求解多目标决策常用的三种方法 Read

合集下载

多目标规划求解方法介绍

多目标规划求解方法介绍
*
0 0
0
0
0
j0
0
S x f j ( x) f j
* j
^

S
^
j 1
, j 2,3,, p
三、功效系数法:
设目标为:f1 ( x), f 2 ( x),, f p ( x) f1 ( x),, f k ( x) 其中: 要求min; f k 1 ( x),, f p ( x) 要求max。 由于量纲问题,处理目标之间的关系时往往带来困难。 1. 功效系数法:针对各目标函数 ,用功效 f j ( x)( j 1,, p) 系数 表示(俗称“打分”): d j d j ( f j ( x)) , j 1,, p 满足: d j 或 0 d j 1 0 d j 1 使最满意时 ,最不满意时(即最差时) 。 d j 1 dj 0 2. 常用的两种产生功效系数的方法: (1)线性型: min max min f ( x ) f , max f ( x ) f , j 1,2, , p j j j 设 xS j xS
解得:b0 f j1 ( f j0 f j1 ) , b1 1 ( f j0 f j1 ) (b1 0) 0 1 代入式(△),得到功效系数: ( f1 j f j ( x )) ( f j f j ) d j e e 同理可得当
j 1,, k
时的功效系数:
j
j j
例6:
V min F ( x) f1 ( x), f 2 ( x)T s.t. g1 ( x) x1 x2 3 0 g 2 ( x) x1 x2 8 0 ( LVP ) g 3 ( x) x1 6 0 g 4 ( x ) x2 4 0 g 5 ( x) x1 0 g 6 ( x ) x2 0

目标管理-多目标决策方法 精品

目标管理-多目标决策方法 精品

(x)
j 1
显然,对于不同s.的t. 权x 系X数,最优解x*(w)是不同的
,但是它们都是原多目标问题的非劣解,下面给出几组
权系数及其对应的最优解(表1).
5
表1 线性加权法的最优解

w=(w1,w2,w3)
1
(1, 0, 0)
2
(0, 1, 0)
3
(0, 0, 1)
4
(1/3, 1/3, 1/3)
按统计方法进行比较,例如利用假设检验的方法来确定不同方案
的优劣。
11
1.5 变动权系数法
让线性加权和评价函数
U
x
P
w
j
f
j
x
中的各权系数
j 1
wj(1jp)按一定规则变动,再求解问题(P1),就能
得到多目标决策问题(P0)的全部非劣解。
[例3] 求解双目标决策问题:
min Fx x 2 , 2 x
目标函数,就能得到P2个值。
fk0
f
* k
min
xX
fk (x)
fk (xk )
(k
1,2, ), P)
fkj f j (xk ) ( j k, j 1,2,P) 然后,作线性方程组 jp1 w j f kj k 1, 2, 3, P
jP1 w j 1
其中是待定常数,由此可以解出权系数 wj 1, 2, 3, , P
f1* ,
f
1 2
]
F(x2 ) [ f1 (x2 ), f 2 (x2 )] [ f12 , f1* ]
15
目标空间中的几何图形见图3.3所示。
图3.3 法几何说明
16
记理想点

常用决策分析方法(基本方法)

常用决策分析方法(基本方法)

常用决策分析方法(基本方法)上一节我们说了决策分析的基本概念,这一节我们谈谈决策分析常用的三种方法:决策树法、Bayes方法、Markov方法。

决策树法决策树法(decision tree-based method):是通过确定一系列的条件(if-then)逻辑关系,形成一套分层规则,将所有可能发生的结局的概率分布用树形图来表达,生成决策树(decision tree),从而达到对研究对象进行精确预测或正确分类的目的。

树的扩展是基于多维的指标函数,在医学领域主要用于辅助临床诊断及卫生资源配置等方面。

决策树分类:•按功能分:分类树和和回归树•按决策变量个数:单变量树和多变量树•按划分后得到分类项树:二项分类树和多项分类树决策树的3类基本节点:1.决策节点(用□表示)2.机会节点(用○表示)3.结局节点(用?表示)从决策节点引出一些射线,表示不同的备选方案,射线上方标出决策方案名称。

