一元二次方程知识点总结
人教版21章一元二次方程知识点总结

21章一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.注意:〔1〕一元二次方程必须是一个整式方程;〔2〕只含有一个未知数;〔3〕未知数的最高次数是2 ; 〔4〕二次项系数不能等于0 2、一元二次方程的一般形式:ax2 bx c 0〔a 0〕,它的特征是:等式左边是一个关于未知数x的二次三项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx 叫做一次项,b叫做一次项系数;c叫做常数项.注意:〔1〕二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号.〔2〕要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.〔3〕形如ax2 bx c 0不一定是一元二次方程,当且仅当 a 0时是一元二次方程.二、一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解, 如:当x 2 . 2 2时,x 3x 2 0所以x 2是x 3x 2 0万程的解.一元二次方程的解也叫一元二次方程的根. 一元二次方程有两个根〔相等或不等〕三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义.利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.根据平方根的定义可知,x a是b的平方根,当b 0日寸,x a Vb , x a屈,当b<0时,方程没有实数根.三种类型:(1) x2a a 0的解是x ja ;(2) x m 2n n 0的解是x 品 m ;(3) mx n 2c m 0,且 c 0 的解是x ————n. m2、配方法:配方法的理论根据是完全平方公式a2 2ab b2 (a b)2,把公式中的a看做未知数x,并用x代替,那么有x2 2bx b2 (x b)2.(一)用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)把一元二次方程化成一般形式(2)在方程的左边加上一次项系数绝对值的一半的平方,再减去这个数;(3)把原方程变为x m2 n的形式.(4)假设n 0,用直接开平方法求出x的值,假设n<0,原方程无解.(二)用配方法解二次项系数不是1的一元二次方程当一元二次方程的形式为ax2 bx c 0a 0,a 1时,用配方法解一元二次方程的步骤:(1)把一元二次方程化成一般形式(2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数;(3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为x m2 n的形式;(4)假设n 0,用直接开平方法或因式分解法解变形后的方程.3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法.一i兀二次方程ax2 bx c 0〔a 0〕的求根公式: 2b b 4ac 2x ------------------------ 〔b 4ac 0〕2a用求根公式法解一元二次方程的步骤是:〔1〕把方程化为ax2 bx c 0 a 0的形式,确定的值a,b.c 〔注意符号〕;〔2〕求出b2 4ac的值;并判断方程根的情况;〔3 〕假设b2 4ac 0 ,那么把a,b,及b2 4ac的值代人求根公式b ' 4ac,求出x i,x2. 2a2x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法这种方法简单易行,是解一元二次方程最常用的方法.因式分解法的理论依据:如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即假设pq=0时,那么p=0或q=0.用因式分解法解一元二次方程的一般步骤:〔1〕将方程的右边化为0 〔即化为一般式〕;〔2〕将方程左边分解成两个一次因式的乘积.〔3〕令每个因式分别为0,得两个一元一次方程.〔4〕解这两个一元一次方程,它们的解就是原方程的解.关键点:〔1〕要将方程右边化为0 〔即化为一般式〕;〔2〕熟练掌握多项式因式分解的方法,常用方法有:提公式法,公式法〔平方差公式,完全平方公式〕、十字相乘法.注意:一元二次方程解法的选择,应遵循先特殊,再一般,即先考虑能否用直接开平方法或因式分解法, 不能用这两种特殊方法时,再选用公式法,没有特殊要求,一般不采用配方法,由于配方法解题比较麻烦.三、一元二次方程根的判别式一i兀二次方程ax2 bx c 0〔 a 0〕中,b2 4ac叫做一i元二次方程ax2 bx c 0〔a 0〕的根的判别式,通常用“ 〞来表示,即b2 4acI 当4>0时,一元二次方程有2个不相等的实数根;II 当4=0时,一元二次方程有2个相同的实数根;III 当△ <0时,一元二次方程没有实数根利用根的判别式判定一元二次方程根的情况的步骤:①把所有一元二次方程化为一般形式;②确定a,b.c的值;③计算b2 4ac的值;④根据b2 4ac的符号判定方程根的情况.