初中数学七年级上学期期中考试试卷和答案

合集下载

2022-2023学年江苏省南京市溧水区七年级上学期期中考试数学试卷带讲解

2022-2023学年江苏省南京市溧水区七年级上学期期中考试数学试卷带讲解
4.下列四个运算中,结果最小的是( )
A. B. C. D.
【答案】C
【解析】
【分析】先根据有理数的加减乘除运算算出结果,再比较有理数的大小.
【详解】A选项 ,
B选项 ,
C选项 ,
D选项 ,
∵ ,
∴ 结果最小.
故选:C.
【点睛】本题考查有理数的加减乘除运算和比较大小,解题的关键是掌握有理数的运算法则和比较大小的方法.
【答案】9
【解析】
【分析】求这天的温差,即最高温度减去最低温度,再进一步根据有理数的减法法则进行计算.【详解】解:根据题意,得: ( ).
故答案为:9.
【点睛】此题考查了有理数的减法及正负数的应用,理解题意列式计算是解题关键.
13.若 与 是同类项,则 ______.
【答案】4
【解析】
【分析】根据同类项的定义即所含字母相同,并且相同字母的指数也相同,可得出m、n的值,进而代入代数式即可得出答案.
故选C.
【点睛】本题主要考查了列代数式,准确分析是解题的关键.
8.如图所示,数轴上点A、B对应的数分别为a、b,下列说法正确的是()
A. B. C. D.
【答案】D
【解析】
【分析】根据图示,可得 ,而且 ,据此逐项判断即可.
【详解】解:根据图示,可得 ,且 ,
∴ , , , ,
故选D.
【点睛】此题主要考查了数轴的特征和应用,有理数加减运算法则以及绝对值的含义,解答此题的关键是判断出: ,而且 .
【答案】4.39×105
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于439000有6位,所以可以确定n=6−1=5.

人教版初中数学七年级上期中考试数学试卷含答案!

人教版初中数学七年级上期中考试数学试卷含答案!

人教版初中数学七年级上期中考试数学试卷含答案!一、选择题(本大题共15小题,每小题4分,共60分)7.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+18.如图是正方体的平面展开图,每个面上标有一个汉字,与“油”字相对的面上的字是()A.M或RB.N或PC.M或ND.P或R11.若﹣3x2my3与2x4yn是同类项,那么m﹣n=()A.0B.1C.﹣1D.﹣212.计算6a2﹣5a+3与5a2+2a﹣1的差,结果正确的是()A.a2﹣3a+4B.a2﹣3a+2C.a2﹣7a+2D.a2﹣7a+413.代数式x2+2x+7的值是6,则代数式4x2+8x﹣5的值是()A.﹣9B.9C.18D.﹣1814.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1B.1C.3D.﹣315.计算(﹣4)2012×(﹣)2011的结果是()A.4B.﹣4C.16D.﹣16二、填空题(本大题共5小题,每小题4分,共20分)四、化简求值题(本大题共2小题,共12分)22.化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.23.(8分)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=.1/3五、解答题(本大题共4小题,共42分)24.(8分)如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?25.(10分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x ﹣2,求正确答案.26.(12分)如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度。