射线引导到下一步的决策节点、机会节点或结局节点。

从机会节点引出的线表示该节点可能出现的随机事件,事件名称标在射线上方,先验概率在下方。

每个结局节点代表一种可能的结局状态。

在结局节点的右侧标出各种状态的效用(utility),即决策者对于可能发生的各种结局的(利益或损失)感觉和反应,用量化值表示。

绘制决策树基本规则:1.各支路不能有交点2.每一种方案各种状态发生概率之和为1决策树分析法步骤:1 提出决策问题,明确决策目标2 建立决策树模型--决策树生长2.1决策指标的选择的两个步骤:2.1.1 提出所有分值规则2.1.2 选择最佳规则2.2 估计每个指标的先验概率3 确定各终点及计算综合指标3.1 各终点分配类别3.2 各终点期望效用值得确定3.3 综合指标的计算3.4 计算值排序选优树生长停止情况:1.子节点内只有一个个体2.子节点内所有观察对象决策变量的分布完全一致,不能再分3.达到规定标准一棵树按可能长到最大,通常是过度拟合(overfit)的。

多目标决策方法

多目标决策方法

多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择...... (2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。

有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。

2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21 x g x g x g TS p决策空间:}0)({ x g x X i 目标空间})({X x x f F两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。

(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。

((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。

(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。

(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。

(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。

(8)多目标群决策和多目标模糊决策。

多目标决策分析方法研究

多目标决策分析方法研究

多目标决策分析方法研究在现代社会中,决策是一项非常重要的活动,尤其是管理决策,因为一个企业或者组织的命运往往取决于它的决策质量。

而多目标决策分析方法便是解决决策问题的一种有效途径。

下面我们从什么是多目标决策、多目标决策的困难性以及多目标决策分析方法等方面,进行详细介绍。

一、什么是多目标决策多目标决策是指在决策过程中需要考虑到多种目标,并且各个目标之间存在互相制约、互相牵连的情况。

这样的决策问题称为多目标决策问题。

个人的日常生活中,应对多目标决策也是很平常的,比如在选择购买电脑时,我们通常需要考虑电脑的性能、价格、质量等多个因素。

二、多目标决策的困难性多目标决策的困难性表现在以下几个方面:(1)目标的不确定性目标的不确定性指的是因为缺乏信息或者知识而难以确定目标的重要性和权重。

例如在企业经营过程中,知道了要实现利润最大化和客户满意度最大化两个目标,但却难以确定各目标的权重,因为这需要相关知识和信息支持。

(2)多目标之间的矛盾性多目标之间常常存在矛盾,即实现一个目标可能会与其他目标相互牵制。

如在城市规划过程中,建造高楼大厦可能会破坏原有的景观和生态环境,而保护生态环境则会限制城市发展。

(3)优化方案的多样性优化方案的多样性通常会涉及成千上万的变量,真正确定最佳方案需要耗费大量的时间和资源来进行决策分析。

三、多目标决策分析方法为了规避多目标决策的困难性,人们提出了很多的决策分析方法,其中最常用的方法是层次分析法、置信限域方法、熵权法、TOPSIS法等。

这些方法各具特色,可以根据具体的情况选用不同的方法进行决策分析。

层次分析法是一种结果定量化的决策分析方法,以目标可拆分为多个层级结构为特点。

首先,通过层次化分析,确定决策目标并划分各目标间的层级结构;然后在各层次结构内进行两两比较,建立成对比较矩阵,确定各个目标之间的权重关系;最后,计算各个层次的权重系数,得到综合权重最大的方案为最佳解。

置信限域方法是一种方法,采用代表样本进行目标范围分析,确定可选择方案的可靠度。

多目标决策方法

多目标决策方法

多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择...... (2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。

有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。

2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21≤≤≤x g x g x g TS p决策空间:}0)({≤=x g x X i 目标空间})({X x x f F ∈=两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。

(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。

((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。

(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。

(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。

(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。

(8)多目标群决策和多目标模糊决策。

多目标决策层次分析法介绍

多目标决策层次分析法介绍
分别表示 景色、费用、 居住、饮食、 旅途。
由上表,可得成对比较矩阵
1
2 1
1
2 1 1
4 7 1
3
5 1
3
5 1
A 4 7
2 3
1
3 1
1
5 1
2 3
1 1
1
1
3 5
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。
问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
例3 层次结构模型
目标层
合理选择科研课题A
准则层1 成果贡献B1
人才培养B2
课题可行性B3
财政支持 研究周期 难易程度
科学意义 应用价值
准则层2
c1
c2
方案层
课题D1
课题D2
c3
c4
c5
课题D3
假期旅游,是去风光秀丽的苏州,还是去迷人的北 戴河,或者是去山水甲天下的桂林,一般会依据景色、 费用、食宿条件、旅途等因素选择去哪个地方。
例3 择业
面临毕业,可能有高校、科研单位、企业等单位可以去 选择,一般依据工作环境、工资待遇、发展前途、住房条 件等因素择业。
例4 科研课题的选择
由于经费等因素,有时不能同时开展几个课题,一般依 据课题的可行性、应用价值、理论价值、被培养人才等因素 进行选题。
m
a jbij
j 1
Bn : a1bn1 a2bn2 ambnm
A B
A1, A2 ,, Am
a1, a2 ,, am
B层的层次 总排序

