60012613
第二章 集 合
第二章 集 合
2.1 集合论的基本概念 2.2 集合上的运算 2.3* 归纳法和自然数 2.4* 语言上的运算 2.5 集合的笛卡儿乘积
2013-2014-2
鲁东大学
数学与统计科学学院
(9) A A∪B (10) A∩B A
(11) 如果A B,那么,A∪B=B
朴素集合论
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 2.1.3 集合间的包含关系 定义2.1-1 设 A 和 B 是集合,如果 A 的每一元素是 B 的一个 元素, 那么 A 是 B 的子集合。 记为 A B 读做“A包含于B” 或“B包含A”
用逻辑符表示为:
A B x ( x A x B )
A
B
A 和 B 是不相交的。
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定理 2.2-1 集合的并和交运算是可交换和可结合的。 对任意A,B和C: (1) A∪B=B∪A (4) 证 设 x 是任意元素,那么 用定义 证相等
xA∩( B∩C ) 右 (1) 设 x 是论述域U的任意元素, 那么 xA ∧ x ( B ∩ C ) (2) A∩B=B∩A xx A ∪ x B A∧ x AB ∧ (x x B C) x B x A (3) (A∪B)∪C=A∪(B∪C) ( xA ∧ x B ) ∧ x C x B∪A x ( A ∩ B ) ∧ x C (4) (A∩B)∩C=A∩(B∩C) x 是任意的, 得 x ( A ∩B)∩C 左 左 右 且 右 左 x ( x A B x B A)
元素
图 2.1-1
数学与统计科学学院 鲍永平
鲁东大学
第二章 集 合 如果 a 是集合 A 的一个元素 , 则记为 a∈A 如果 a 不是集合A的一个元素 ,则记为 读做“a不属于A” 或 “a不在A中” 读做“a属于A” 或 “a在A中”
a A
注意:任一元素, 对某一集合而言, 或属于该集合,
或不属于该集合, 二者必居其一, 不可兼得。
∪与∨对应 x是任意的,得出
∩与∧对应
2013-2014-2
即 A B B ∪ A x(x∈A ∩( B∩ C∪ ) x= ∈ (A ∩B ) ∩C)
即 A∩(B∩C)=(A∩B)∩C
鲁东大学 数学与统计科学学院 鲍永平
第二章 集 合 定理 2.2-2 对任意集合 A、B 和 C 有(分配律) (1) A∪(B∩C)=(A∪B)∩(A∪C) (2) A∩(B∪C)=(A∩B)∪(A∩C) 用定义 证相等
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定理 2.2-3 设A、B、C和 D 是论述域U 的任意子集合, 那么下列断言是真: (1) A∪A=A x A∪A x A∨x A
(2) A∩A=A
xA
即:A∪A=A
x A∪ x A∨x
A B x( x A x B) x( x B x A) A B x( x A x B) x( x B x A)
注意:从属关系“∈”及包含关系“
2013-2014-2
”之间的区别
鲍永平
鲁东大学
数学与统计科学学院
第二章 集 合
A B 有时也记作B A
称 B 是 A 的扩集
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 定义2.1-2 如果 A B 且 A ≠ B,那么称 A 是 B的真子集 记作 A B 用逻辑符表示为: 读作“A真包含于B”
A B ( A B) ( A B) x( x A x B) x( x B x A)
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 *2.1.2 罗素悖论
食人岛 故事
1901 年罗素 (Bertrand Russell) 提出以 下悖论: 设论述域是所有集合的集合 , 并
定义S为下述集合
S { A | A A}
问“S是不是它自己的元素?” ;
理发师 悖论
2013-2014-2
鲁东大学
数学与统计科学学院
鲍永平
第二章 集 合 集合的三种表示方法 1) 列举法 把集合中的元素一一列举出来
例如“所有小于5的正整数” 集合命名为A, 记为A={1, 2, 3, 4} 从1 到50 的整数集合可记为{1, 2, 3, …, 50} 2)描述法 用谓词描述出集合元素的公共特征
2.2 集合上的运算
2.2.1 并、 交和差运算 定义 2.2-1 设 A 和 B 是集合, (1) A 和 B 的并 记为 A∪B A B
A∪B={ x | x∈A∨x∈B } (2) A 和 B 的交 记为 A ∩ B A B
A∩B={ x | x∈A∧x∈B } (3) A和B的差, 或B关于A的相对补 记为 A – B = A – A∩B A-B={ x | x∈A∧x B }
相关文档
最新文档