图像去雾设计报告
图像去雾算法研究综述

图像去雾算法研究综述一、本文概述随着计算机视觉技术的快速发展,图像去雾技术已成为近年来的研究热点之一。
图像去雾旨在从有雾的图像中恢复出清晰、无雾的图像,从而提高图像的质量和视觉效果,为后续的图像处理和分析提供更为准确和可靠的信息。
本文旨在对图像去雾算法进行全面的研究综述,探讨各种去雾算法的原理、优缺点及适用场景,以期为后续的研究提供参考和借鉴。
本文将对图像去雾技术的研究背景和意义进行介绍,阐述图像去雾在各个领域中的应用价值。
接着,本文将从去雾算法的基本原理出发,详细介绍各种去雾算法的实现过程,包括基于物理模型的去雾算法、基于深度学习的去雾算法等。
在此基础上,本文将对各种去雾算法的性能进行评估,包括去雾效果、计算复杂度、实时性等方面的比较和分析。
本文还将对去雾算法的未来发展趋势进行展望,探讨去雾算法在新技术、新场景下的应用前景。
本文期望通过全面、系统的综述,为图像去雾技术的研究提供有益的参考和启示,推动图像去雾技术的进一步发展。
二、图像去雾技术基础理论图像去雾技术,作为计算机视觉和图像处理领域的一个重要研究方向,其基础理论涉及大气散射模型、图像增强与复原、深度学习等多个方面。
深入了解这些基础理论,对于设计和实现有效的去雾算法至关重要。
大气散射模型:大气散射模型是图像去雾算法的理论基础,其中最具代表性的是McCartney模型。
该模型描述了光线在大气中的传播和散射过程,将观察到的图像分解为直接衰减部分和大气光散射部分。
通过估算这两个部分,可以恢复出清晰的无雾图像。
图像增强与复原:图像增强和复原技术在去雾过程中发挥着重要作用。
图像增强技术,如对比度增强、色彩增强等,可以提高图像的视觉效果,使去雾后的图像更加清晰自然。
而图像复原技术则通过去除图像中的噪声和失真,恢复图像的原始信息,进一步提高去雾效果。
深度学习:近年来,深度学习在图像去雾领域取得了显著进展。
通过构建深度神经网络模型,可以学习到去雾过程的复杂映射关系,从而实现更加精确和高效的去雾。
图像去雾技术研究进展

图像去雾技术研究进展图像去雾技术研究进展一、引言雾霾天气给城市生活带来了很大的困扰,不仅降低了人们的生活质量,也给城市管理者带来了很大的挑战。
在此背景下,图像去雾技术的研究迅速发展,在改善图像质量的同时,也为我们认识雾霾天气提供了一种新的途径。
本文将详细介绍图像去雾技术的研究进展,包括基础算法、改进算法以及应用领域。
二、基础算法图像去雾的基础算法主要有两种,分别是单幅图像去雾算法和多幅图像去雾算法。
1. 单幅图像去雾算法单幅图像去雾算法是最早提出的一种算法,它通过从单幅图像中估计雾的传输矩阵来恢复清晰的图像。
最常见的算法是使用暗通道先验原理进行估计。
该算法假设在绝大多数的非雾像素区域中,至少存在一个颜色通道的像素值接近于0,通过计算每个像素点在颜色通道中的最小值,可以估计出雾的浓度和传输矩阵,从而实现图像去雾的效果。
2. 多幅图像去雾算法多幅图像去雾算法是在单幅算法的基础上发展起来的。
由于单幅图像去雾算法需要对雾的传输矩阵进行估计,这个过程中很难准确地估计雾的浓度和传输矩阵。
为了解决这个问题,研究者们提出了多幅图像去雾算法。
这种算法通过利用多幅具有不同对比度的图像,来进行雾的浓度和传输矩阵的估计,从而提高了去雾效果。
三、改进算法虽然基础算法在一定程度上可以去除雾霾的影响,但是仍然存在一些问题,如去雾结果中可能会出现颜色失真、细节丢失等情况。
为了进一步改善去雾效果,研究者们提出了一系列的改进算法。
1. 多尺度算法多尺度算法是一种常用的改进算法,它通过将图像分解为多个尺度的子图像,然后对每个子图像进行去雾处理,再将处理结果进行融合。
这种算法可以充分利用图像的局部特征,并且能够提高去雾结果的质量。
2. 深度学习算法深度学习算法是目前研究较为活跃的一种改进算法。