多目标决策

多目标决策

多指标决策的特点


ቤተ መጻሕፍቲ ባይዱ
4. 指标之间的矛盾性。某一指标的完善往往会损害 其他指标的实现,即改进某一指标值可能会使其他指 标值变坏。 5. 定性指标和定量指标混合。 6. 方案与指标的关系可以明显地表示出来,例如, 表示成一个矩阵。
多指标决策的解
设一个决策问题,有两个效益型指标,分别是x1和 x2,有6个备选方案,可以用二维坐标图表示如下:
地理位置
0
职业前景
职业安全性
A公司 B公司
加权分值在雷达图中强调评判决策方案的标准差别,特 别是权重较大的标准。
多指标工作选择 指标 A公司 B公司 权重 工资 0.085 0.09 职业前景 0.285 0.21 职业安全性 0.24 0.38 地理位置 0.18 0.14 0.1975 0.205
决策指标权重的确定
通常,确定指标权重的方法可以分为以下三类: 3. 组合赋权法 由于主、客观赋权法各有利弊,实际应用中应该有 机结合。已有不少学者提出了综合主、客观赋权的组合
赋权法,主要有方差最大化赋权法、组合目标规划法、
但是,决策者可以预先规定一个满足原定目标的最低 要求,然后寻找满足这些最低要求的方案.这样就把决 策过程大大简化了.
例如,在一块面积很大的玉 米田里,如果要找一个最大最长 的玉米,就必须测定所有的玉米 之后,才能找到.但是如果把要 求改为寻找一个能使人吃饱肚子 的玉米,问题就大大简化了.只 要找一个比较大的玉米就能填饱 肚子



多指标决策(Multiple Attribute Decision making ,MADM),也称为多属性决策或有限方案的多目 标决策,是现代信息分析与决策科学中的一个重要 组成部分,在社会、经济、管理、医药卫生等诸多 领域有着广泛的应用。 在医药卫生领域,类似的问题有医疗机构/科室工 作评价、医疗方案选择、临床疗效比较等。 在解决这些问题时,往往要同时考虑多项指标,而 不是简单地由一两个指标来反映。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多目标规划问题的提出:
多目标问题是现实世界中普遍遇到的一类问题, 其中希望(或必须)考虑多个相互矛盾目标的影响。
例如证券投资问题中我们希望利润最大而风险最 小,生产销售问题中我们希望费用较少而获利很大, 等等。
单目标模型只需简单确定一个目标,而将其余的 列为约束;
在构建多目标模型时,则需要对问题有较深的理 解,必须考虑更全面——虽然费时较多,却非常有益, 更切合实际。
8 x1
10 x2

d
3

d
3

56
x1
,
x2
,
d
i
,
d
i

0,
i 1,2,3
【毕】
建模步骤小结:
反映决策者欲望, 如“利润最大”
1. 建立基础模型
配上期望值 的理想目标
2. 为每一个理想目标确定期望值
3. 对每一个现实目标和约束都加上正负偏差 变量
4. 将目标按其重要性划分优先级,第一优先 级为硬约束
5. 建立目标规划函数
二、目标规划的图解法:
x2 d1-
d1+
d2+
o
x1 d2-
d3+
d3-
最优解为黄色线段上任一点
一般来说,目标期望值可调整以适应实际情况。
三、目标规划的lindo求解
(以《运筹学》P107例5.(2)为例) 主要思想:化成单目标问题,多阶段求解
min
z

P1d
3

P2 (2d1
此时的决策是多目标决策问题——目标规划方 法是解决这类决策问题的方法之一。
与建立目标规划模型有关的概念:
1. 正、负偏差变量d+,d-
d+ : 决策值超过目标值的部分
d- :决策值未达到目标值的部分
硬约束
恒有 d+×d-=0
2 . 绝对约束、目标约束
绝对约束:必须严格满足的等式或不等式约束
目标约束:目标规划所特有的约束,约束右端项看作

d
3

d
3

56
x1

x2

d
4

d
4

12
d
3
0
2
d
1

3
d
2

12
x1
,
x
2
,
d
i
,
d
i

0,
i 1,2,3,4
求解出最优目标值z=d4+=4,此时x1=4,x2=12。
此时lindo求解结果如下:
OBJECTIVE FUNCTION VALUE
1) 4.000000
缺点:难处在于如何寻到合理的权系数。 例如建设高速公路时,既希望减少开支又希望降低交 通伤亡事故,此时能否用金钱来衡量一个人的生命价 值呢?
2. 序列或优先级法:
序列或优先级法不是对每个目标加权,而是按照目标 的轻重缓急,将其分为不同等级再求解。
优点:避免了权系数的困扰,绝大多数决策者都能采 用,事实上他们在许多决策中也正是这样做的。 例如决定人员的提升时,许多单位是按其工作态度、 工作能力及对单位的有效价值等这样一个先后顺序来 进行评定的。
d2-+d2+
4.利润额不小于56元
8x1+10x2 ≥ 56
极小化
8x1+10x2+d3--d3+ =56
d3-
综上可得目标规划模型
min
z

