归纳1.1二次函数课件.ppt
合集下载
二次函数复习课件

(1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ; (3)、图象经过(-2,0), (3,0) ,且最高点
的纵坐标是3 。
例1、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
综合创新:
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状
相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
(4)若y=ax2+bx+c(a 0)与轴交于点A(2,m), B(4,m),
则对称轴是___A____
A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2
求抛物线解析式的三种方法
1、已知抛物线上的三点,通常设解析式为 ______y_=_a_x_2_+_b_x_+_c_(a≠0) 2、已知抛物线顶点坐标(h, k),通常设 抛物线解析式为______y_=_a_(_x_-h__)2_+_k(a≠0) 3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为____y_=_a_(_x_-x_1_)_(x_-x2) (a≠0) 练习 根据下列条件,求二次函数的解析式。
的纵坐标是3 。
例1、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2
即: y=-2x2+4x
综合创新:
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状
相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
(4)若y=ax2+bx+c(a 0)与轴交于点A(2,m), B(4,m),
则对称轴是___A____
A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2
求抛物线解析式的三种方法
1、已知抛物线上的三点,通常设解析式为 ______y_=_a_x_2_+_b_x_+_c_(a≠0) 2、已知抛物线顶点坐标(h, k),通常设 抛物线解析式为______y_=_a_(_x_-h__)2_+_k(a≠0) 3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为____y_=_a_(_x_-x_1_)_(x_-x2) (a≠0) 练习 根据下列条件,求二次函数的解析式。
《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c
二次函数课件 二次函数PPT

y 2(x 2)2 3
向右平移
向下平移3
2个单位
个单位
y 2x2 向左平移 y 2(x 2)2 向上平移3 y 2(x 2)2 3
2个单位
个单位
(检测学生对该节课的掌握程度,并对该节课的内 容进行巩固。)
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我 们可以利用配方法推导出它的对称轴和 顶点坐标.
画图: 步骤:列表,描点,连线(光滑曲线)
y 3x2 y 3(x 1)2
老师指导学生按照步 骤画出图像,然后让 他们互相讨论,再做 总结,让学生在动手 操作中的过程中学到 知识,感受学习带来 的乐趣。
观察两个图形有什么关系?
老师给予适当的提示,引发学生思考,培养学生勤于思考的习惯。
函数 y 3x2 的图像
式是(A)
4
A、y 1 (x 2)2 2
4
B、y
1 4
(x
2)2
2
C、y 1 (x 2)2 2 4
D、y
1 4
(x
2)2
2
3、抛物线y=3x²先向上平移2个单位,后向右平移3个
单位,所得到的抛物线是( D )
A、y=3(x+3)²-2
B、 y=3(x+3)²+2
C、y=3(x-3)²-2
一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图 象:y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴 整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左 平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平 移;当k<0时,向下平移)得到的.
初中数学微课课件:二次函数

X(cm) 0.25
0.5
y(cm2) 3.125 2.5
1
2
1.5
2.5
1.75
3.125
例题解析
例2:已知二次函数y=x²+bx+c,当x=1时,函数值为4,当x=2时,
函数值为- 5, 求这个二次函数的解析式.
解:把x=1,y=4和x=2,y=-5分别代入函数y= + + ,
++=
是二次函数?
解:∵函数是二次函数
∴ − − = 且 + ≠0
∴m=3
+ − +
自主练习
−+
1、如果函数y=
是
+ + 是二次函数,则k的值一定
。
−+
2、如果函数y=(k-3)
是
。
+ + 是二次函数,则k的值一定
自主练习
−+
常
数
项
二次函数的一般式
自主练习
下列函数中,哪些是二次函数?
(1) y x 2
1
(2) y 2
x
2
(3) y 2 x x 1
(4) y x(1 x)
(5) y ( x 1) 2 ( x 1)( x 1)
自主练习
下列函数中,哪些是二次函数?
(1) y x 2
xcm,菜园的面积为ym2,求y与x之间的函数关系式,并说出自变量的取值范围。
当x=12cm时,计算菜园的面积。
解:由题意得:y=x(40-2x)
即:y=-2x2+40x(0<x<20)
0.5
y(cm2) 3.125 2.5
1
2
1.5
2.5
1.75
3.125
例题解析
例2:已知二次函数y=x²+bx+c,当x=1时,函数值为4,当x=2时,
函数值为- 5, 求这个二次函数的解析式.
解:把x=1,y=4和x=2,y=-5分别代入函数y= + + ,
++=
是二次函数?
解:∵函数是二次函数
∴ − − = 且 + ≠0
∴m=3
+ − +
自主练习
−+
1、如果函数y=
是
+ + 是二次函数,则k的值一定
。
−+
2、如果函数y=(k-3)
是
。
+ + 是二次函数,则k的值一定
自主练习
−+
常
数
项
二次函数的一般式
自主练习
下列函数中,哪些是二次函数?
(1) y x 2
1
(2) y 2
x
2
(3) y 2 x x 1
(4) y x(1 x)
(5) y ( x 1) 2 ( x 1)( x 1)
自主练习
下列函数中,哪些是二次函数?
(1) y x 2
xcm,菜园的面积为ym2,求y与x之间的函数关系式,并说出自变量的取值范围。
当x=12cm时,计算菜园的面积。
解:由题意得:y=x(40-2x)
即:y=-2x2+40x(0<x<20)
人教版数学初三上册课件:二次函数