湘教版七年级上册数学期中考试试卷含答案

湘教版七年级上册数学期中考试试卷含答案

湘教版七年级上册数学期中考试试题一、单选题1.《九章算术》中注有“今两算得失相反,要令正负以名之”意思:今有两数若其意义相反,则分别叫做正数与负数.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A .+3℃B .+2℃C .3-℃D .2-℃2.下列5个数中:3-,0,2.0030003,53,π-.有理数的个数是()A .2B .3C .4D .53.数a 在数轴上对应点位置如图,若数b 满足b a <,则b 的值不可能是()A .4-B .1-C .0D .24.下列计算正确的是()A .()253--=-B .21134333--=-C .()()144-⨯-=-D .1362-÷=-5.下列各组代数式中,是同类项的是()A .23m n 与215mnB .26x y -与215yx C .25ax 与215yx D .32与3a 6.用科学记数法表示760万正确的是()A .77.610⨯B .70.7610⨯C .67.610⨯D .60.7610⨯7.用四舍五入法,把7.8446精确到百分位,取得的近似数是()A .7.8B .7.84C .7.845D .7.858.如果33m m -=-,那么m 的取值范围是()A .3m ≤B .3m <C .3m ≥D .3m >9.下列判断中正确的是()A .多项式2322x x π++-的常数项为2B .25m n不是整式C .单项式32x y -的次数是5D .22234x y xy -+是二次三项式10.按照如图所示的操作步骤,若输入值为3-,则输出的值为()A .0B .4C .60D .2411.当3x =时,代数式31px qx +-的值为4,则当3x =-时,31px qx +-的值是()A .4-B .6-C .4D .612.中国文化博大精深,汉字文化是中国古代文化流传下来的一份珍贵遗产.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点,…,依此规律,则图⑨中共有圆点的个数是()A .63B .75C .88D .102二、填空题13.32-的值为________.14.单项式25m n -的系数是________.15.购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为________元.16.若单项式212m x y 与32n x y -的和仍为单项式,则其和为__________.17.若m 、n 互为相反数,a 、b 互为倒数,5p =,则代数式27m n p ab p +-+的值为________.18.定义新运算:x y x y xy *=+-,例如:()()()2323235*-=+--⨯-=,那么当()()222x x -*-*=⎡⎤⎣⎦时,x =________.三、解答题19.计算:(1)112243-+(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭(3)()2611327⎡⎤--⨯--⎣⎦(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭20.先化简,再求值:22233223x xy y x xy ---+,其中x 和y 满足:()2210x y ++-=.21.有理数a 、b 、c 的位置如图所示,且a b =.(1)填空:a+b 0;a+c 0;c a -0;c b -0.(2)化简式子:b a c b c a b +-+---.22.“滴滴”司机李师傅国庆节某一天下午以湘雅医院为出发地在南北方向的芙蓉路上营运,共连续运载十批乘客.若规定向南为正,向北为负.李师傅营运十批乘客里程如下:(单位:千米)+9、11-、5-、+12、7-、+10、16-、22-、+4、3-.(1)将最后一批乘客送到目的地时,李师傅在湘雅医院的南面还是北面?距离多少千米?(2)若出租车每公里耗油量为m 升,则这辆出租车这天下午耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元(不足1千米按1千米计费).则李师傅在这天下午一共收入多少元?23.如图,在一张长方形纸条上画一条数轴.(1)折叠纸条使数轴上表示﹣1的点与表示5的点重合,折痕与数轴的交点表示的数是;如果数轴上两点之间的距离为10,经过上述的折叠方式能够重合,那么左边这个点表示的数是;(2)如图2,点A 、B 表示的数分别是﹣2、4,数轴上有点C ,使点C 到点A 的距离是点C 到点B 距离的3倍,那么点C 表示的数是;(3)如图2,若将此纸条沿A 、B 两处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折5次后,再将其展开,求最右端的折痕与数轴的交点表示的数.24.观察下列三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣1,2,﹣4,8,﹣16,32,…;②0,6,﹣6,18,﹣30,66,…;③(1)第①行数中的第n 个数为(用含n 的式子表示)(2)取每行数的第n 个数,这三个数的和能否等于﹣318?如果能,求出n 的值;如果不能,请说明理由.(3)如图,用一个矩形方框框住六个数,左右移动方框,若方框中的六个数之和为﹣156,求方框中左上角的数.25.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB=a b -,线段AB 的中点表示的数为2a b +.如图,数轴上点A 表示的数为2-,点B 表示的数为8.【综合运用】(1)填空:A ,B 两点间的距离AB=,线段AB 的中点表示的数为;(2)若M 为该数轴上的一点,且满足MA+MB=12,求点M 所表示的数;(3)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向终点B 匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,Q 到达A 点后,再立即以同样的速度返回B 点,当点P 到达终点后,P 、Q 两点都停止运动,设运动时间为t 秒(0t >).当t 为何值时,P ,Q 两点间距离为4.参考答案1.D【解析】【分析】根据有理数的意义,表示相反意义的量可以用正负数表示,得出答案.【详解】解:根据正负数表示的意义得,如果温度上升3℃,记作+3℃,那么温度下降2℃记作2-℃,故选:D .【点睛】考查有理数的意义,具有相反意义的量一个用正数表示,则与之相反的量就用负数表示.2.C【解析】【分析】根据有理数和无理数的定义逐个判断每个数是否为有理数.【详解】解:有理数有3-,0,2.0030003,53,共4个,故选:C .【点睛】本题考查有理数的概念,如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数,熟悉相关性质是解题的关键.3.D【解析】【分析】根据数轴上a 的位置和b a <判断即可;【详解】解:∵12a <<,∴2b a <<,∴b 的值不可能是2;故选D .【点睛】本题主要考查了数轴上数的大小比较,准确分析判断是解题的关键.4.D【解析】【分析】根据有理数的加减乘除运算法则进行计算即可判断.【详解】A 、()252573--=+=≠-,故计算错误;B 、21213343333⎛⎫--=-+-=- ⎪⎝⎭,故计算错误;C 、()()144-⨯-=,故计算错误;D 、133262-÷=-⨯=-,故计算正确.故选:D .【点睛】本题考查了有理数的四则运算,掌握四则运算的运算法则是关键,另外要注意运算符号.5.B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】解:A.相同字母的指数不同,故A 不是同类项;B.字母相同且相同字母的指数也相同,故B 是同类项;C.字母不同,故C 不是同类项;D.字母不同,故D 不是同类项.故选B.【点睛】本题考查了同类项,同类项是字母相同且相同字母的指数也相同.6.C【解析】【分析】根据科学记数法的一般书写格式的性质计算,即可得到答案.【详解】760万用科学记数法表示为:67.610⨯故选:C .【点睛】本题考查了科学记数法的知识;解题的关键是熟练掌握科学记数法的性质,从而完成求解.7.B【解析】【分析】根据题目中的数据可以写出把7.8446精确到百分位的近似数,本题得以解决.【详解】解:由题意得,7.8446≈7.84(精确到百分位),故选B【点睛】本题考查近似数,解答本题的关键是明确近似数的定义.8.A【解析】【分析】根据绝对值的非负性求解即可.【详解】解:∵33m m -=-,3m -是非负数,∴3m -是非负数,∴3m ≤,故选:A .【点睛】本题考查了绝对值非负数的性质,解题关键是明确绝对值的非负性.9.C【解析】【分析】根据整式的性质,对各个选项逐个分析,即可得到答案.【详解】解:∵多项式2322x x π++-的常数项为2π-∴选项A 错误;∵25m n 是整式∴选项B 错误;∵单项式32x y -的次数是5∴选项C 正确;∵22234x y xy -+是三次三项式∴选项D 错误;故选:C .【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式、单项式、多项式的定义,从而完成求解.10.C【解析】【分析】根据给出的程序框图计算即可;【详解】解:由题意得:当输入为3-时,()239312-=+=,12560⨯=;故选C .【点睛】本题主要考查了与程序框图有关的有理数运算,准确计算是解题的关键.11.B【解析】把3x =代入代数式31px qx +-,再把3x =-代入,可得到含有27p+3q 的式子,直接解答即可.【详解】解:当x=3时,代数式31px qx +-=27p+3q -1=4,即27p+3q=5,所以当x=−3时,代数式31px qx +-=−27p−3q -1=−(27p+3q)-1=−5-1=6-,故选:B .【点睛】考查代数式求值,解题关键是掌握整体代入法在解题中的应用.12.C【解析】【分析】观察并比较每两个相邻的“汉字”的相同与不同之处,得出每两个相邻的“汉字”中后一个“汉字”前半部分与前一个“汉字”的前半部分圆点数量相等,后一个“汉字”后半部分与前一个“汉字”的后半部分顶部加上图案序号多2个圆点与底部添加2个圆点,进而解决该题.【详解】设图①中圆点个数为112y =,图②中圆点个数为21618y y =+=,图③中圆点个数为32725y y =+=,图④中圆点个数为43833y y =+=,⋯,以此类推,图⑨中圆点个数为98765413(12)13(11)25(10)36(9)46335588y y y y y y =+=++=++=++=++=+=.故选:C .【点睛】本题考查图形的变化规律,根据图形观察规律写出表达式是解题的关键.13.8-【分析】根据有理数乘方的性质分析,即可得到答案.【详解】32-8=-故答案为:8-.