它通过构建深度神经网络模型,利用大量的真实雾霾图像训练模型,从而实现对雾霾图像的去雾。
深度学习算法不仅可以提高去除雾霾的效果,还可以减少人工干预,提高算法的自动化程度。
图像去雾算法研究与应用

图像去雾算法研究与应用随着科技的发展和应用,数字图像处理作为一门新兴学科逐渐兴起,图像去雾技术作为其中一项研究重点也逐渐得到人们的关注。
在实际应用中,由于照相机、摄像机等采集设备或者环境条件的限制,图像中常常会存在不同程度的雾化现象,这些噪点将会极大地影响到后续图像处理和应用。
因此,如何对图像进行有效去雾已经成为了当今图像处理领域的重要研究方向,成为图像处理的热门话题。
图像去雾技术主要是指对模糊图像中添加的雾霾进行修复,使得图像中的物体更加真实和清晰,其本质是对雾霾进行复原。
目前,常用的去雾算法主要有传统图像去雾算法和深度学习图像去雾算法两种类型。
传统图像去雾算法传统图像去雾算法主要是基于物理模型的思想设计的。
其基本思路是先根据图像的特征,模拟雾霾的物理特性,然后推究出图像的恢复过程以及雾霾密度值等参数,最后再对图像进行处理。
在该方法中,一般会先通过图像的颜色值或亮度值的梯度信息,获取雾霾的密度、深度等属性值,进而计算出属于雾霾的透射率。
其中,负责计算透射率的计算公式采用传统的线性模型或者非线性模型,其基本的计算框架和流程可以表示如下:1. 雾霾浓度检测:式 (1)T(z) = e^{-\beta z} (1)其中,β为雾霾密度,T为透过率,z是雾霾的深度。
透过率表示为雾霾中透过进来的光量占原始光量的比例。
从式(1)可以看出,如果β较大,则透过率会变得很小。
用透过率来描述雾霾可以很大程度上简化去雾算法的复杂程度。
2. 去雾修复:式 (2)I(x) = J(x)t(x) + A(1 - t(x)) (2)其中,I(x)表示目标图像,J(x)表示传感器资料,A表示大气光照,t(x)表示传输率。
传输率是非单调的,十分影响雾霾的去除效果。
在图像去雾过程中,传输率的计算是减少雾霾的关键。
在雾霾浓度较高时,传输率(t(x))会变得很小。
图像在传输过程中,不可避免的会受到传输率的影响,在视觉效果上会产生雾霾的效果。
图像去雾算法研究

图像去雾算法研究图像去雾技术是数字图像处理中一个重要的研究领域,它涉及到计算机视觉、计算机图形学和图像处理等多个学科领域。
图像去雾技术是指对雾霾干扰下的图像进行修复和恢复,消除雾霾对图像的影响,提高图像的质量和清晰度。
目前,图像去雾技术已经被广泛地应用于气象、交通、航空、地理等多个领域,并取得了令人瞩目的成果。
图像去雾算法的研究已经经历了多个阶段,其中传统算法主要采用物理模型和传统滤波器来去除单色雾霾和灰烬,但对于颜色雾霾和复杂的照明条件,传统算法存在严重的限制,效果十分有限。
因此,针对这些问题,学者们积极探索研究了一系列基于深度学习的图像去雾算法,这些算法具有较高的去雾效果和鲁棒性,成为当前图像去雾研究的热点。
深度学习算法在图像去雾领域的应用近年来,深度学习算法被广泛应用于图像去雾领域。
深度学习算法通过学习图像中的特征,可以自动提取雾霾和背景之间的差异,然后将这种差异转化为可见的图像。
与传统算法相比,深度学习算法的优势在于可以灵活地处理复杂的场景,在保持较高处理效率的同时,具有更好的去雾效果和图像质量。
下面介绍一些代表性的深度学习算法。
1. Retinex-based deep network(RDN)RDN是一种最新的深度学习算法,是Retinex理论和深度学习的结合体。
Retinex理论是一种基于颜色恒常性的图像增强方法,通过将图像分解为反射和亮度两个部分来改善图像质量。
RDN中采用了一个多层卷积神经网络结构,具有高度的非线性表征和稳健的特性。
RDN不仅在单一场景下表现出了较好的效果,而且在同类算法中效果最佳。