P1d
1

P2
(
d
2

d
2
)

P3
d
3
2 x1 x2
11
x1
x2

d
1

d
1

0
x1

2 x2

d
2

d
2

10
例1 利润最大化问题:
某工厂在计划期内要安排生产Ⅰ、 Ⅱ两种产品,已知 有关数据如下表所示:
Ⅰ Ⅱ 拥有量
原材料 kg
2
1
11
设备台时 hr 1
2
10
利润 元/件
8
10
试求获利最大的方案。
解:这是一个单目标规划问题,可用线性规划模 型表述为:
ቤተ መጻሕፍቲ ባይዱ
目标函数 max z = 8x1+10x2
约束条件 2x1 + x2 ≤11
min
z

d
3
x1 x2 d1 d1 10
x1

d
2

d
2

4
5 x1

3 x2

d
3

d
3

56
x1

x2

d
4

d
4

12
x1 ,
x2
,
d
i
,
d
i

0,
i 1,2,3,4
注:在lindo中输入时,d3-可用d3minus表示, d3-可用d3plus表示。
求出最优目标值为z= d3- =0。
2. 只取第二优先级为目标函数,将上次求解结果
的目标值d3- =0变为约束
min
z

2
d
1

3
d
2
x1

x2

d
1

d
1
10
x1

d
2

d
2

4
5 x1

3 x2

d
3

d
3

56
x1

x2

d
4

d
4
12
d
3
需要极小化 的偏差变量
d+
d-
d-+d+
例2 例1的目标规划模型:
1.原材料供应受严格限制 2x1 + x2 ≤11
硬约束
2.产品Ⅱ的产量不低于产品Ⅰ的产量
x1 ≤ x2
极小化
x1-x2 + d1--d1+ =0
d1+
3.充分利用设备有效台时,不加班
x1+2x2 = 10 极小化
x1+2x2 + d2--d2+ =10
D2PLUS 0.000000 0.000000
D3MINUS 0.000000 0.000000
D3PLUS 0.000000 0.600000
D4MINUS 0.000000 1.000000

3d
2
)

P3d
4
x1 x2 d1 d1 10
x1

d
2

d
2

4
5 x1

3 x2

d
3

d
3
56
x1

x2

d
4

d
4
12
x1
,
x2
,
d
i
,
d
i

0,
i 1,2,3,4
用lindo求解步骤:
1. 模型中约束不变,只取第一优先级为目标函数
10
x1 + 2x2 ≤ 10
8
6
x1 , x2 ≥ 0 4
8x1+10x2=c 2
x1 + 2x2 ≤ 10
1
2
3
4
5
6
可用图解法求得最优决策方案为: x1*=4, x2*=3, z*=62
2x1 + x2 ≤11
在实际决策时,还应考虑市场等一系列其他条件,如:
(1)市场调查发现:Ⅰ的销量有下降趋势,故应考虑 适当减少Ⅰ的产量增加Ⅱ的产量,使Ⅰ< Ⅱ (2)原材料的价格不断上涨,增加供应会使成本提高。 故不考虑再购买原材料。 (3)为提高效率,应充分利用设备,但不希望加班。 (4)市场虽发生变化,但利润应尽可能达到或超过56 元。
0
x1
,
x2
,
d
i
,
d
i

0,
i 1,2,3,4
求出最优目标值为z= 2d1++3d2+=12。
3. 只取第三优先级为目标函数,将上次求解结果 的目标值2d1++3d2+=12变为约束
min
z

d
4
x1

x2

d
1

d
1

10
x1

d
2

d
2

4
5 x1

3 x2
要追求的目标值,在达到目标值时,允许发生正或负
的偏差
软约束
3 . 优先因子与权系数 4 .目标规划的目标函数
min z = f ( d+, d- )
三种基本形式:
目标类型
fi(x) ≤ bi fi(x) ≥ bi fi(x) = bi
目标规划格式
fi(x)+ d--d+ = bi fi(x)+ d--d+ = bi fi(x)+ d--d+ = bi
VARIABLE VALUE REDUCED COST
D4PLUS 4.000000 0.000000
相关文档
最新文档