【点睛】本题考查了有理数乘方的知识;解题的关键是熟练掌握有理数乘方运算的性质,从而完成求解.14.15-【解析】【分析】根据单项式中数字因数叫做单项式的系数即可得出答案.【详解】解:22155m n m n -=-,∴单项式25m n -的系数是15-.故答案为:15-.【点睛】本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.15.()34a b +##()43b a +【解析】【分析】根据题意单价乘以数量等于所需钱数列出代数式即可.【详解】购买3个单价为a 元的面包和4瓶单价为b 元的牛奶,所需钱数为()34a b +元.故答案为:()34a b +【点睛】本题考查了列代数式,根据题意列出代数式是解题的关键.16.2332x y -【解析】【分析】根据同类项的定义,先求出m 、n 的值,然后再合并同类项即可.【详解】解:∵单项式212m x y 与32n x y -的和仍为单项式,∴212m x y 与32n x y -是同类项,∴3m =,2n =,∴23232313(2)22x y x y x y +-=-;故答案为:2332x y -.【点睛】本题考查了合并同类项,以及同类项的定义,解题的关键是掌握运算法则,正确求出m 、n 的值.17.18【解析】【分析】根据相反数的定义、倒数的定义、绝对值运算求出0,1m n ab +==,5p =±分5p =和5p =﹣代入代数式中求解即可.【详解】解:由题意可知:0,1m n ab +==,5p =±∴当5p =时,27m n p ab p +-+=20711855-⨯+=,当5p =﹣时,27m n p ab p +-+=()20571185--⨯+=-,综上,代数式27m n p ab p+-+的值为18,故答案为:18.【点睛】本题考查了代数式求值、相反数的定义、倒数的定义、绝对值的性质,熟记定义和性质是解答的关键.18.4-【解析】【分析】由新运算定义,将()()222x x -*-*=⎡⎤⎣⎦从内向外依次化简,然后求解即可.【详解】解:∵()()2x -*-()()()()=22x x -+---⨯-22x x=---32x =--∴()322x --*()()=32+2322x x -----⨯=34x +又∵()()222x x-*-*=⎡⎤⎣⎦∴34=2x x+4x =-故答案为:4-【点睛】本题考查定义新运算,能够根据新运算的计算原则化简是解题的关键.19.(1)1112;(2)4;(3)67-;(4)7【解析】【分析】(1)根据有理数的加减法进行计算即可;(2)将除法转化为乘法,再根据乘法分配律进行计算即可;(3)(4)根据有理数的混合运算,先进行乘方计算,然后进行乘除运算,最后计算加减【详解】(1)112243-+212443=-+1243=+381212=+11=12(2)2513624⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭()252436⎛⎫=-⨯- ⎪⎝⎭=1620-+4=(3)()2611327⎡⎤--⨯--⎣⎦()11347=--⨯-117=-+67=-(4)()212123236⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭()12=62923⎛⎫-⨯-⨯-+ ⎪⎝⎭()12=6723⎛⎫-⨯-⨯ ⎪⎝⎭()12=4223⎛⎫-⨯- ⎪⎝⎭2128=-+7=【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.222x y -,2.【解析】【分析】先去括号、合并同类项化简原式,再根据非负数的性质得出x 和y 的值,继而代入求值可得.【详解】解:22233223x xy y x xy---+222x y =-∵()2210x y ++-=∴20x +=,10y -=,∴2x =-,1y =,∴原式()22221=--⨯42=-2=.【点睛】本题主要考查整式的加减-化简求值及非负数的性质,熟练掌握去括号、合并同类项的法则是解题的关键.21.(1)=,<,>,<;(2)b .【解析】【分析】(1)利用数轴a 、b 、c 的位置,进而得出各式的符号;(2)利用数轴a 、b 、c 的位置,进而得出各式的符号再去绝对值得出即可.【详解】解:(1)根据图中有理数a 、b 、c 的位置和a b =,可得:0a c b <<<,且c a b <-=,∴0a b +=,0a c +<,0c a ->,0c b -<,故答案是:=,<,>,<;(2)根据图中有理数a 、b 、c 的位置和a b =,可得:0b >,0a c -<,0b c ->,0a b -<,∴b a c b c a b+-+---()()()b a c b c a b =+--+----⎡⎤⎡⎤⎣⎦⎣⎦()()()=+--+----b ac b c a b⎡⎤⎡⎤⎣⎦⎣⎦=-++-+-b ac b c a bb=.【点睛】本题主要考查了绝对值的性质以及有理数的加减法等知识,根据数轴得出各式的符号是解题关键.22.(1)北面,29千米;(2)99m升;(3)218元【解析】【分析】(1)将题中数据直接相加,根据得出答案的正负来判断李师傅的位置;(2)将题中数据的绝对值相加,得出答案根据每公里耗油量为m升,即可得出答案;(3)按题中收费方式算出十批乘客的费用和即可.【详解】解:(1)根据题意:规定向南为正,向北为负,则将最后一批乘客送到目的地时距离湘雅医院的距离为:++-+-+++-+++-+-+++-=-,(9)(11)(5)(12)(7)(10)(16)(22)(4)(3)29∴将最后一批乘客送到目的地时,李师傅在湘雅医院的北面,距离29多少千米;(2)十批乘客共行走的路程为:++-+-+++-+++-+-+++-=(千米),91151271016224399则则这辆出租车这天下午耗油:99m升;+-⨯=元,(3)第一批乘客费用:8(93)220+-⨯=元,第二批乘客费用:8(113)224+-⨯=元,第三批乘客费用:8(53)212+-⨯=元,第四批乘客费用:8(123)226+-⨯=元,第五批乘客费用:8(73)216+-⨯=元,第六批乘客费用:8(103)222+-⨯=元,第七批乘客费用:8(163)234+-⨯=元,第八批乘客费用:8(223)246+-⨯=元,第九批乘客费用:8(43)210第十批乘客费用:8(33)28⨯-⨯=元,则十批乘客总费用为:2024122616223446108218+++++++++=元,则李师傅在这天下午一共收入218元.【点睛】此题考查了正负数在实际生活中的应用,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.23.(1)2,3-;(2)2.5或7;(3)6116.【解析】【分析】(1)设折痕与数轴的交点表示的数为x ,根据折痕与数轴的交点是−1与5对应点的中点可得方程()15x x --=-,解方程即可求得答案;按照(1)的折叠方式,中点为2,两点之间的距离为10,则左边数到中点的距离为5个单位,可得方程12102x -=⨯,解方程即可求得答案;(2)要分点C 在A 、B 之间和B 点右侧两种情况;(3)A 、B 两点之间距离为()426--=,连续对折5次后,共有52段,每两条相邻折痕间的距离为()5423216--=,则最右端的折痕与数轴的交点为3416-,即可解得答案.【详解】解:(1)设折痕与数轴的交点表示的数为x ,则()15x x --=-,解得2x =,故答案为:2;设左边点表示的数为x ,则12102x -=⨯,解得3x =-,故答案为:3-;(2)设点C 表示的数为x ,∵3AC BC =,∴点C 离点B 较近,只有两种情况:①点C 在线段AB 上时,()()234x x --=-,解得: 2.5x =;②当点C 在点B 的右边数轴上时,()()24x x ---=3,解得:7x =.故答案为:2.5或7.(3)对折5次后,每两条相邻折痕间的距离()5423 216 --=,∴最右端的折痕与数轴的交点表示的数为361 41616 -=.【点睛】本题考查实数与数轴,解题的关键是掌握数轴上点的特点,以及理解图形对称的性质.24.(1)(﹣2)n;(2)n=7;(3)64.【解析】【分析】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,从而可表示出第一行中第n个数;(2)设第一行的第n个数为x,找出图中的数字规律,列出方程即可求出x的值;(3)设方框中左上角的数为x,根据题意列出方程即可求出答案.【详解】(1)第一行中,从第二个数起,每一个数与前一个数的比为﹣2,∴第n个数为:﹣2×(﹣2)n﹣1=(﹣2)n,(2)设第一行的第n个数为x,则:x 12+x+(x+2)=﹣318x=﹣128=(﹣2)7,∴n=7,答:n=7时满足题意;(3)设方框中左上角的数为x,则:x+(﹣2x)12+x+(﹣x)+(x+2)+(﹣2x+2)=﹣156x=64答:方框中左上角的数为64.【点睛】本题考查了一元一次方程,解答本题的关键是正确找出题中的等量关系,本题属于基础题型.25.(1)10,3;(2)3-或9;(3)t为2s或143s或6s时,P,Q两点间距离为4【解析】【分析】(1)根据题意即可得到结论;(2)设点M 所表示的数为x ,分2x -≤和28x -<<和8x >三种情况讨论即可;(3)分情况讨论,当P ,Q 未相遇时,点P 表示的数为2+t -,点Q 表示的数为82t -,则()8221034PQ t t t =---+=-=,求解即可;当P ,Q 相遇后,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,求解即可;当P ,Q 相遇后,点Q 在向点B 返回时,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,()2212104PQ t t t =-+--=-+=,求解即可.【详解】解:(1)A 、B 两点间的距离AB =|−2−8|=10,线段AB 的中点表示的数为:822-=3.故答案是:10,3;(2)设点M 所表示的数为x ,∴28MA x MB x =+=-,,当2x -≤时,282612MA MB x x x +=---+=-+=,∴3x =-,当28x -<<时,MA+MB=()2812x x --+-=,无解,当8x >时,MA+MB=()2812x x --+-=,解得:9x =,综上,点M 所表示的数为-3或9.(3)当P ,Q 未相遇时,1003t <<,点P 表示的数为2+t -,点Q 表示的数为82t -,∴()8221034PQ t t t =---+=-=,∴2t =,当P ,Q 相遇后,1053t <<,点Q 在向点A 运动时,()2821034PQ t t t =-+--=-+=,∴143t =,当P ,Q 相遇后,点Q 在向点B 返回时,510t <<,点Q 表示的数为()225212t t -+⨯-=-,点P 表示的数为2t -+,∴()2212104PQ t t t =-+--=-+=,∴6t ,综上,t为2s或143s或6s时,P,Q两点间距离为4.。

