北师大版八年级下册数学导学案(无答案):1.4角平分线
北师大版八年级下册1.4角平分线练习题( 无答案)

北师大版八年级下册1.4角平分线练习题一、选择题1.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.42.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8 B.6 C.4 D.23.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.34.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5 5.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.67.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD8.如图,△ABC中,∠ABC、∠EAC的角平分线PA、PB交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若点M、N分别为点P在BE、BF上的正投影,则AM+CN=AC;④∠BAC=2∠BPC.其中正确的是()A.只有①②③B.只有①③④C.只有②③④D.只有①③二、填空题9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.10.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.11.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AC=7,DE=4,则△ADC的面积等于.12.在△ABC中,∠C=90°,BC=16cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为cm.13.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC 的面积是.14.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.15.如图,P是∠AOB平分线上的一点,PC⊥OA于点C,延长CP交OB于点D,以点P 为圆心,PD为半径作圆弧交OB于点E,连接PE,若PC=4,PD=5,则DE的长为.三、解答题16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.17.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=BC=8,若S △ABC=28,求DE的长.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.19.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.20.如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.。
2020-2021学年北师大版数学八年级下册课时训练:1.4 《角平分线》 含答案

2020年北师大版八年级下册课时训练:1.4 《角平分线》一.选择题1.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=4,AB=6,则S△ABD:S△ACD=()A.3:2B.2:3C.1:1D.4:32.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N点3.如图,P是△ABC的三条角平分线的交点,连接P A、PB、PC,若△P AB、△PBC、△P AC 的面积分别为S1、S2、S3,则S1()S2+S3.A.>B.=C.<D.无法确定4.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,若AC=14,且AD:DC=4:3,则点D到AB的距离DE是()A.3B.4C.5D.65.如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()cm2.A.24B.27C.30D.336.如图,已知P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别是C、D,若PC=5,则PD的长为()A.2B.3C.4D.57.如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值()A.等于3B.大于3C.小于3D.无法确定8.如图所示,有三条道路围成Rt△ABC,其中BC=1000m,一个人从B处出发沿着BC行走了800m,到达D处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.800m C.200m D.1800m二.填空题9.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于点D,已知CD=3,则D到AB的距离是.10.如图,在Rt△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB,垂足为D,其中CE =4.5,AB=10,那么△ABE的面积为.11.如图,已知△ABC的周长是8,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.12.如图,在△ABC中,∠C=90°,D是BC上一点,∠1=∠2,CB=8,BD=5.则点D 到AB的距离为.13.如图,OP是∠AOB的平分线,PM⊥OA于点M,PM=3,点N是射线OB上的动点,则线段PN的最小值为.三.解答题14.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD 的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.15.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.16.如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.17.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.18.如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.参考答案一.选择题1.解:过点D作DE⊥AB于点E,如图所示.∵AD是∠BAC的平分线,∴DC=DE.∵S△ABD=AB•DE,S△ACD=AC•DC,∴==.故选:A.2.解:如图,C点到OA、OB的距离相等,所以OC平分∠AOB,所以Q在∠AOB的平分线.