根的判别式的逆用在方程ax2 bx c 0a 0中,(1)方程有两个不相等的实数根b2 4ac>0(2)方程有两个相等的实数根b2 4ac=0(3)方程没有实数根b2 4ac < 0注意:逆用一元二次方程根的判别式求未知数的值或取值范围, 但不能忽略二次项系数不为0这一条件.四、一元二次方程根与系数的关系(韦达定理)如果方程ax2 bx c 0(a 0)的两个实数根是x1, x2 ,那么x i x2 b , x/2 -.a a也就是说,对于任何一个有实数根的一元二次方程, 两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.五、一元二次方程的应用知识点一列一元二次方程解应用题的一般步骤(1)审题,(2)设未知数,(3)列方程,(4)解方程,(5)检验,(6)作答.关键点:找出题中的等量关系.(1) “审〞指读懂题目、审清题意,明确和未知,以及它们之间的数量关系.这一步是解决问题的根底;(2) “设〞是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的, 但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;(3) “列〞是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式, 即方程.找出相等关系列方程是解决问题的关键;(4) “解〞就是求出所列方程的解;(5)检验应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100满等.因此,解出方程的根后,一定要进行检验.(6)作答知识点二用一元二次方程解与增长率(或降低率)有关的问题增长率问题的有关公式:增长数(增长了多少)=基数X增长率实际数(增长后的值)=基数+增长数增长率问题与降低率问题的数量关系及表示法:1, 假设基数为a,增长率X为,那么一次增长后的值为a 1 x , 两次增长后的值为al x2;2, 假设基数为a,降低率x为,那么一次降低后的值为al x , 两次降低后的值为al x2.两次增长后的总和等于基数+第一次降低后的值+第二次降低后的值知识点三用一元二次方程解与市场经济有关的问题与市场经济有关的问题:如:营销问题、水电问题、水利问题等.与利润相关的常用关系式有:(1)每件利润=销售价-本钱价;(2)利润率=(销售价一进货价)+进货价X 100%(3)销售额=售价X销售量知识点四数与数字的关系两位数=(十位数字)X10+个位数字三位数二(百位数字)X100+ (十位数字)X 10+个位数字连续的整数:设其中一数为x,另一数为x+1; (x-1 , x, x+1).连续的奇数:设其中一数为x,另一数为x+2; (x-2, x, x+2).连续的偶数:设其中一数为x,另一数为x+2; (x-2, x, x+2). 和一定的两数(和为a):设其中一数为x,另一数为a-x 差一定的两数(差为a):设其中一数为x,另一数为x+a 积一定的两数(积为a):设其中一数为x,另一数为a/x 商一定的两数(商为a):设其中一数为x,另一数为ax (x/a)知识点五传染问题:传染源:1个【每一轮1个可传染给x个】【前后轮患者数的比例为1: (1+x)】患者:第一轮后:共(1+x)个第二轮后:共1+ x + (1+x) x = (1+x) ? (1+x),即(1+x) 2个第三轮后:共(1+x) 2+ (1+x) 2? x = (1+x) 2? (1+x),即(1+x) 3个第n轮后:共(1+x) “个[注意:上面例举的是传染源为“ 1〞的情况得到的结论.假设传染源为a,那么第n轮后患者共为:a (1+X) n个]知识点六翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.知识点七银行利率应用题〔含利滚利问题〕年利息=本金X 年利率〔年利率为 a%知识点八 几何类题:①等积变形,②动态几何问题,③梯子问题,④航海问题,⑤几何与图表信息,⑥探索存在问题,⑦平分几何图形 的周长与面积积问题,⑧利用图形探索规律最常见的如:求直角三角形的边.面积S 一定,两直角边和〔和为a 〕 一定:设其中一边为x,另一边为 a-x ,贝U l x 〔a-x 〕 =S 2面积S 一定,两直角边差〔差为a 〕 一定:设其中一边为x,另一边为 x+a 或〔X-a 〕贝U l x 〔x+a 〕 =$或1乂〔x-a 〕 =S 2 2 斜边c 一定,两直角边和〔和为a 〕 一定:设其中一边为x,另一边为 a-x ,那么 x 2+ 〔a-x 〕 2=c 2④斜边c 一定,两直角边差〔差为a 〕 一定:设其中一边为x,另一 边为 x+a 或 x-a 贝1J x 2+ 〔x+a 〕 2=c 2或 x 2+ 〔x-a 〕 2=c 2知识点九 赛制循环问题:【单循环比双循环少了一半】单循环:设参加的球队为x,那么全部比赛共1 [x 〔x-1 〕]场;双循环:设参加的球队为x,那么全部比赛共x 〔x-1 〕场;注:双循环公式X 〔X-1〕,单循环公式1X 〔X-1〕,其实也就可以理 2 解为单循环循环赛就是和每个对手比赛 1次〔对手数量=参赛队数量 -1〕,而每场比赛有2队参加,就得除以2.双循环比赛场次是单循存一年的本息和: 存两年的本息和: 存三年的本息和: 存n 年的本息和: 本金X 〔 1+年利率〕本金X 〔 1+年利率〕本金X 〔 1+年利率〕本金X 〔 1+年利率〕,即本金x ( 1+ a%) ,即本金x ( 1+a% ,即本金x ( 1+a% ,即本金x ( 1+a%环的2倍.