2024学年秋季学期初中数学七年级上册期中考试模拟试卷

2024学年秋季学期初中数学七年级上册期中考试模拟试卷

2024学年秋季学期初中数学七年级上册期中考试模拟试卷1.中国是世界上最早使用负数概念的国家.数学家刘徽在《九章算术》注文中指出“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若水位升高3m时记作+3m,则﹣5m表示水位()A.下降5m B.升高3m C.升高5m D.下降3m2.12024的相反数是()A.−12024B.2024C.±2024D.−20243.下列化简不正确的是()A.−(−4.9)=+4.9B.−(+4.9)=−4.9C.−[+(−4.9)]=+4.9D.+[−(+4.9)]=+4.94.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,哈尔滨的气温是−4°C,则此刻两地的温差是()A.23℃B.19℃C.4℃D.15℃5.2024年春运期间,泸州市道路客运共投放客运班车2336辆,营业性运输累计发送旅客374万人次.将数据374万用科学记数法表示的是()A.3.74×105B.3.74×106C.0.374×107D.3.74×1076.代数式x2,st,1x+y,20%•x,√ab,√2ab,2a+b3中,多项式有()个A.0B.1C.2D.37.下列关于多项式5ab2−2a2bc−1的说法中,正确的是()A.它是三次三项式B.它是二次四项式C.它的最高次项是−2a2bc D.它的常数项是18.下列去括号正确的是()A.−3(x+y)=−3x+3y B.−(−a−b)=a+bC.a−2(b−c)=a−2b+c D.x−(3y+m)=x−3y+m9.下列运算正确的是()A.a3−a2=a B.−a+5a=4a C.a+a2=a3D.ab2+a2b=ab2 10.多项式1+2xy-3xy2的次数为()A.1B.2C.3D.511.一辆汽车以60 千米/时的速度行驶,从A城到B城需t小时,如果该车的速度每小时增加v千米,那么从A城到B城需要()A.60t v小时B.60tv+60小时C.vtv+60小时D.vt60小时12.比较大小:(1)−(−2)−|−2.5|,(2)−78−67.13.计算:−6÷(−5)×(−15)=.14.我国某次人口普查结果公布,全国总人口为1443497378人.把横线上的数改写成用“万”作单位,省略“万”后面的尾数是万.15.如图,线段AB=8cm,点C为线段AB上一点,BC=2cm,点D,E分别为AC和AB的中点,则线段DE的长为cm.16.写出一个与﹣2x2y是同类项的单项式为.17.有理数a、b、c在数轴上的位置如图所示,则|a|−3|a+b|+2|c−a|+4|b+c|可化简为.18.计算(134−78−712)÷(﹣78)+ 87÷(134−78−712)的结果为.19.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形⋯按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).20.计算:−14+30÷22×(−13)+12.21.先化简,再求值:x 2y ﹣2( 14 xy 2﹣3x 2y )+(﹣ 12 xy 2﹣x 2y ),其中|x ﹣ 32 |+(y+2)2=0.22. 先化简,再求值:已知a 2−1=0,求(5a 2+2a −1)−2(a +a 2)的值.23.74÷78−23×(−6) .24.先化简,再求值:3x 2y -[2x 2y -3(2xy -x 2y)-xy],其中x =- 12 ,y =2.25.(1)计算2(3ab 2−a 2b )−3(2a 2b −ab 2);(2)先化简,再求值:8a2−2[3a−(4a−1)+4a2],其中a=−2.26.如图所示,学校有一块宽20m,长40m的空闲长方形场地,中间有两条横纵相交且宽度相等的小道,为了美化校园环境,生物部的同学准备在场地上种植一些植被,若小道的宽为xm.(1)用含有x的代数式表示种植植被的面积;(2)当x=2时,计算种植植被的面积.。

浙教版初中数学七年级上册期中测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册期中测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=11,经过第2020次操作后得到的是( )A. −7B. −1C. 5D. 112.绝对值不小于2且不大于4的所有正整数的和为( )A. 3B. 5C. 7D. 93.如图,实数−3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )A. MB. NC. PD. Q4.下列计算中,错误的是( )A. (−1)2021×12022=−1B. 2÷3×12=3C. −5−(−6)×16=−4 D. −2+(−15)×(−5)2=−75.某种细菌的分裂速度非常快,1个细菌经过1分钟分裂为2个,再过1分钟又分别分裂为2个,即总共分裂为4个⋯⋯照这样的分裂速度,一个细菌分裂为满满一小瓶恰好需要1小时.同样的细菌,同样的分裂速度,同样的小瓶,如果开始时瓶内装有2个细菌,那么恰好分裂为满满一小瓶需要( )A. 15分钟B. 30分钟C. 45分钟D. 59分钟6.计算634+(−514)+(+1.2)+(−2.75)+1.8+(−634),所得结果是( )A. −3B. 3C. −5D. 57.实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是( )A. −2B. 0C. −2aD. 2b8. 若a <10−√13<b ,且a ,b 是两个连续的整数,则a +b 的值为( )A. 11B. 12C. 13D. 149. 下列各组数中,互为相反数的是( )A. −2与−12 B. √(−2)2与√−83.C. |−√2|与√2.D. √−83与−√83.10. 下列四个数轴上的点A 都表示数a ,其中,一定满足|a|>|−2|的是( )A. ①③B. ②③C. ①④D. ②④11. 马小虎在学习有理数的运算时,做了如下6道填空题:①(−5)+5=0;②−5−(−3)=−8;③(−3)×(−4)=12;④(−78)×(−87)=1;⑤(−12)÷(−23)=13.你认为他做对了( ) A. 5题 B. 4题 C. 3题 D. 2题12. 已知a 是√81的平方根,b =√16,c 是−8的立方根,则a +b −c 的值为( )A. 15B. 15或−3C. 9D. 9或3第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若x 是有理数,则|x −2|+|x −4|+|x −6|+|x −8|+⋯+|x −2022|的最小值是__________.14. 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是____.15. 如图是一个简单的数值计算程序,当输入的x 的值为5时,则输出的结果为_________.16. 如果一个数的立方根等于它的平方根,那么这个数为 .三、解答题(本大题共9小题,共72.0分。

七年级数学上册期中考试卷及答案

七年级数学上册期中考试卷及答案

七年级数学上册期中考试卷及答案虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。

多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。

下面给大家分享一些关于七年级数学上册期中考试卷及答案,希望对大家有所帮助。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3mB.3mC.6mD.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1B.2C.3D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣ |= ,∴ 的相反数是﹣ .故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104B.0.11×107C.1.1×106D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】近似数和有效数字;科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D 选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.7.下列说法中,正确的是( )A. 不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,的负整数是﹣1.【考点】有理数.【分析】根据小于零的整数是负整数,再根据的负整数,可得答案.【解答】解:有理数中,的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q.【考点】相反数;数轴.【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:∵R表示的数是﹣1,∴P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),∵﹣3和3互为相反数,∴数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【考点】有理数大小比较.【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知|a+2|与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子,﹣1,x2﹣3x,,中,是整式的有3个.【考点】整式.【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子,中,分母中含有字母,故不是整式.问题可求.【解答】解:式子,和x2﹣3x是多项式,﹣1是单项式,三个都是整式;,中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式.【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示,,由图可知,|﹣3|>﹣(﹣1)> >0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式.【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:∵单项式 x2ym与多项式x2y2+ y4+ 的次数相同,∴2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式按字母X的降幂排列.【考点】多项式.【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4) .【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;=﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求的值.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=|﹣1﹣ |+(2﹣1)2= .【解答】解:∵ab2<0,a+b>0,∴a<0,b>0,且b的绝对值大于a的绝对值,∵|a|=1,|b|=2,∴a=﹣1,b=2,∴原式=|﹣1﹣ |+(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类.【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。