2. Dehaze-NetDehaze-Net是基于CNN的端到端的去雾算法。
它通过卷积神经网络来提取图像的深度特征,并通过重建图像来对背景和前景进行分离和去除雾霾的影响。
Dehaze-Net的最大特点在于对背景和前景的分离是无监督的,不需要预先标注背景和前景的位置,可以对任意复杂场景进行处理。
图像去雾设计报告

课程设计——图像去雾一、设计目的1、通过查阅文献资料,了解几种图像去雾算法,;2、理解和掌握图像直方图均衡化增强用于去雾的原理和应用;3、理解和掌握图像退化的因素,设计图像复原的方法;4、比较分析不同方法的效果。
二、设计内容采用针对的有雾图像,完成以下工作:1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;3、分析实验效果;4、写出具体的处理过程,并进行课堂交流展示。
三、设计要求1、小组合作完成;2、提交报告(*.doc)、课堂交流的PPT(*.ppt)和源代码。
四、设计原理(一)图像去雾基础原理1、雾霭的形成机理雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。
霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。
广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。
由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。
在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致获取的图像质量差,细节模糊、色彩暗淡。
2、图像去雾算法图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。
图1-1介绍了图像去雾算法的分类:图1-1 去雾算法分类从图像呈现的低亮度和低对比度的特征考虑,采用增强的方法处理,即图像增强。
比较典型的有全局直方图均衡化,同态滤波,Retinex 算法,小波算法等等。
基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原,即图像复原。
运用最广泛、最权威的是由何凯明等人提出的暗通道先验的方法。
(1)图像增强技术为了改善视觉效果或者便于人们对图像的判别和分析,根据图像的特征采取简单的改善方法或者加强特征的措施叫做图像增强。
图像处理中的去雾算法研究

图像处理中的去雾算法研究近年来,图像处理领域的技术进步迅猛,其中去雾算法也在不断地发展。
去雾算法主要是用于消除雾霾对于图像的影响,使得图像能够更加清晰、真实。
本文将对去雾算法进行研究和探讨。
一、去雾算法的基础原理在深入研究去雾算法之前,我们需要了解雾霾对于图像的影响。
雾霾主要会导致以下三个方面的影响:色彩失真、对比度降低和细节丢失。
色彩失真:由于雾霾中颗粒的漫反射和吸收,使得图像中的颜色发生变化。
蓝色色调会变得更加浅,绿色色调会变成更加黄色。
对比度降低:由于雾霾会使得远处的物体变得模糊,因此图像中的对比度降低了。
就像照相机中的曝光不足一样。
细节丢失:雾霾影响了图像的细节,是图像看起来更加模糊不清。
通过分析雾霾对图像的影响,我们可以了解去雾算法的基础原理。
去雾算法主要是基于图像的物理模型,对图像进行数学建模,并尝试去除雾霾对于图像的影响,低噪音的图像恢复。
在进行去雾处理的时候,需要对雾的物理模型、雾的浓度和色彩以及图像的物理模型进行了解和分析。
二、去雾算法的分类根据去雾算法的思路和原理,我们可以将去雾算法分为以下四类:1. 基于直接估计模型的去雾算法基于直接估计模型的去雾算法,主要是通过对于整张图像进行雾霾的估计,然后再利用估计结果进行去雾处理。