类似于此题其它题型如:相互握手;铁路沿线有n个站点要设计多少种车票;一条线段上有n个点(含两个端点),①该线段上共有n (n-1)条有向线段,②该线段上共有:n (n-1)条线段、二次根式的相关概念1 .平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,其中正的平方根而叫做a的算术平方根.2 .二次根式:形如a>0的式子叫做二次根式;3 .同类二次根式:二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式称为同类二次根式.4 .最简二次根式:满足两个条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.特别提示:二次根式,后有意义的条件是a>0 .二、二次根式的性质1. (1)三个非负性:①y>0(a>0);②册 2 a> 0(a> 0); 4a |a >0(a为任意实数).2.四个性质:_ 2① 4a a > 0(a > 0); =a (a>0)或-a(a <0)③ 7ab Va 而(a>0,b>0);④三、二次根式的运算:1 )二次根式的加减运算只需对同类二次根式进行合并;(2)二次根式的乘除法G x/b Vab(a > 0,b > 0) ^a^(a > 0,b>0)b特别提示:二次根式运算的结果应化为最简二次根式.。
一元二次方程知识点总结

一元二次方程知识点总结一、 一元二次方程的定义1. 一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 二、 一元二次方程的解1. 方程解的含义解题方法:将方程的根带入方程求出参数.三、 解一元二次方程(直接开平方法、配方法、公式法、因式分解法)1. 直接开平方法:适用于)0()()0(22≥=+≥=b b a x a a x 或形式的方程. 2. 配方法:2222244)2(0)0(0a ac b a b x b c x a b x a c bx ax -=+⇒=++⇒≠=++. 注意:用配方法解方程时必须注意在方程两边同时加上的是一次项系数一半的平方.3. 公式法:a ac b b x ac b c bx ax 24040222-±-=≥-=++时当. 4. 因式分解法:将一元二次方程化简成一般式后,把等号左边的多项式进行因式分解,再根据“如果,0=ab ,那么00==b a 或”进行求解.注意:利用因式分解法解方程时,将方程的一边分解因式而方程的另一边必须化为零;四、 判别式与一元二次方程解的个数的关系1. 一元二次方程解与判别式的关系:一元二次方程)0(02≠=++a c bx ax 根的情况可由根的判别式△=ac b 42-的值来决定,它的值与一元二次方程的根的关系是:①042>-ac b ⇔方程有两个不等的实数根.②042=-ac b ⇔方程有两个相等的实数根.③042<-ac b ⇔方程没有实数根.五、 一元二次方程的应用题(增长率、面积、握手、传染)1. 增长率问题:设a 为原量,x 为平均增长率,n 为增长次数,b 为增长后的量,则nx a b )1(+=.2. 面积问题:先通过平移变换,再根据面积公式列出方程.3. 握手问题:n 个人见面,任意两人都要握手一次,一共握手2)1(-n n 次. 4. 传染问题:一人感染,一人传染x 人,第一轮:1+x ;第二轮:1+x +x (1+x ).六、 根与系数的关系1. 根与系数的关系:若一元二次方程)0(02≠=++a c bx ax 的两根分别是21,x x 则a cx x a b x x ==+2121-,.注意:使用根与系数的关系时需要先检验△。
一元二次方程知识点总结

一元二次方程知识点总结一元二次方程是代数学中的基础内容之一,其包含了一元变量的二次项、一次项和常数项。
在解决实际问题时,一元二次方程经常被用来建立数学模型。
以下是对一元二次方程的知识点进行总结:一、一元二次方程的基本形式一元二次方程的基本形式可以表示为:ax² + bx + c = 0,其中a、b 和c是常数,而x是未知变量。
二、一元二次方程的求解方法1. 因式分解法:如果方程可以进行因式分解,则可以直接求得方程的解。
2. 完全平方公式:适用于方程无法进行因式分解时,利用完全平方公式求解。
3. 直接求根公式:一元二次方程的根可以通过以下公式直接求得:x = (-b ± √(b²-4ac)) / (2a)三、一元二次方程解的性质1. 实根与复根:一元二次方程的解可以是实数也可以是复数。
具体取决于方程中的判别式(b²-4ac)的值。
若判别式大于零,则方程有两个不相等的实根;若判别式等于零,则方程有两个相等的实根;若判别式小于零,则方程有两个共轭复根。
2. 关系式:一元二次方程的根与系数之间存在一定的关系,如根的和等于系数b的相反数,根的乘积等于常数项c。
四、一元二次方程的图像特征一元二次方程的图像为抛物线,其开口的方向和抛物线的顶点位置与方程中的系数相关。
具体来说:1. a的正负:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)是方程的函数。
五、应用实例一元二次方程在实际问题中的应用广泛,尤其是用于建立数学模型。
以下是几个常见的应用实例:1. 求解抛物线运动的高度、飞行时间等问题。