初中七年级数学上期中考试试卷

初中七年级数学上期中考试试卷

初中七年级数学上期中考试试卷做题是做容易提高数学成绩的一种方法,下面小编就给大家整理一下七年级数学,希望大家能有一个好的成绩有关七年级数学上期中试卷一、选择题(每题3分)1.(3分)用一个平面去截一个正方体,所得截面不可能为( )A.五边形B.三角形C.梯形D.圆2.(3分)﹣2017的相反数是( )A.﹣2017B.﹣C.D.20173.(3分)在有理数(﹣1)2、(﹣)、﹣|﹣2|、(﹣2)3﹣22中负数有( )个.A.4B.3C.2D.14.(3分)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A.3B.﹣3C.6D.﹣65.(3分)下列说法错误的是( )A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6.(3分)从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币,16553亿用科学记数法表示为( )A.1.6553×108B.1.6553×1011C.1.6553×1012D.1.6553×10137.(3分)要反映青岛市一天内气温的变化情况宜采用( )A.条形统计图B.扇形统计图C.频数分布图D.折线统计图8.(3分)若a为有理数,且满足|a|+a=0,则( )A.a>0B.a≥0C.a<0D.a≤09.(3分)下列计算结果正确的是( )A.1+(﹣24 )÷(﹣6)=﹣3B.﹣3.5÷ ×(﹣ )﹣2=﹣5C.(﹣)÷(﹣)×16=D.3﹣(﹣6)÷(﹣4)÷1 =10.(3分)下列调查中,适合用普查方式的是( )A.调查聊城市市民的吸烟情况B.调查中央电视台某节目的收视率C.调查聊城市市民家庭日常生活支出情况D.调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率11.(3分)若|x|=7,|y|=9,则x﹣y为( )A.±2B.±16C.﹣2和﹣16D.±2和±1612.(3分)观察下列等式:21=2;22=4;23=8;24=16;25=32; …通过观察,用你所发现的规律确定22017的个位数字是( )A.2B.4C.6D.8二、填空题(每题4分)13.(4分)如图,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是.14.(4分)如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是.15.(4分)绝对值大于1而小于4的整数是,它们的和是,它们的积是.16.(4分)如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为人.17.(4分)若|a﹣2|+(b+1)2=0,则ba= .18.(4分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为正数的是①a+b;②a﹣b;③﹣a+ b;④﹣a﹣b;⑤ab;⑥ ;⑦a3b3.三、解答题19.(6分)已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)20.(6分)在数轴上把下列各数表示出来,并用“<”连接起来:﹣(﹣5),﹣(+3),4,0,﹣2 ,﹣22,|﹣0.5|.21.(20分)计算题:(1)﹣8+1 2﹣16﹣23;(2)2×(﹣5)+23÷ ;(3)32×(﹣ )3﹣0.52×(﹣2)3;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3].22.(8分)某中学进行体育教学改革,同时开设篮球、排球、足球、体操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的报名情况进行了统计,并绘制了下面尚未完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)该校七年级共有多少名学生?(2)将两个统计图补充完整;(3)从统计图中你还能得到哪些信息?(写出两条即可)23.(10分)(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.24.(10分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?参考答案与试题解析一、选择题(每题3分)1.(3分)用一个平面去截一个正方体,所得截面不可能为( )A.五边形 B .三角形 C.梯形 D.圆【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,所以截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形,而不可能是圆.故选D.2.(3分)﹣2017的相反数是( )A.﹣2017B.﹣C.D.2017【解答】解:﹣2017的相反数是2017.故选:D.3.(3分)在有理数(﹣1)2、(﹣)、﹣|﹣2|、(﹣2)3﹣22中负数有( )个.A.4B.3C.2D.1【解答】解:(﹣1)2=1,(﹣)=﹣、﹣|﹣2|=﹣2、(﹣2)3﹣22=﹣8﹣4=﹣12,则负数有3个,故选B4.(3分)一个数在数轴上所对应的点向左平移6个单位后,得到它的相反数的点,则这个数为( )A.3B.﹣3C.6D.﹣6【解答】解:由题意可得:a﹣6=﹣a,解得a=3.故选A.5.(3分)下列说法错误的是( )A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【解答】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选C.6.(3分)从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16553亿元人民币,16553亿用科学记数法表示为( )A.1.6553×108B.1.6553×1011C.1.6553×1012D.1.6553×1013【解答】解:将16553亿用科学记数法表示为:1.6553×1012.故选:C.7.(3分)要反映青岛市一天内气温的变化情况宜采用( )A.条形统计图B.扇形统计图C.频数分布图D.折线统计图【解答】解:要反映青岛市一天内气温的变化情况宜采用折线统计图;故选D.8.(3分)若a为有理数,且满足|a|+a=0,则( )A.a>0B.a≥0C.a<0D.a≤0【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为负数或0.故选D.9.(3分)下列计算结果正确的是( )A.1+(﹣24 )÷(﹣6)=﹣3B.﹣3.5÷ ×(﹣ )﹣2=﹣5C.(﹣)÷(﹣)×16=D.3﹣(﹣6)÷(﹣4)÷1 =【解答】解:A、原式=1+(﹣)×(﹣ )=1+ = ,不符合题意;B、原式= × × ﹣2=3﹣2=1,不符合题意;C、原式= × ×16= ,不符合题意;D、原式=3﹣× =3﹣ = ,符合题意,故选D.10.(3分)下列调查中,适合用普查方式的是( )A.调查聊城市市民的吸烟情况B.调查中央电视台某节目的收视率C.调查聊城市市民家庭日常生活支出情况D.调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率【解答】解:A、调查聊城市市民的吸烟情况适合用抽样调查方式;B、调查中央电视台某节目的收视率适合用抽样调查方式;C、调查聊城市市民家庭日常生活支出情况适合用抽样调查方式;D、调查聊城市市某校某班学生对“聊城市创建文明城市活动”的知晓率适合用普查方式,故选:D.11.(3分)若|x|=7,|y|=9,则x﹣y为( )A.±2B.±16C.﹣2和﹣16D.±2和±16【解答】解:∵|x|=7,|y|=9,∴x=﹣7,y=9;x=﹣7,y=﹣9;x=7,y=9;x=7,y=﹣9;则x﹣y=﹣16或2或﹣2或16.故选:D.12.(3分)观察下列等式:21=2;22=4;23=8;24=16;25=32; …通过观察,用你所发现的规律确定22017的个位数字是( )A.2B.4C.6D.8【解答】解:以2为底的幂的末位数字是2,4,8,6依次循环的,∵2017÷4=504…1,∴22017的个位数字是2.故选A二、填空题(每题4分)13.(4分)如图,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字.如图是她设计的礼盒平面展开图,那么“礼”字对面的字是义.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“仁”与“孝”是相对面,“义”与“礼”是相对面,“信”与“智”是相对面,故答案为:义.14.(4分)如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短.【解答】解:校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.(4分)绝对值大于1而小于4的整数是2,﹣2,3,﹣3 ,它们的和是0 ,它们的积是36 .【解答】解:由题意知:绝对值大于1而小于4的整数有2,﹣2,3,﹣3;它们的和为:2+(﹣2)+3+(﹣3)=0;它们的积为:2×(﹣2)×3×(﹣3)=2×2×3×3=36.故答案为:2,﹣2,3,﹣3;0;36.16.(4分)如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为50 人.【解答】解:∵步行的人数占总人数的百分比为×100%=20%,∴骑车人数占总人数的百分比为1﹣40%﹣20%=40%,∵骑车人数为20人,∴该班人数为20÷40%=50(人),故答案为:50.17.(4分)若|a﹣2|+(b+1)2=0,则ba= 1 .【解答】解:由题意得,a﹣2=0,b+1=0,解得a=2,b=﹣1,所以,ba=(﹣1)2=1.故答案为:1.18.(4分)有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为正数的是③④①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥ ;⑦a3b3.【解答】解:观察数轴,可知:a<0,b>0,|a|>|b|,∴a<﹣b<0∴①a+b<0;②a﹣b<0;③﹣a+b>0;④﹣a﹣b>0;⑤ab<0;⑥ <0;⑦a3b3=(ab)3<0.故答案为:③④.三、解答题19.(6分)已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【解答】解:如图:,线段AB即为所求.20.