其中比较流行的算法有Dark Channel Prior和Atmospheric Scattering Model等算法。
2. 基于物理模型的去雾算法基于物理模型的去雾算法,是将图像进行物理上的建模,利用物理模型中的参数和公式进行去雾处理。
其中比较流行的算法有Multi-Scale Retinex-based Image Enhancing and Dehazing(MRSIED)算法等。
3. 基于颜色恢复的去雾算法基于颜色恢复的去雾算法,是通过对于雾霾环境下颜色进行统计分析,将图像颜色进行恢复处理。
其中比较流行的算法有Color Attenuation Prior算法等。
图像复原—去雾总结报告

方法三:同方法二,将横轴梯度值进行 了归一化,分别在RGB,HSV,HSI, Lab,yCbCr五个颜色空间进行统计。
利用均值和中值方法提取背景
均值:分别对图像数据库中每个场景点 的图像利用均值方法进行背景提取,得 到每个场景点的背景。
中值:分别对图像数据库中每个场景点 的图像利用中值方法进行背景提取,得 到每个场景点的背景。
问题:得到的图像是灰度图像,并且保 存时候图像大小格式发生变化,无法提 取前景。
Author:Jean-philippe Tarel; Nicolas hautiere From:LEPSIS France Publish:ICCV 2009 本方法可以用于彩色和灰度有雾图像的能见度提高。
最大的优点是速度快。复杂度是图像像素数的线性函 数。主要是利用滤波器方法来推算出大气散射函数, 进而通过反解求出能见度提高的图像。
建视频和图像数据库
视频:正常场景和有雾场景下,五个拍摄点, 每个点分为远景、中景、近景。视频格式avi, 帧速率为30帧/秒。大小为1920*1080和 1440*1080。
图片:将视频每个场景下的视频拆分为图片。 并将其按比例缩小获得有雾和无雾两个图像数 据库,有雾为13776张,无雾为12876张。大小 为432*324和480*270,格式为bmp。
大气物理模型
I (x) J (x)t(x) A(1 t(x))
利用DCP 先验,能够快速估计出大气传输函数 t,进而求解清晰图像J。
算法非常简单,去雾效果很理想。 很多算法都是基于DCP 的改进算法。
平滑大气传输函数采用soft matting 的思路,效 果较好但是复杂度过大。
对于没有大气光,或者景物在本质上同空气层 接近并且没有阴影覆盖其上时,暗原色先验效 果不好。
图像去雾技术研究

图像去雾技术研究随着科技的不断发展,图像去雾技术成为了热门话题。
很多人对于图像去雾的具体概念并不十分了解,那么图像去雾技术究竟是什么呢?图像去雾技术指的是将有雾的图像进行去除雾霾处理的技术。
在日常生活中,特别是在城市中,我们经常会遇到雾霾天气,导致人们看到的风景变得模糊不清,色彩沉闷。
而通过图像去雾技术,可以在一定程度上还原出本来的真实景象。
在图像去雾技术中,最常用的方法是基于颜色空间的去雾方法。
这种方法是对远距离处于深灰色或者是蓝绿色的像素进行调整,以期望还原出原本的图像。
具体而言,去雾算法将雾化图像分为两部分来处理:一是对能量受到影响的图像部分进行去除雾霾处理;二是将去除雾霾处理后的图像和未受影响的图像部分进行融合,实现雾霾部分的消除和还原图像亮度、色彩等画面细节。
另外,针对不同的图像场景,也可以利用多种处理算法实现图像去雾的效果。
例如对于建筑、景观等场景的去雾,可以采用双边滤波等方法;对于人物场景的去雾,可以采用Retinex(色调映射)算法等方法。
除了以上所述的算法外,研究者们也在探索新的处理方式。
例如去雾卷积神经网络(DehazeCNN)技术,这种方法通过大量的数据处理和神经网络优化,实现图像去雾效果的提升。
在实际应用中,图像去雾技术已经被广泛使用。