故选:B.3.解:过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,如图,∵P是△ABC的三条角平分线的交点,∴PD=PE=PF,∵S1=•AB•PD,S2=•BC•PF,S3=•AC•PE,∴S2+S3=•(AC+BC)•PD,∵AB<AC+BC,∴S1<S2+S3.故选:C.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵AC=14,且AD:DC=4:3,∴DC=14×=6,∴DE=CD=6,即点D到AB的距离DE等于6,故选:D.5.解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=×OE×AB+×OD×BC+×OF×AC=(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=×18=27(cm2).故选:B.6.解:∵P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD=5,故选:D.7.解:过P点作PH⊥OB于H,如图,∵OP平分∠AOB,PD⊥OA,PH⊥OB于H,∴PH=PD=3,∵点E是射线OB上的一个动点,∴点E与H点重合时,PE有最小值,最小值为3.故选:A.8.解:∵AD恰为∠CAB的平分线,DC⊥AC,∴DC=D点到AB的距离,∵BC=1000m,BD=800m,∴DC=200m,∴D点到AB的最短距离=200m,故选:C.二.填空题9.解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=3,∴DE=3.故答案为:3.10.解:∵BE平分∠ABC,ED⊥AB,EC⊥BC,∴ED=EC=4.5,∴S△ABE=×10×4.5=22.5.故答案为22.5.11.解:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC的周长是8,∴AB+BC+AC=8,∴△ABC的面积S=S△ABO+S△BCO+S△ACO=AB×OE++==×(AB+BC+AC)==12,故答案为:12.12.解:过D作DE⊥AB于E,∵∠1=∠2,∴AD平分∠BAC,∵∠C=90°,∴DE=CD=BC﹣BD=3,∴D到AB的距离为3.故答案为3.13.解:当PN⊥OB时,线段PN的值最小,∵OP是∠AOB的平分线,PM⊥OA,PN⊥OB,PM=3,∴PN=PM=3,即PN的最小值是3,故答案为:3.三.解答题14.解:小明的做法可行.理由如下:在直角尺DEMN中,DN∥EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.15.证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD平分∠BAC.16.解:过点D分别作AE,AF的垂线,交AE于M,交AF于N则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BND=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.17.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC=S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC=AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.18.(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,∴CD=CE,在Rt△CBE和Rt△CFD中,,∴Rt△CBE≌Rt△CFD(HL),∴BE=FD;(2)解:在Rt△ACD中,∵AC=10,AD=8,∴CD==6,∵AC=AC,CD=CE,∴Rt△ACD≌Rt△ACE(HL),∴S△ACD=S△ACE,∵Rt△CBE≌Rt△CFD,∴S△CBE=S△CFD,∴四边形ABCF的面积=S四边形AECD=2S△ACD=2××6×8=48.。
1.4角平分线(第一课时)说课稿:2022-2023学年北师大版八年级下册数学

1.4角平分线(第一课时)说课稿一、教材分析本课是北师大版八年级下册数学的第四章《平面图形的基本性质》中的第一课时:4角平分线。
本课主要内容是介绍角平分线的概念、性质以及如何作角平分线,通过解决一些实际问题来培养学生的动手能力和解决问题的能力。
二、教学目标1.知识与技能:–理解角平分线的定义和性质;–掌握如何作角平分线。
2.过程与方法:–通过观察、实际操作和探究,培养学生的动手能力和解决问题的能力。
3.情感态度与价值观:–培养学生的观察力和分析能力;–培养学生的合作意识和团队精神。
三、教学重点1.角平分线的概念和性质;2.如何作角平分线。
四、教学准备1.教材:北师大版八年级下册数学;2.教具:直尺、量角器等;3.多媒体设备。
五、教学过程1. 导入(5分钟)通过出示一张图片,引发学生对角平分线的兴趣和思考,在课前激发学生的求知欲。
2. 观察与讨论(10分钟)学生观察一段视频或图片,尝试寻找图中的角平分线,并提出自己的思考和猜想。
教师鼓励学生积极参与,并引导他们提出一些问题,如角平分线有什么性质等。
3. 角平分线的定义和性质(15分钟)通过多媒体设备展示角平分线的定义和性质,教师解释并进行讲解。
让学生了解角平分线是指把一个角分成两个相等的小角的直线。
4. 角平分线的作法(20分钟)教师通过示范,向学生介绍几种作角平分线的方法,如利用量角器测量角度,利用直尺和画圆法等。
5. 练习与实践(25分钟)学生进行练习和实践,通过作图题来巩固所学知识。
教师可以布置一些角平分线的作业题,并逐个批改,及时纠正学生的错误。
6. 总结与提高(10分钟)教师进行知识总结,并帮助学生归纳和理解角平分线的重要概念和方法。
鼓励学生提出疑问和问题,并解答他们的疑惑。
六、教学反思通过本课程的教学,我发现学生对角平分线的概念和性质有了初步的认识,并掌握了如何作角平分线的方法。
通过实践和练习,学生的动手能力和解决问题的能力得到了提高。
八年级数学下册1.4.2角平分线课件新版北师大版

度数,可以求此角的度数。
3
应用三 解决实际问题
可以运用角平分线及其性质来解决直角 三角形、等腰三角形等问题。
角平分线的练习
练习一 画出角的平分线
练习用尺规等工具作出各种角的 平分线。
练习二 用角平分线定理 求角度
练习应用角平分线定理来求出角 的度数。
练习三 解决实际问题
练习将角平分线应用于解决不同 的实际问题。
总结
1 角平分线的重要性
角平分线是许多的几何问题的基础课件的学习,你是否已经对角平分线有了更好的理解?
3 知识点回顾
通过课件中的练习,你是否已经掌握了角平分线的基本定义、性质、作用、应用及求解 方法?