(6分)在数轴上把下列各数表示出来,并用“<”连接起来:﹣(﹣5),﹣(+3),4,0,﹣2 ,﹣22,|﹣0.5|.【解答】解:﹣22<﹣(﹣3)<﹣2 <0<|﹣0.5|<4<﹣(﹣5).21.(20分)计算题:(1)﹣8+12﹣16﹣23;(2)2×(﹣5)+23÷ ;(3)32×(﹣ )3﹣0.52×(﹣2)3;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3].【解答】解:(1)﹣8+12﹣16﹣23=﹣35;(2)2×(﹣5)+23÷ =﹣10+16=6;(3)32×(﹣ )3﹣0.52×(﹣2)3=4+2=6;(4)﹣14﹣(2﹣0.5)× ×[(﹣ )2﹣( )3]=﹣1﹣2× =﹣ .22.(8分)某中学进行体育教学改革,同时开设篮球、排球、足球、体操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的报名情况进行了统计,并绘制了下面尚未完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)该校七年级共有多少名学生?(2)将两个统计图补充完整;(3)从统计图中你还能得到哪些信息?(写出两条即可)【解答】解:(1)由统计图得,108÷30%=360,故该校九年级共有360名学生.(2)补全的两个统计图如下:(3)1、七年级学生选学体操的人数最多;2、七年级学生选学排球的人数最少;3、选学篮球的人数是九年级学生总人数的25%(或 );4、选学足球的人数是九年级学生总人数的25%(或 ).23.(10分)(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,∴MN= (AC+CB)= ×10=5cm;(2)MN= ,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,MN= (AC+BC)=5cm;②当点C在AB或BA的延长线上时,MN= (AC﹣BC)=1cm.24.(10分)小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?【解答】解:(1)14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=38(千米).答:李师傅这天最后到达目的地时,在下午出车点的东边38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米).答:李师傅这天下午共行车78千米;(3)78×0.1=7.8(升).答:这天下午李师傅用了7.8升油.初中生七年级数学上期中试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题所给出的四个答案中有且只有一个答案是正确的.)1.(4分)2016的相反数是( )A. B.﹣C.±2016 D.﹣20162.(4分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A.圆B.长方形C.椭圆D.平行四边形3.(4分)如图,将正方体的平面展开图重新折成正方体后,“快”字对面的字是( )A.新B.年C.祝D.乐4.(4分)今年中秋节假期间,雁荡山世界地质公园共接待旅客约为184500人次,此数用科学记数法表示是( )A.1.845×105B.0.1845×106C.18.45×104D.1.845×1065.(4分)在﹣,﹣|12|,﹣20,0,﹣(﹣5)中,负数的个数有( )A.2个B.3个C.4个D.5个6.(4分)下列各组代数式中,属于同类项的是( )A. a2b与 ab2B.x2y与x2zC.2mnp与 2mnD. pq 与qp7.(4分)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数8.(4分)如图,数轴上点A、B分别对应实数a、b,则下列结论正确的是( )A.a>bB.|a|>|b|C.a+b>0D.﹣a>b9.(4分)如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( )A.7B.6C.5D.410.(4分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第4个图案小木棒根数是( )A.18B.24C.28D.30二.填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.(4分)如果向东走2km记作+2km,那么﹣3km表示.12.(4分)代数式﹣πx2的系数是.次数是.13.(4分)比较大小:﹣2 ﹣2.3.(填“>”、“<”或“=”)14.(4分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是cm.15.(4分)一个长方形周长为30,若一边长用字母x表示,则此长方形的面积表示为.16.(4分)如图是一数值转换机,若输入x的值为﹣3,y的值为﹣1,则输出的结果为= .三、解答题(共8大题,满分86分,请将答案填入答题卡的相应位置)17.(6分)把下列各数填入相应的空格中:+1,﹣3.1,0,﹣3 ,﹣1.314,﹣17, .负数:;正整数:;整数:;负分数:.18.(16分)计算:(1)7+(﹣28)﹣(﹣9).(2)(﹣2)×6﹣6÷3.(3) .(4)﹣24﹣16×| |.19.(14分)化简(1)2x2﹣5x+x2+4x(2)3b+5a﹣(2a﹣4b)(3)先化简,再求值:4(x﹣1)﹣2(x2+1)+ (4x2﹣2x),其中x=﹣3.20.(6分)如图是由6个相同的小正方体组成的几何体.请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.21.(8分)已知有理数a,b,其中数a在如图的数轴上对应的点M,b是负数,且b在数轴上对应的点与原点的距离为3.5.(1)a= ,b= .(2)将﹣,0,﹣2,b在如图的数轴上表示出来,并用“<”连接这些数.22.(8分)正兴学校七年一班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10,+4,+6(1)填空:最高分是分和最低分是分(2)求他们的平均成绩.23.(9分)按下图方式摆放餐桌和椅子,(1)1张长方形餐桌可坐4人,2张长方形餐桌拼在一起可坐人.(2)按照上图的方式继续排列餐桌,完成下表.桌子张数 3 4 5 n可坐人数(3)一家餐厅有40张这样的长方形餐桌,某用餐单位要求餐厅按照上图方式每8张长方形餐桌拼成1张大桌子,则该餐厅此时能容纳多少人用餐?24.(12分)如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为cm,底面积为cm2,盒子的容积V为cm3;(2)为探究盒子的体积与剪去的小正方形的边长x之间的关系,小明列表分析:x(cm) 1 2 3 4 5 6 7 8V(cm3) 324 588 576 500 252 128请将表中数据补充完整,并根据表格中的数据写出当x的值逐渐增大时,V的值如何变化?25.(7分)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2016(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题所给出的四个答案中有且只有一个答案是正确的.)1.(4分)2016的相反数是( )A. B.﹣C.±2016 D.﹣2016【解答】解:2016的相反数是﹣2016,故选:D.2.(4分)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A.圆B.长方形C.椭圆D.平行四边形【解答】解:由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:B.3.(4分)如图,将正方体的平面展开图重新折成正方体后,“快”字对面的字是( )A.新B.年C.祝D.乐【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“快”与“乐”是相对面,“祝”与“新”是相对面,“你”与“年”是相对面.故选D.4.(4分)今年中秋节假期间,雁荡山世界地质公园共接待旅客约为184500人次,此数用科学记数法表示是( )A.1.845×105B.0.1845×106C.18.45×1 04D.1.845×106【解答】解:将184500用科学记数法表示为1.845×105.故选A.5.(4分)在﹣,﹣|12|,﹣20,0,﹣(﹣5)中,负数的个数有( )A.2个B.3个C.4个D.5个【解答】解:﹣是负数,﹣|﹣12|=﹣12是负数,﹣20是负数,0既不是正数也不是负数,﹣(﹣5)=5,是正数.负数有3个,故选B.6.(4分)下列各组代数式中,属于同类项的是( )A. a2b与 ab2B.x2y与x2zC.2mnp与 2mnD. p q 与qp【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同的项不是同类项,故B错误;C、字母不同的项不是同类项,故C错误;D、字母相同且相同字母的指数也相同,故D正确;故选:D.7.(4分)下面关于有理数的说法正确的是( )A.整数和分数统称为有理数B.正整数集合与负整数集合合在一起就构成整数集合C.有限小数和无限循环小数不是有理数D.正数、负数和零统称为有理数【解答】解:A、正确;B、正整数集合与负整数集合以及0合在一起就构成整数集合,故命题错误;C、有限小数和无限循环小数是有理数,故命题错误;D、正有理数、负有理数和零统称为有理数,故命题错误.故选A.8.(4分)如图,数轴上点A、B分别对应实数a、b,则下列结论正确的是( )A.a>bB.|a|>|b|C.a+b>0D.﹣a>b【解答】解:A、aB、|a|<|b|,故错误;C、正确;D、﹣a故选:C.9.(4分)如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( )A.7B.6C.5D.4【解答】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.10.(4分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第4个图案小木棒根数是( )A.18B.24C.28D.30【解答】解:拼搭第1个图案需4=1×(1+3)根小木棒,拼搭第2个图案需10=2×(2+3)根小木棒,拼搭第3个图案需18=3×(3+3)根小木棒,拼搭第4个图案需4×(4+3)=28根小木棒,故选C二.