例如在安防领域,去除监控图像中的雾霾可以提高识别精度;在航拍领域,对于经常出现雾霾的地区,通过去雾技术可以更清晰地展示地面情况,提高数据采集质量。
尽管图像去雾技术已经有了广泛的应用,但也存在一些问题和挑战。
例如对于颜色和亮度的还原误差、去雾效果受到天气和光线等因素影响等。
这也需要各界研究者不断努力,进一步提升技术的准确性和稳定性。
总之,图像去雾技术的不断发展,有助于提高视觉效果和数据采集质量,推动着人类社会的进步。
未来,我们也期待着图像去雾技术逐步成熟,为人类带来更多美好的视觉和旅程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计——图像去雾一、设计目的1、通过查阅文献资料,了解几种图像去雾算法,;2、理解和掌握图像直方图均衡化增强用于去雾的原理和应用;3、理解和掌握图像退化的因素,设计图像复原的方法;4、比较分析不同方法的效果。
二、设计内容采用针对的有雾图像,完成以下工作:1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;3、分析实验效果;4、写出具体的处理过程,并进行课堂交流展示。
三、设计要求1、小组合作完成;2、提交报告(*.doc)、课堂交流的PPT(*.ppt)和源代码。
四、设计原理(一)图像去雾基础原理1、雾霭的形成机理雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。
霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。
广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。
由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。
在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致获取的图像质量差,细节模糊、色彩暗淡。
2、图像去雾算法图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。
图1-1介绍了图像去雾算法的分类:图1-1 去雾算法分类从图像呈现的低亮度和低对比度的特征考虑,采用增强的方法处理,即图像增强。
比较典型的有全局直方图均衡化,同态滤波,Retinex 算法,小波算法等等。
基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原,即图像复原。
运用最广泛、最权威的是由何凯明等人提出的暗通道先验的方法。
(1)图像增强技术为了改善视觉效果或者便于人们对图像的判别和分析,根据图像的特征采取简单的改善方法或者加强特征的措施叫做图像增强。
图像增强可分为两大类:频率域法和空间域法。
空间域处理主要包括:点处理,模块处理即领域处理。
频率域处理主要包括:高、低通滤波、同态滤波等等。
图像增强可分为两大类:频率域法和空间域法。
空间域处理主要包括:点处理,模块处理即领域处理。
频率域处理主要包括:高、低通滤波、同态滤波等等。
(2)图像复原技术从广义上讲,图像复原是一个求逆问题,逆问题经常存在非唯一解,甚至无解。
图像复原的目的是将所观测到的退化图像恢复到退化前的原始图像,这种恢复过程在很多图像处理中的应用十分重要。
为了更好的对图像复原的理解,图1-2为图像复原的流程图:图1-2 图像复原流程图其中g(x,y)为降质图像函数,f(x,y)为真实图像函数。
图像复原技术可以分为以下几类:1)在给定退化模型条件下,分为无约束和有约束两大类。
2)根据是否需要外界干预,分为自动和交互两大类。
3)根据处理所在的域,分为频率域和空间域。