2. 求解面积和周长的关系,如矩形或正方形的最大面积问题。
3. 求解抛物线拱桥的最高点坐标。
六、注意事项在应用一元二次方程解决问题时,需要注意以下几点:1. 确定方程中的未知数和已知数。
一元二次方程知识点归纳

②销售问题;利润问题,利润=售价-本钱;利润率=利润/本钱×100%;
③比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规那么图形通过割补或平移形成规那么图形,运用面积之间的关系列方程.
3.根的判别式
(1)当Δ= 0时,原方程有两个不相等的实数根.
(2)当Δ= 0时,原方程有两个相等的实数根.ቤተ መጻሕፍቲ ባይዱ
(3)当Δ= 0时,原方程没有实数根.
例:方程 的判别式等于8,故该方程有两个不相等的实数根;方程 的判别式等于-8,故该方程没有实数根.
*4.根与系数的关系
〔1〕根本关系:假设关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,那么x1+x2=;x1x2=。注意运用根与系数关系的前提条件是△≥0.
一元二次方程知识点
一、知识清单梳理
知识点一:一元二次方程及其解法
关键点拨及对应举例
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.
解一元二次方程时,注意观察, 先特殊后一般,即先考虑能否用直接开平方法与因式分解法,不能用这两种方法解时,再用公式法.
例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.
初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。
(2)确定a,b,c的值。
(3)代入中计算其值,判断方程是否有实数根。
(4)若代入求根公式求值,否则,原方程无实数根。
【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。
·步骤:(1)将方程化为一元二次方程的一般形式。
(2)把方程的左边分解为两个一次因式的积,右边等于0。
(3)令每一个因式都为零,得到两个一元一次方程。
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
根的判别情况判别式:b2-4ac的值x1、x2的关系根的具体值一元二次方程两根与系数的关系:。
一元二次方程知识点总结

一元二次方程知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-第二章 一元二次方程本章中考动向:会用因式分解法、公式法、配方法解简单系数的一元二次方程;了解一元二次方程根的判别式和根与系数的关系并能进行简单运用;能根据具体问题中的数量关系列方程,能根据具体问题的实际意义检验方程的解的合理性。
一. 知识点:1. 一元二次方程的概念只含有一个未知数x 的整式方程,并且都可以化成20ax bx c ++=(a ,b ,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程。
注:(①整式方程,含有一个未知数;②整理后未知数的最高次数是2)2. 一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,化成:20ax bx c ++=(a ≠0)。
这种形式叫做一元二次方程的一般形式,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数,c 是常数项。
关键:(1)a ≠0;(2)系数带上符号3.一元二次方程的解(根)能使一元二次方程两边的值相等的未知数的值,叫做一元二次方程的解,也叫一元二次方程的根。
应用:若是方程的解(根),则代入方程,可使其成立。
通常结合恒等变形来求一些式子的值。
例:已知a 是方程2310x x -+= 的一个根,试求3222511a a a a --++ 的值。
4. 配方法解一元二次方程:将一元二次方程转化成()2x m n += (n ≥0)的形式。
通过配成完全平方式的方法得到一元二次方程的根。
()2x m n += (n ≥0)。
x m =- 关键:将二次项系数化为1的方程的两边同时加上一次项系数一半的平方注:在求解一些式子的最值问题时,我们是将式子配成完全平方,再利用完全平方式子的非负性来解决。
例如:当x 取何值时,代数式2267x x -+ 的值最小求出这个最小值5. 公式法解一元二次方程对于一元二次方程20ax bx c ++=(a ≠0),当24b ac -≥0时,利用配方法可算出它的根是2b x a-±= 关键步骤:(1)将方程化为一般形式,确定公式中a ,b ,c 的值;(2)先求出 24b ac -的值,再考虑是否用公式。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识点二、一元二次方程的解法1.直接开方法;2.配方法;用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方;求出方程的解;如果右边是一个负数,则判定此方程无实数解.3.公式法;(1)一元二次方程求根公式:一元二次方程,当时,.(2)一元二次方程根的判别式.