可用尺规作图法作出一条角的平 分线。
角平分线的作用
寻找角平分线
可以用尺规作图法求角平分线。
确定长度
若一个角的一条平分线已知其长度,则可以求出与此平分线相应两边的长度。
证明定理
可以用角平分线定理来证明一些定理。
角平分线的应用
1
应用一 求角平分线
通过尺规作图等方法求角平分线。
应用二 求角度大小
2
已知一个角的一条平分线与相应两边的
角平分线课件:北师大版 八年级数学下册1.4.2
本课件将深入讲解角平分线的定义、性质、作用、应用和练习,助你更好地 掌握这一知识点。
角平分线的定义
什么是角平分线
角平分线是指可以将一个角平分 成两个相等的角的线段。
角平分线的性质
作图
1.角平分线可以互相平分。
2.如果一个角的两条平分线相交, 则它们所截的弧上的点都在相同 的直线上。
北师大版八年级数学下册课时达标训练:1.4.1角平分线

1.4.1角平分线一、选择题1.如图,BP为∠ABC的平分线,过点D作BC,BA的垂线,垂足分别为E,F,则下列结论中错误的是()A.∠DBE=∠DBFB.DE=DFC.2DF=DBD.∠BDE=∠BDF2.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点3.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.424.如图,在平面直角坐标系中,AD平分∠OAB,DB⊥AB,BC∥OA,若点B的横坐标为1,点D的坐标为(0,√3),则点C 的坐标是()A.(0,2)B.(0,5)C.(0,√5)D.(0,√3+√2)二、填空题5.如图,∠AOB=70°,QC⊥OA于点C,QD⊥OB于点D,若QC=QD,则∠CQO=°.6.已知:如图,AB∥CD,AP,CP分别平分∠BAC和∠ACD,PE⊥AC于点E,且PE=3 cm,则AB与CD之间的距离为cm.7.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB.若EC=1,则EF=.8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,则△EDF的面积为.三、解答题9.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.10.已知:如图,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F,G分别是OA,OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.11.如图,某地有两个村庄M,N,和两条相交叉的公路OA,OB,现计划在∠AOB内部修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你确定该仓库的位置.12.如图,在Rt△ABC中,∠C=90°,BD是Rt△ABC的一条角平分线,点O,E,F分别在BD,BC,AC上,且四边形OECF 是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.13.感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图③,在四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB-AC=(用含a的代数式表示)答案1.[答案] C2.解析: A 从图上可以看出点M 在∠AOB 的平分线上,其他三点均不在∠AOB 的平分线上, 所以点M 到∠AOB 两边的距离相等.故选A .3.解析: B 如图,过点D 作DH ⊥BA 交BA 的延长线于点H.∵BD 平分∠ABC ,∠BCD=90°,∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =12AB ·DH+12BC ·CD=12×6×4+12×9×4=30.故选B .4.解析: D ∵AD 平分∠OAB ,DB ⊥AB ,DO ⊥OA ,∴DB=DO=√3.∵点B 的横坐标为1,∴BC=1.∵OA ⊥y 轴,BC ∥OA ,∴BC ⊥y 轴,即∠BCD=90°,∴CD=√(√3)2-12=√2,∴OC=OD+CD=√3+√2,∴点C 的坐标是(0,√3+√2).故选D .5.[答案] 55解析: ∵QC ⊥OA 于点C ,QD ⊥OB 于点D ,QC=QD ,∴OQ 是∠AOB 的平分线.∵∠AOB=70°,∴∠AOQ=12∠AOB=12×70°=35°, ∴∠CQO=90°-∠AOQ=90°-35°=55°.故答案为55. 6.[答案] 6解析: 过点P 作PM ⊥AB 于点M ,并反向延长交CD 于点N.∵AB ∥CD ,∴PN ⊥CD.∵AP 平分∠BAC ,PE ⊥AC ,PM ⊥AB ,PE=3 cm,∴PM=PE=3 cm .同理PN=PE=3 cm,∴MN=PM+PN=6 cm,∴AB 与CD 之间的距离是6 cm . 7.[答案] 2解析: 如图,过点E 作EG ⊥OA 于点G.根据角平分线的性质定理得到EG 的长,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用在直角三角形中,30°角所对的直角边等于斜边的一半解题.8.[答案] 11解析: 如图,过点D 作DH ⊥AC 于点H.∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DF=DH.在Rt △FDE 和Rt △HDG 中,∵DF= DH ,DE=DG ,∴Rt△FDE ≌Rt △HDG (HL).同理,Rt △FDA ≌Rt △HDA (HL).设△EDF 的面积为x ,由题意,得48-x=26+x ,解得x=11,即△EDF 的面积为11.故答案为11.9.