典例精析
例1 下列函数中哪些是二次函数?为什么?(x是自
变量)
① y=ax2+bx+c ② s=3-2t²
③y=x2
不一定是,缺少 a≠0的条件.
④
y
1 x2
不是,右边 是分式.
⑤y=x²+x³+25
不是,x的最 高次数是3.
⑥ y=(x+3)²-x²
y=6x+9
方法归纳
判断一个函数是不是二次函数,先看原函数 和整理化简后的形式再作判断.除此之外,二次函 数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊 形式如y=ax2,y=ax2+bx, y=ax2+c等.
二 二次函数定义的应用
例2 y m 3 xm27.
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
解:(1)由题可知,m2 7 1, 解得 m= 2 2;
m 3 0,
m2 7 2,
(2)由题可知,
解得 m=3.
m 3 0,
注意 第(2)问易忽略二次项系数a≠0这一限制条件,从而 得出m=3或-3的错误答案,需要引起同学们的重视.
问题2 某工厂一种产品现在的年产量是20件,计划 今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定,y与x之间的关系怎样表示?
分析:这种产品的原产量是20件, 一年后的产量是 20(1+x) 件,再经过一年后的产量是 20(1+x)2 件,即
k 2 3k 4 2,
解:(1)由题意,得
k 1 0,
解得 k=2;
中考二次函数复习课件

值 a<0
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
当 x=-2ba时, y 最小值=4ac4-a b2 当 x=-2ba时, y 最大值=4ac4-a b2
当 x=h 时,y 最小值=k 当 x=h 时,y 最大值=k
数学·新课标(RJ)
当
x<-2ba时,y 的值随
x
的
当 x<h 时,y 的值随 x 的增大而 减小 ;当
a>0 增大而 减小 ;当 x>-2ba时,x>h 时,y 的值随 x 的函数y=ax2+bx+c(a≠0)的图象如图26-2所示,则下列结论.错误 的有( )
①ac>0;②b<0;③a-b+c<0;④a+b+c<0;⑤2a+b=0. A.1个 B.2个 C.3个 D.4个
数学·新课标(RJ)
练习:
2、二次函数y=ax2+bx+c(a≠0)的图象如图
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数: Δ<0
y
•
0
y
•0
y
•0 (0,0)
(1)a确定抛物线的开口方向:
x
上正下负
(2)c确定抛物线与y轴的交点位置:
上正下负, 过原点则c=0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
(4)Δ确定抛物线与x轴的交点个数:
2
3
顶点是_______________,对称轴是__________,
当x
时, y随x的增大而减小。
当x
时, y有最 值为
.
顶点式为y 1 (x 1)2 1
2
6
巩固练习:
中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
1.1二次函数PPT课件15张