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值;③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.4.因式分解法;(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用因式分解法:提取公因式法,平方差公式、完全平方公式.知识点三、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等); 设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,或将一个量表示两遍,由此得到方程); 解(解方程,注意分式方程需检验,将所求量表示清晰); 答(切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题.知识点四、一元二次方程根与系数的关系如果一元二次方程ax 2+bx+c=0的两个实根是x 1, x 2,那么.注意它的使用条件为a ≠0, Δ≥0.知识点一:一元二次方程的定义及解法只含有一个未知数,且未知数的最高次数是________,这样的整式方程叫做一元二次方程. 一元二次方程的常见解法(1)__________;(2)__________;(3) ;(4) .例1:(2009·新疆建设兵团)解方程:2(3)4(3)0x x x -+-=. 【解析】可以用因式分解法或公式法解一元二次方程. 解法一:2(3)4(3)0x x x -+-=(3)(34)0x x x --+= (3)(53)0x x --=30x -=或530x -=12335x x ==, 解法二:22694120x x x x -++-=251890x x -+=x =181210±=12335x x ==,同步测试:1. (2009·浙江省台州市)用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x 2. (2009·四川省南充市)方程(3)(1)3x x x -+=-的解是( ) A .0x =B .3x =C .3x =或1x =-D .3x =或0x =知识点二:一元二次方程的解的应用例2. (2009·山东省日照市).若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( D )(A )1 (B )2 (C )-1 (D )-2同步测试:1.(2009·湖南省长沙市).已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-2. (2009·山东省威海市)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.知识点三:一元二次方程根的判别式:一元二次方程20(0)ax bx c a ++=≠的根的判别式___________.(1)0∆>⇔_________________; (2)0∆=⇔________________; (3)0∆<⇔_________________.例3:(2009·成都市)若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是( )A.k >-1B. k >-1且k ≠0C.k <1D. k <1且k ≠0【解析】因为一元二次方程有两个不相等的实数根,所以必须满足两个条件,⎩⎨⎧≠>∆0k ,解之得,k >-1且k ≠0,故选B. 【答案】B同步测试:1.(2009 芜湖)当m 满足 时,关于x 的方程21402x x m -+-=有两个不相等的实数根. 2.(2009·山东省泰安市)关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 。
知识点四:一元二次方程的应用:步骤是:设 列 解 验 答例4:(2009·辽宁省本溪市)由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .【解析】第二下降表示为2)1(16x -,然后再列方程. 【答案】216(1)9x -= 同步测试:1.(2009 安徽)某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为%x ,则%x 满足的关系式是( ) A .12%7%%x += B .()()()112%17%21%x ++=+ C .12%7%2%x +=· D .()()()2112%17%1%x ++=+2.(2009·浙江省宁波市)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.类型一、一元二次方程及根的定义1.已知关于的方程的一个根为2,求另一个根及的值.思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可.解:将代入原方程,得即解方程,得当时,原方程都可化为解方程,得.所以方程的另一个根为4,或-1.总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口.举一反三:【变式1】已知一元二次方程的一个根是,求代数式的值.思路点拨:抓住为方程的一个根这一关键,运用根的概念解题.