(二)从图像增强角度去雾基于直方图均衡化的算法以概率论为基础,用灰度变换达到图像增强的目的,是图像增强中最常用的算法之一。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
1、图像灰度直方图定义一:一个灰度级在范围[0,L-1]的数字图像,其直方图是一个离散函数n是图像的像素总数,是滴k 个灰度级,。
定义二:一个灰度级在范围[0,L-1]的数字图像,其直方图是一个离散函数由于的增量是1,直方图可以表示为:即图像中不同灰度级像素的出现次数。
2、直方图变换的理论基础设连续图像的概率分布为:其中r为灰度其中A为图像的面积。
均衡化过程分析:设r和s分别表示原图像灰度级和经直方图均衡化后的图像灰度级,为便于讨论,对r和s进行归一化,使:;对于一幅给定的图像,归一化后灰度级分布在范围内。
对[0,1]区间内的任意一个r值进行如下变换:该变换式应满足条件:(1)对于,有(2)在区间内从s到r的反变换用下式表示r的概率密度为;s的概率密度可由求出假定变换函数为式中:w是积分变量,而就是r的累积分布函数。
下图为直方图均衡化的过程,体现了“均衡”的含义:即概率密度的均匀。
(a)是某一图像的的灰度分布(b)是该图进行直方图均衡化后的灰度分布图1-3 图像灰度分布给出灰度级在图像中出现的概率密度统计在MATLAB中,imhist 函数可以显示一幅图像的直方图。
其常见调用方法如下:imhist(I)其中I是图像矩阵,该函数返回一幅图像,显示I的直方图。
通过把原图像的直方图通过变换函数修正为分布比较均匀的直方图,从而改变图像整体偏暗或整体偏亮,灰度层次不丰富的情况,这种技术叫直方图均衡化。
在MATLAB中,用于直方图均衡化的函数是histeq,它的常见调用方式如下:J=histep(I)其中,I为输入的原图像,J是直方图均衡化后的图像。
3、直方图均衡化的算法步骤直方图均衡化的算法步骤如下:1)列出原始图像和变换后图像的灰度级:,,其中是灰度级的个数;2)统计原图像各灰度级的像素个数;3)计算原始图像直方图:,N为原始图像像素总个数;4)利用灰度变换函数计算变换后的灰度值,并四舍五入:;5)确定灰度变换关系,根据此将原图像的灰度值修正为统计变换后各灰度级的像素个数;6)计算变换后图像的直方图:。
图1-4 直方图均衡化示意图4、直方图均衡化的优缺点(1)优点:操作相当直观并且为可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。
可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
(2)缺点:变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
(二)从图像复原角度去雾说到图像去雾,就不得不提到由何恺明博士等人提出的基于暗通道的图像去雾算法。
这个算法因其新颖的思路和理想的效果而广受关注,相关论文也曾于2009年荣获CVPR最佳论文奖,同时也是该奖设立以来,首次由亚洲学者获此殊荣。
随着大气污染的日益严重,设法改善自动获取的图像质量其意义不言而喻。
另一方面,随着数码设备的普及,消费类电子产品的市场也催生出许多新的需求,其中人们对所拍照片质量的修正和优化就是一个显而易见的需求。
首先对于有雾气象状况下的大气物理退化模型,如图1-5所示:图1-5 大气物理退化模型通过估算参数,反演退化过程,获得退化前的场景清晰图像。
场景目标反射光强经过雾区,会受到雾霾颗粒的强散射和吸收作用,到达探测器的光强会受到影响。
1、暗通道概念在绝大多数非天空的局部区域里,某些像素总会有至少一个颜色通道具有很低的之。
换言之,该区域光强度的最小值诗格很小的数。
下面给暗通道一个数学定义,对于任意的输入图像J,其暗通道可以用下式表达:其中表示彩色图像的每个通道,表示以像素为中心的一个窗口。