解:(1)∵在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于点E ,CD=3,∴DE=CD=3. (2)∵在Rt △ABC 中,∠C=90°,AC=6,BC=8,CD=3,∴BD=BC-CD=5,∴S △ADB =12BD ·AC=12×5×6=15.10.证明:∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠PDF=∠PEG=90°.在Rt △PFD 和Rt △PGE 中,∵PF=PG ,DF=EG , ∴Rt △PFD ≌Rt △PGE (HL), ∴PD=PE.∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB , ∴OC 是∠AOB 的平分线.11.解:如图,点P 即为该仓库的位置.12.解:(1)证明:如图,过点O 作OM ⊥AB 于点M.∵四边形OECF 是正方形,∴OE=EC=CF=OF ,OE ⊥BC ,OF ⊥AC. ∵BD 平分∠ABC , ∴OM=OE , ∴OM=OF.又∵OM ⊥AB ,OF ⊥AC ,∴点O 在∠BAC 的平分线上.(2)方法一:∵在Rt △ABC 中,∠C=90°,AC=5,BC=12,∴由勾股定理得AB=13. 易证BE=BM ,AM=AF.又∵BE=BC-CE ,AF=AC-CF ,CE=CF=OE ,∴BE=12-OE ,AF=5-OE. ∵BM+AM=AB ,∴BE+AF=13,即12-OE+5-OE=13, 解得OE=2,即OE 的长为2. 方法二:利用面积法.连接OC.∵在Rt △ABC 中,∠C=90°,AC=5,BC=12, ∴由勾股定理得AB=13.∵S △ABC =12AC ·BC ,S △ABC =12BC ·OE+12AC ·OF+12AB ·OM , ∴12AC ·BC=12BC ·OE+12AC ·OF+12AB ·OM ,即12×5×12=12×12OE+12×5OF+12×13OM. 由(1)得,OM=OE=OF ,∴OE=2.13.解:探究:证明:如图①,过点D 作DE ⊥AB 于点E ,DF ⊥AC ,交AC 的延长线于点F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE=DF.∵∠B+∠ACD=180°,∠ACD+∠FCD=180°, ∴∠B=∠FCD.在△DEB 和△DFC 中,∵∠DEB=∠F=90°,∠B=∠FCD ,DE=DF , ∴△DEB ≌△DFC ,∴DB=DC.应用:如图②,连接AD ,过点D 作DE ⊥AB 于点E ,DF ⊥AC ,交AC 的延长线于点F.∵∠B+∠ACD=180°,∠ACD+∠FCD=180°, ∴∠B=∠FCD.在△DEB和△DFC中,∵∠DEB=∠F=90°,∠B=∠FCD,DB=DC, ∴△DEB≌△DFC,∴DE=DF,BE=CF.在Rt△ADF和Rt△ADE中,∵AD=AD,DF=DE,∴Rt△ADF≌Rt△ADE,∴AF=AE,∴AB-AC=(AE+BE)-(AF-CF)=2BE.在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=√2a,∴AB-AC=√2a.2故答案为√2a.。
北师大版八年级数学下册《角平分线》第二课时导学案

角平分线(二)学习目标:1、能够证明三角形的三条角平分线相交于一点这一定理。
2、进一步发展学生的推理证明意识和能力。
学习过程:一、前置准备:三角形角平分线性质定理和判定定理的内容是什么?作用呢?二、自主学习:如图:设△ABC的角平分线BM、CN交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离。
引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a、b、c,则三角形的面积S= 。
对应练习:1、已知:△ABC中,BP、CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为。
2、到三角形三边距离相等的点是()A、三条中线的交点;B、三条高的交点;C、三条角平分线的交点;D、不能确定三、合作交流;例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E。
(1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、归纳总结:1、我的收获?2、我不明白的问题?五、当堂训练:1、到一个角的两边距离相等的点在。
2、△ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为.3、Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm。
4、△ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为。
5 、Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是。
6、已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C、D、E、F,且AC=AD求证:BE=BF课下训练:P39 习题1、2、3中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置。
北师大版数学八年级下册1.4《角平分线》教案

北师大版数学八年级下册1.4《角平分线》教案一. 教材分析《角平分线》是北师大版数学八年级下册第1章“几何变换”中的一个重要内容。
本节课主要介绍了角平分线的性质及其在几何图形中的应用。
学生通过学习角平分线,可以进一步理解几何图形的性质,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了线段的中垂线、垂直平分线的性质,对几何图形的变换有一定的了解。