解:因为是方程的一个根,所以,故,,所以..总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验.类型二、一元二次方程的解法2.用直接开平方法解下列方程:(1)3-27x2=0;(2)4(1-x)2-9=0.解:(1)27x2=3.(2)4(1-x)2=93.用配方法解下列方程:(1);(2).解:(1)由,得,,,所以,故.(2)由,得,,,所以故4.用公式法解下列方程:(1);(2);(3). 解:(1)这里并且所以,所以,.(2)将原方程变形为,则,所以,所以.(3)将原方程展开并整理得,这里,并且,所以.所以.总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材.5.用因式分解法解下列方程:(1);(2);(3).解:(1)将原方程变形为,提取公因式,得,因为,所以所以或,故(2)直接提取公因式,得所以或,(即故.(3)直接用平方差公式因式分解得即所以或故.举一反三:【变式1】用适当方法解下列方程.(1)2(x+3)2=x(x+3);(2)x2-2x+2=0;(3)x2-8x=0;(4)x2+12x+32=0. 解:(1)2(x+3)2=x(x+3)2(x+3)2-x(x+3)=0(x+3)[2(x+3)-x]=0(x+3)(x+6)=0x1=-3,x2=-6.(2)x2-2x+2=0这里a=1,b=-2,c=2b2-4ac=(-2)2-4×1×2=12>0x==x1=+,x2=-(3)x(x-8)=0x1=0,x2=8.(4)配方,得x2+12x+32+4=0+4(x+6)2=4x+6=2或x+6=-2x2=-4,x2=-8.点评:要根据方程的特点灵活选用方法解方程.6.若,求的值.思路点拨:观察,把握关键:换元,即把看成一个“整体”.解:由,得,,,所以,故或(舍去),所以.总结升华:把某一“式子”看成一个“整体”,用换元的思想转化为方程求解,这种转化与化归的意识要建立起来.类型三、一元二次方程根的判别式的应用7.(武汉)一元二次方程4x2+3x-2=0的根的情况是( )A.有两个相等的实数根;B.有两个不相等的实数根C.只有一个实数根;D.没有实数根解析:因为△=32-4×4×(-2)>0,所以该方程有两个不相等的实数根.答案:B.8.(重庆)若关于x的一元二次方程x2+x-3m=0有两个不相等的实数根,则m的取值范围是( )A.m>B.m<C.m>-D.m<-思路点拨:因为该方程有两个不相等的实数根,所以应满足.解:由题意,得△=12-4×1×(-3m)>0,解得m>-.答案:C.举一反三:【变式1】当m为什么值时,关于x的方程有实根.思路点拨:题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分和两种情形讨论.解:当即时,,方程为一元一次方程,总有实根;当即时,方程有根的条件是:,解得∴当且时,方程有实根.综上所述:当时,方程有实根.【变式2】若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).思路点拨:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0∴满足∵ax+3>0即ax>-3∴所求不等式的解集为.类型四、根据与系数的关系,求与方程的根有关的代数式的值9.(河北)若x1,x2是一元二次方程2x2-3x+1=0的两个根,则x12+x22的值是( )A. B. C. D.7思路点拨:本题解法不唯一,可先解方程求出两根,然后代入x12+x22,求得其值.但一般不解方程,只要将所求代数式转化成含有x1+x2和x1x2的代数式,再整体代入.解:由根与系数关系可得x1+x2=,x1·x2=,x12+x22=(x1+x2)2-2x1·x2=()2-2×=.答案:A.总结升华:公式之间的恒等变换要熟练掌握.类型五、一元二次方程的应用考点讲解:1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.10.(陕西)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-64x-1350=0解析:在矩形挂图的四周镶一条宽为xcm的金边,那么挂图的长为(80+2x)cm,•宽为(50+2x)cm,由题意,可得(80+2x)(50+2x)=5400,整理得x2+65x-350=0.答案:B.11.(海口)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x元,依题意,得(500-20x)(10+x)=6000.整理,得x2-15x+50=0.解这个方程,x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克应涨价5元.总结升华:应抓住“要使顾客得到实惠”这句话来取舍根的情况.12.(深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积为130平方米的花圃(如图),打算一面利用长为15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.解:设与墙垂直的两边长都为米,则另一边长为米,依题意得又∵当时,当时,∴不合题意,舍去.∴.答:花圃的长为13米,宽为10米.。