填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置)11.(4分)如果向东走2km记作+2km,那么﹣3km表示向西走3km .【解答】解:向东走2km记作+2km,那么向﹣3km表示向西走3km,故答案为:向西走3km.12.(4分)代数式﹣πx2的系数是﹣π.次数是 2 .【解答】解:代数式﹣πx2的系数是﹣π.次数是 2.故答案是: ;2.13.(4分)比较大小:﹣2 < ﹣2.3.(填“>”、“<”或“=”)【解答】解:∵|﹣2 |=2 ≈2.33,|﹣2.3|=2.3,2.33>2.3,∴﹣2.33<﹣2.3,∴﹣2 <﹣2.3.故答案为:<.14.(4分)一个棱柱有12个顶点,所有侧棱长的和是48cm,则每条侧棱长是8 cm.【解答】解:根据以上分析一个棱柱有12个顶点,所以它是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.故答案为8.15.(4分)一个长方形周长为30,若一边长用字母x表示,则此长方形的面积表示为x(15﹣x) .【解答】解:周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x.则面积是:x(15﹣x).故答案为:x(15﹣x).16.(4分)如图是一数值转换机,若输入x的值为﹣3,y的值为﹣1,则输出的结果为= ﹣.【解答】解:把x=﹣3,y=﹣1代入(2x+y2)÷2得(2x+2y2)÷2=(﹣6+1)÷2=﹣ .故答案为﹣ .三、解答题(共8大题,满分86分,请将答案填入答题卡的相应位置)17.(6分)把下列各数填入相应的空格中:+1,﹣3.1,0,﹣3 ,﹣1.314,﹣17, .负数:﹣3.1,﹣3 ,﹣1.314,﹣17 ;正整数:+1 ;整数:+1,0,﹣17 ;负分数:﹣3.1,﹣3 ,﹣1.314 .【解答】解:负数:﹣3.1,﹣3 ,﹣1.314,﹣17;正整数:+1;整数:+1,0,﹣17;负分数:﹣3.1,﹣3 ,﹣1.314.故答案为:﹣3.1,﹣3 ,﹣1.314,﹣17;+1;+1,0,﹣17;﹣3.1,﹣3 ,﹣1.314.18.(16分)计算:(1)7+(﹣28)﹣(﹣9).(2)(﹣2)×6﹣6÷3.(3) .(4)﹣24﹣16×| |.【解答】解:(1)原式=7﹣28+9=16﹣28=﹣12;(2)原式=﹣12﹣2=﹣14;(3)原式=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣16﹣16× =﹣16﹣4=﹣20.19.(14分)化简(1)2x2﹣5x+x2+4x(2)3b+5a﹣(2a﹣4b)(3)先化简,再求值:4(x﹣1)﹣2(x2+1)+ (4x2﹣2x),其中x=﹣3.【解答】解:(1)2x2﹣5x+x2+4x=3x2﹣x;(2)3b+5a﹣(2a﹣4b)=3b+5a﹣2a+4b=3a+7b;(3)4(x﹣1)﹣2(x2+1)+ (4x2﹣2x)=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6,当x=﹣3时,原式=﹣15.20.(6分)如图是由6个相同的小正方体组成的几何体.请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.【解答】解:如图所示:.21.(8分)已知有理数a,b,其中数a在如图的数轴上对应的点M,b是负数,且b在数轴上对应的点与原点的距离为3.5.(1)a= 2 ,b= ﹣3.5 .(2)将﹣,0,﹣2,b在如图的数轴上表示出来,并用“<”连接这些数.【解答】解:(1)∵由图可知,点M在2处,∴a=2;∵b在数轴上对应的点与原点的距离为3.5且b为负数,∴b=﹣.3.5.故答案为:2,﹣3.5;(2)如图所示.,故b<﹣2<﹣ <0.22.(8分)正兴学校七年一班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10,+4,+6(1)填空:最高分是100 分和最低分是80 分(2)求他们的平均成绩.【解答】解:(1)最高分是100分和最低分是80分;(2)解:∵(﹣7﹣10+9+2﹣1+5﹣8+10+4+6)÷10=1,∴他们的平均成绩=1+90=91(分),答:他们的平均成绩是91分.23.(9分)按下图方式摆放餐桌和椅子,(1)1张长方形餐桌可坐4人,2张长方形餐桌拼在一起可坐 6人.(2)按照上图的方式继续排列餐桌,完成下表.桌子张数 3 4 5 n可坐人数8 10 12 2n+2(3)一家餐厅有40张这样的长方形餐桌,某用餐单位要求餐厅按照上图方式每8张长方形餐桌拼成1张大桌子,则该餐厅此时能容纳多少人用餐?【解答】解:(1)观察发现:2张长方形餐桌拼在一起可坐6人;(2)填表如下:桌子张数 3 4 5 n可坐人数 8 10 12 2n+2(3)当n=8时,2n+2=2×8+2=18,18×(40÷8)=90(人).答:该餐厅此时能容纳90人用餐.24.(12分)如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为x cm,底面积为(20﹣2x)2 cm2,盒子的容积V为x(20﹣2x)2 cm3;(2)为探究盒子的体积与剪去的小正方形的边长x之间的关系,小明列表分析:x(cm) 1 2 3 4 5 6 7 8V(cm3) 324 512 588 576 500 500 252 128请将表中数据补充完整,并根据表格中的数据写出当x的值逐渐增大时,V的值如何变化?【解答】解:(1)设剪去的小正方形的边长为x(cm),折成的长方体盒子的容积为V(cm3),用只含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,盒子的容积V为x(20﹣2x)2cm3;故答案为:x,(20﹣2x)2,x(20﹣2x)2.(2)当x=2时,V=2×(20﹣2×2)2=512,当x=5时,V=5×(20﹣2×5)2=500,故答案为:512,500,当x的值逐渐增大时,V的值先增大后减小.25.(7分)根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是4或﹣2 ,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2016(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M 1009 ,N 1007 ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).【解答】解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B, C两点之间的距离为﹣﹣(﹣3)= ;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣ )]= ;M=﹣1﹣ =﹣1009,n=﹣1+ =1007;(3)P=n﹣,Q=n+ .故答案为:4或﹣2, ; ,﹣1009,1007;n﹣,n+ .第一学期七年级上期中数学试卷一、选择题(本大题共12小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣的倒数是( )[来源:学&科&网]A.2B.﹣2C.D.2.(2分)下面四个数3,0,﹣1,﹣3中,最小的数是( )A.3B.0C.﹣1D.﹣33.(2分)多项式x2﹣2xy3﹣ y﹣1的次数是( )A.一次B.二次C.三次D.四次4.(2分)下列各数2π,﹣5,0.4,﹣3.14,0中,负数有( )A.1个B.2个C.3个D.4个5.(2分)把91000写成a×10n(1≤a<10,n为整数)的形式,则a=( )A.9B.﹣9C.0.91D.9.16.(2分)如图,在数轴上表示互为相反数的两数的点是( )A.点A和点CB.点B和点AC.点C和点BD.点D和点B[来源:学+科+网]7.(2分)下列说法正确的是( )A.正数和负数统称为有理数B.绝对值等于它本身的数一定是正数C.负数就是有负号的数D.互为相反数的两数之和为零8.(2分)某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了( )件.A.3a﹣42B.3a+42C.4a﹣32D.3a+329.(2分)多项式2x3﹣5x2+x﹣1与多项式3x3+(2m﹣1)x2﹣5x+3的和不含二次项,则m=( )A.2B.3C.4D.510.(2分)下列去括号正确的是( )A.a+(﹣2b+c)=a+2b+cB.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2cD.a﹣2(﹣2b+c)=a+4b﹣c11.(2分)若方程2x+1=1的解是关于x的方程1﹣2(x﹣a)=2的解,则a=( )A.﹣1B.1C.D.﹣12.(2分)已知a2+2a=1,则代数式1﹣2(a2+2a) 的值为( )A.0B.1C.﹣1D.﹣2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)比较两数的大小:﹣﹣ .(填“>”“<”或“=”)14.(3分)如果a2=9,那么a= .15.(3分)计算﹣ = .16.(3分)单项式的次数是,系数是.17.(3分)已知7xmy3和﹣ x2yn是同类项,则﹣nm= .18.(3分)在下表从左到右的每个小格子中填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和都为﹣5,则第2018个格子中应填入的有理数是.a ﹣7b ﹣4cdef 2 …三、解答题(本大题共8小题,共58分)19.(8分)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)﹣(1﹣0.5)÷ ×[2+(﹣4)2].20.(6分)规定一种运算:a*b= ;计算:[(﹣1)*2]*3的值.21.(7分)已知多项式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.22.(6分)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+ =x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.23.(7分)解方程:﹣1= .24.(7分)探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=421+3+5+7+9=25=52…。