暗通道先验的理论指出也就是说以像素点为中心,分别取三个通道内窗口内的最小值,然后再取三个通道的最小值作为像素点的暗通道的值,如图1-6所示:图1-6 取暗通道值实际生活中造成暗原色中低通道值的因素有很多。
例如,汽车、建筑物和城市中玻璃窗户的阴影,或者是树叶、树与岩石等自然景观的投影;色彩鲜艳的物体或表面,在RGB得三个通道中有些通道的值很低(比如绿色的草地、树木等植物,红色或黄色的花朵、果实或者叶子,或者蓝色、绿色的水面);颜色较暗的物体或者表面,例如灰暗色的树干、石头以及路面。
总之,自然景物中到处都是阴影活着彩色,这些经无图像的暗原色总是表现出较为灰暗的状态。
暗原色先验是对户外无雾图像库的统计得出的规律。
在不包括天空的绝大部分局部区域,总会存在一些称之为“dark pixels”的像素,至少有一个颜色通道具备很低的强度值。
在被雾干扰的图像里,这些暗像素的强度值会被大气中的白光成分所充斥而变得较高。
2、暗通道去雾的原理首先,在计算机视觉和计算机图形中,下述方程所描述的雾图像形成模型被广泛使用:其中,就是现在已经有的待去雾图像,是要恢复的无雾图像,参数是全球大气光成分,为透射率。
现在的已知条件就是,要求目标值。
根据基本的代数知识可知这是一个有无数解的方程。
只有在一些先验信息基础上才能求出定解。
将上式稍作处理,变形为下式:首先假设在每一个窗口内透射率为常数,将其定义为,并且值已经给定,然后对上式两边求两次最小值运算,得到下式:根据前述的暗原色先验理论有:可推导出把结论带回原式中,得到:这就是透射率的预估值。
透射率还可表示为,为大气的散射系数,该式表明景物光线是随着景物深度按指数衰减的。
在现实生活中,即便是晴天白云,空气中也存在着一些颗粒,因此,看远处的物体还是能感觉到雾的影响。
此外,无得存在让人感到景深的存在,有必要在去雾的时候保留一定程度的雾。
这可以通过在上式中引入一个在[0,1]之间的因子来实现,则上式修正为:上述推论中都是假设全球大气光值是已知的,在实际中,可以借助暗通道图来从有雾图像中获取该值。
具体步骤大致为:1)首先从暗通道图中按照亮度的大小提取最亮的前0.1%像素;2)在原始有雾图像中寻找对应位置上的具有最高亮度的点的值,并以此作为的值。
当考虑投射图值很小时,会导致的值偏大,从而使图像整体向白场过渡,因此一般可以设置一个阈值,当值小于时,令。
因此,最终的图像恢复公式如下:当透射率图过于粗糙时,对应暗通道图中颜色较深的部分边缘明显不协调,为了获得更为精细的透射率图,何凯明提出了“soft matting”方法,能得到非常细腻的结果,但是该算法的一个致命弱点就是速度慢,所以何在利用导向滤波的方式来获得较好的透射率图过程中使用简单的盒子滤波相应的快速算法。
五、设计步骤(一)基于直方图均衡化的图像去雾算法1、转换为灰度图像后对图像进行直方图均衡由于直方图均衡仅限于灰度图像,所以我们将输入的RGB图像先转变为灰度图像,再进行图像增强。
简要过程如图2-1所示。
图2-1 RGB转灰度图像进行直方图均衡化过程(1)读入图像,将彩色图像进行降维转换成灰度图像;(2)对灰度图像的直方图进行均衡化处理;(3)输出均衡化后的灰色图像。
接下来我们考虑想要得到彩色图像,于是从不同空间对图像进行均衡化处理。
2、在RGB空间对图像进行直方图均衡(流程如图2-2)(1)读入图像,将图像存储于RGB空间;(2)分别对RGB空间的R、G、B三个分量的灰度直方图进行均衡化处理;(3)输出图像。
图2-2 在RGB空间对图像进行直方图均衡3、在HSV空间对图像进行直方图均衡(流程如图2-3)(1)读入图像,将图像由RGB空间转换到HSV空间;(2)对HSV空间饱和度和亮度分量(S、V分量)的灰度直方图进行均衡化处理;(3)将图像由HSV空间转换到RGB空间并输出。