化规律有如下关系式:
(1)讲课开始后第5分 钟时与讲课开始后第25 分钟时比较,何时学生 的注意力更集中?
y
t2 24t 100 240 7t 380
0 t 10 10 t 20 20 t 40
(2)讲课开始后多少分钟,学生的注意 力最集中?能持续多少分钟?
(3)一道数学难题,需要讲授24分钟,为了效果较 好,要求学生的注意力最低到达180,那么经过适当 安排,老师能否在学生注意力到达所需的状态下讲 授完这道题目?
想一想:
函数y ax2 bxc(其中a,b,c是常数),当a,b,c满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解:(1)a 0
(2)a 0,b 0
(3)a 0,b 0,c 0
知识拓展:
心理学家研究发现:一般情况下,学生的注意力随着教师讲
课时间的变化而变化,讲课开始时,学生的注意力y随时间t的变
第一章 二次函数
问题情 请境用:适当的函数解析式表示下列问题情境中
的两个变量 y 与 X 之间的关系·
(1)圆的面积 y ( cm2 )与圆的半径 x ( Cm )
y =πx2
(2)王先生存人银行2万元,先存一个一年定期, 一年后银行将本息自动转存为又一个一年定 期,设一年定期的年存款利率为 x ,两年后王先 生共得本息y元;
y = 2(1+x)2
(3)拟建中的一个温室的平面图如图,如果温室外 围是一个矩形,周长为12Om , 室内通道的尺寸 如图,设一条边长为 x (cm), 种植面积为 y (m2)·
1
y = (60-x-4)(x-2) 1
xБайду номын сангаас
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一
边前者是y,后者是0 .精品课件.
18
知识运用
1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
∴m=3
3.P4T1,P3练习 .精品课件.
驶向胜利 的彼岸
20
现在我们学习过的函数有: 一次函数y=kx+b (k ≠0),其中包括正比例函数
注意:(1)等号左边是变量y,右边是关于自变量
x的 整式。
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 ,可以没有
一次项和常数项,但不能没有二2次项。
(4)x的取值范围是任意实数。
(5) 函数的右边是一.精个品课整件. 式
10
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
(3)y=3x3+2x2 ( 不是 ) (4)y=2x2-2x+1( 是 )
(5)y=x-2+x (不是 ) (6)y=x2-x(1+x) (不是 )
.精品课件.
19
知识运用
2:m取何值时, 函数y= (m+1)x +(m-3)x+m 是二次函数?
解:由题意得
m2—2m-1=2 m+1 ≠0
m2 2m1
合作交流
问题1: 正方体的六个面是全等的正方形,设
正方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关
系可以表示为 y=6x2①
.精品课件.
7
问题2:
多边形的对角线数d与边数n有什么关系?
n 由图可以想出,如果多边形有n条边,那么它有 个顶点,从一个顶点出发,连接与
.精品课件.
16
解:(1)由题意得:
y=50-
,且0≤x≤160,且x为10的正整数倍.
(2)w=(180-20+x)(50- ),
即w=-
x2+34x+8000;
.精品课件.
17
驶向胜利的 彼岸
思考:2. 二次函数的一般式y= ax2+bx+c(a≠0)与一元二次方 程ax2+bx+c=0(a≠0)有什么 联系和区别?
(2) m取什么值时,此函数是反比例函数?
(3) m取什么值时,此函数是二次函数?
解:(1)当m2-7=1且m+3≠0即m=± 2 2 时是正
比例函数。
(2)当m2-7=-1且m+3≠0即m=± 6 时是反比例函
数。
(3)当m2-7=2且m+3≠0即m=3时是二次函数。
.精品课件.
15
想一想:
例3、某宾馆有50个房间供游客住宿,当每个房间的 房价为每天180元时,房间会全部住满.当每 个房间每天的房价每增加10元时,就会有一个 房间空闲.宾馆需对游客居住的每个房间每天 支出20元的各种费用.根据规定,每个房间每 天的房价不得高于340元.设每个房间的房价 每天增加x元(x为10的整数倍). (1)设一天订住的房间数为y,直接写出y与 x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为W元,求W与x的 函数关系式;
(6) v=8π r²
.精品课件.
13
解: (1)y=3(x-1)²+1
(4) y=(x+3)²-x²=x2+6x+9-x2
=3(x2-2x+1)+1
=3x2-6x+3+1 即 y=6x+9
即 y=3x2-6x+4
不是二次函数.
是二次函数.
二次项系数: 3 一次项系数: -6
(5)y= _1_ -x x²
二次函数的特殊形式:
– 当b=0时, y=ax2+c – 当c=0时, y=ax2+bx – 当b=0,c=0时, y=ax2
.精品课件.
11
1、 说出下列二次函数的二次项系数、一次项系 数、常数项 (1) y=-x2+58x-112
(2)y=πx2 2、指出下列函数y=ax²+bx+c中的a、b、c
二次函数(1)
.精品课件.
1
知识回顾
1、什么叫函数? 在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,另一个变量y 总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫应变量。
目前,我们已经学习了那几种类型的函数?
常数项: 4
(2) y=x+
_1_ x
不是二次函数.
不是二次函数. (6) v=8π r² 是二次函数.
(3) s=3-2t²是二次函数.
二次项系数: 8π
二次项系数: -2
一次项系数: 0
一次项系数: 0 常数项: 3
常数项: 0
.精品课件.
14
例2、y=(m+3)xm2-7
(1)m取什么值时,此函数是正比例函数?
(1) y=-3x2-x-1 (2) y=5x2-6 (3) y=x(1+x)
.精品课件.
12
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项。
(1) y=3(x-1)²+1
(2)
y=x+
_1_ x
(3) s=3-2t²
(4) y=(x+3)²-x²
(5)y= _x1_²-x
观察:函数①②③Biblioteka 什么共同点?y=6x2①d
1 2
n2
3 2
n②
y 20 x2 40x 20③
在上面的问题中,函数都是用自变量的二次式表示的。
.精品课件.
9
定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0) 的函数叫做二次函数。其中x是自变量,a为二次项 系数,ax2叫做二次项,b为一次项系数,bx叫做一 次项,c为常数项。
点不相邻的各顶点,可以(作n-3) 条
对角线.
因为像线段MN与NM那样,连接
相同两顶点的对角线是同一条对 M
N
角线,所以多边形的对角线总数
d 1 n n 3
2
即 d 1 n2 3 n②
22
②式表示了多边形的 对角线数d与边数n之 间的关系,对于n的每一 个值,d都有唯一的对应 .精品课件值. ,即d是n的函数。 8
.精品课件.
2
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0) y= k (k≠0)
x
二次函数
.精品课件.
3
节日的喷泉给人带来喜庆,你是否注意过水流所经
过的路线?它会与某种.函精品课数件.有联系吗?
4
.精品课运件. 动场上飞舞的跳绳5
.精品课奥件. 运赛场腾空的篮球6