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2020学年度第一学期期中质量调研七年级数学试题一、选择题(每小题2分,共16分)1.﹣6的相反数是------------------------------------------------------------------------------------【 】A .﹣B .6C .D .﹣62.“比a 的2倍大1的数”,列式表示是--------------------------------------------------------【 】 A .2(a +1)B .2(a ﹣1)C .2a +1D .2a ﹣13.下列算式中,运算结果为负数的是-----------------------------------------------------------【 】 A .)(5-- B .5-C .()35-D .()25-4.下列运算结果正确的是--------------------------------------------------------------------------【 】 A .66=-x x B .y y y 34--=+ C .022=-xy y xD .532422x x x =+5.已知|a |=4,|b |=7,且a ﹣b >0,则a +b 的值为------------------------------------------- 【 】 A .11B .3或11C .﹣3或﹣11D .3或﹣116.一个两位数的个位数字是x ,十位数字是y ,则这个两位数用代数式表示为---------------【 】 A .yxB .y+xC .10x +yD .10y +x7.下列说法正确的是----------------------------------------------------------------------------------【 】 A .单项式﹣5xy 的系数是5 B .单项式3a 2b 的次数是2 C .多项式x 2y 3﹣4x +1是五次三项式 D .多项式x 2﹣6x +3的项数分别是x 2,6x ,38.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a +b 的值为--------------------------【 】 A .﹣6或﹣3 B .﹣8或1C .﹣1或﹣4D .1或﹣1二、填空题(每小题2分,共20分)2019.119.如果高出海平面20米,记作+20米,那么﹣30米表示.10.在①﹣42,②+0.080080008…(相邻两个8之间依次增加一个0),③π,④0,⑤120,这5个数中正有理数是(填序号).11.比较两个数的大小:(1) )21(--32-; (2) 14.3-π-.12.据相关报道,开展精准扶贫工作五年以来,我国约有55 000 000人摆脱贫困,将55 000 000用科学记数法表示是.13.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是℃.14.若单项式3x2y n与﹣2x m y3是同类项,则m-n=.15.已知22-=-yx,则yx423+-的值是.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.17.如图,长方形的长为2a,长方形的宽和半圆的半径都是a,用字母表示图中阴影部分的面积为(结果保留π)18.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2019的点与圆周上表示数字的点重合.三、计算题(每小题4分,共16分)19.(1)53--8-+)((2))16(944981--÷⨯÷第16题第17题第18题(3))()(24-43-61-83⨯ (4))31(62--1-24-⨯+)(四、计算与化简(20题每小题5分,21题6分,共16分) 20.化简下列各式:(1)a a a a 655322+-- (2))2(3)(622m n n m +--21.先化简再求值:)3(2)3(52222y x xy xy y x +--,其中1,21-=-=y x .五、解答题(共32分) 22.(8分)某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库): +50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?23.(7分)观察下列等式(1)13=×12×22;(2)13+23=×22×32;(3)13+23+33=×32×42;(4)13+23+33+43=×42×52;…根据上述等式的规律,解答下列问题:(1)写出第5个等式:;(2)写出第n个等式(用含有n的代数式表示):;(3)设t是正整数且t≥2,应用你发现的规律,化简:×t 2×(t +1)2﹣×(t﹣1)2×t 2.24.(8分)拖拉机油箱储油60.5L,在正常情况下,拖拉机工作1h耗油5.5L,(1)工作th后油箱内还剩多少L油?(2)利用(1)的结果分别计算拖拉机工作4.5h,6h后油箱内剩油量;(3)这台拖拉机最多能工作多少h?25.(9分)在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C 到点A,B的距两之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填一个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?七年级期中质量调研数学参考答案及评分建议一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9. 低于海平面30米 10.⑤ 11.> , > 12.7105.5⨯ 13.11 14.-1 15.7 16.6 17.2222a a π-18.2三、计算题(每小题4分,共16分,分步积分)19.(1)原式538-++=---------------2分 (2))161(949481-⨯⨯⨯-=----------2分 0=-------------------- -----4分 1=--------------------------------------4分(3)原式1849++-=------ ------3分 (4)241---=-----------------------3分 13=--------------------------- -----4分 7-=---------------------------------4分四、计算与化简(20、21每小题5分,22题6分,共16分)20(1)原式a a a a 655322+--=--------2分 (2)226366m n n m ---=----------2分a a +-=22 ------------------5分 n 9-=-------------------------------5分 21.原式2279xy y x -=---------------------------4分当1,21-=-=y x 时,原式45=--------------6分 五、解答题(共32分) 22.解:(1)+50+(﹣45)+(﹣33)+(+48)+(﹣49)+(﹣36)=50﹣45﹣33+48﹣49﹣36 =﹣65吨答:仓库里的水泥减少了,减少了65吨;---------------------3分 (2)200﹣(﹣65)=265(吨)答:6天前,仓库里存有水泥265吨;-------------------------------5分 (3)(|+50|+|﹣45|+|﹣33|+|+48|+|﹣49|+|﹣36|)×5 =261×5 =1305(元)答:这6天要付1305元的装卸费.----------------------------8分23.解:(1)第5个等式为13+23+33+43+53=×52×62,-------2分 (2)第n 个等式为13+23+33+43+…+n 3=×n 2×(n +1)2;----4分 (3)原式=13+23+33+43+…+t 3﹣[13+23+33+43+…+(t ﹣1)3] =13+23+33+43+…+t 3﹣13﹣23﹣33﹣43﹣…﹣(t ﹣1)3=t 3.-------------------------------------------------------------------------7分24.解:(1)工作th 后油箱内还剩油(60.5﹣5.5t )L ;------------------2分 (2)当t =4.5h 时:60.5﹣5.5×4.5=35.75L ;------------------4分 当t =6h 时:60.5﹣5.5×6=27.5L ;------------------6分 (3)当60.5﹣5.5t =0时,t =11h .------------------8分答:4.5h 后油箱内剩油量为35.75L ,6h 后油箱内剩油量为27.5L ,这台拖拉机最多能工作11h . 25.⑴ -4或2, ⑵ 正确即可 (每空2分,共4分)(3)Q 是A 和B 的幸福中心,Q 应该在数4.5和数-1.5表示的点处,因此 ①75.125.48=- ②75.425.18=)-(-故当经过1.75秒或4.75秒时,Q 是A 和B 的幸福中心.---------------9分。

相关文档
最新文档