但部分学生对角平分线的概念和性质理解不够深入,运用角平分线解决实际问题的能力较弱。
三. 教学目标1.理解角平分线的定义及其性质;2.学会运用角平分线解决简单几何问题;3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.角平分线的定义及其性质;2.运用角平分线解决实际问题。
五. 教学方法采用讲授法、示范法、讨论法、实践法等多种教学方法,引导学生通过观察、思考、操作、交流等活动,掌握角平分线的性质和应用。
六. 教学准备1.准备相关课件和教学素材;2.准备角平分线的模型或实物;3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)利用课件或实物展示,引导学生回顾线段的中垂线、垂直平分线的性质。
提问:线段的垂直平分线和中垂线有什么关系?它们在几何图形中有什么作用?2.呈现(10分钟)展示角平分线的模型或实物,引导学生观察并思考:角平分线是什么?它有什么特点?通过示范和讲解,阐述角平分线的定义及其性质。
3.操练(10分钟)学生分组讨论,尝试运用角平分线解决简单几何问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,指出错误并讲解原因。
5.拓展(10分钟)出示拓展题,引导学生运用所学知识解决实际问题。
学生分组讨论,教师巡回指导。
6.小结(5分钟)总结本节课所学内容,强调角平分线的性质及其在几何图形中的应用。
7.家庭作业(5分钟)布置适量的作业,让学生巩固所学知识。
8.板书(5分钟)设计简洁明了的板书,突出角平分线的性质和应用。
2024北师大版数学八年级下册1.4.2《三角形三个内角的平分线》教学设计

2024北师大版数学八年级下册1.4.2《三角形三个内角的平分线》教学设计一. 教材分析《三角形三个内角的平分线》是北师大版数学八年级下册第1.4.2节的内容。
本节课主要介绍三角形的三个内角的平分线的性质及其作用。
学生在学习本节课之前,已经学习了角平分线的性质,对角平分线有一定的了解。
本节课的内容对于学生来说,既是知识的拓展,也是难度的加深。
二. 学情分析学生在学习本节课之前,已经掌握了角平分线的性质,对图形的平分有一定的理解。
但部分学生对角平分线与三角形内角平分线的联系和区别还不够清晰,对于如何运用内角平分线性质解决实际问题还有一定的困难。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们理解和掌握内角平分线的性质,提高他们的解题能力。
三. 教学目标1.知识与技能:理解和掌握三角形的三个内角的平分线的性质,能够运用内角平分线性质解决实际问题。
2.过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:三角形的三个内角的平分线的性质。
2.难点:如何运用内角平分线性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握三角形的内角平分线性质。
2.启发式教学法:在教学过程中,引导学生主动思考、积极探索,提高他们的解题能力。
3.小组合作学习:鼓励学生相互讨论、交流,共同解决问题,培养他们的团队协作能力。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学课件:制作课件,展示三角形的内角平分线性质的相关图片和实例。
七. 教学过程1.导入(5分钟)利用生活实例,如等腰三角形的制作,引导学生思考三角形的内角平分线的作用和意义。
让学生意识到本节课的重要性,激发他们的学习兴趣。
2.呈现(10分钟)利用课件展示三角形的内角平分线性质的图片和实例,引导学生观察、分析,总结出三角形的内角平分线性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4角平分线(1) 第 1 课时 (二)学习目标:1.能够证明角平分线的性质定理、判定定理2.能够运用角平分线的性质定理、判定定理解决几何问题(三)重点、难点:重点:角平分线的性质定理、判定定理难点:利用角平分线的性质定理、判定定理解决几何问题(四)教学过程【导入环节】(约2分钟)我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:从折纸过程中,我们可以得出CD=CE ,即角平分线上的点到角两边的距离相等.你能证明它吗?【目标出示】(约1分钟)1、能够证明角平分线的性质定理、判定定理2、能够运用角平分线的性质定理、判定定理解决几何问题【自学环节】探究一:性质探索与证明1.自学指导(约1分钟)让学生看书第28页的内容2.自主学习(约2分钟)学生按要求进行自学,教师要注意学生的学习动向,对于疑难问题及时进行提示,注意发现学生所存在的问题,以便在导学中有的放矢,重点解决。
3.教师导学(约5分钟)请同学们自己尝试着证明上述结论,然后在全班进行交流. 已知:如图,OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D 、E . 求证:P D=PE . 证明:21EDC POB A(教师在教学过程中对有困难的学生要给以指导)我们用公理和已学过的定理证明了我们折纸过程中得出的结论.我们把它叫做角平分线的性质定理。
(用多媒体演示)角平分线上的点到这个角的两边的距离相等.探究二:逆向思维,探索判定1.自主学习(约2分钟)你能写出这个定理的逆命题吗?我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题.引导学生分析结论后完整地叙述出角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.2.教师导学(约7分钟)它是真命题吗? 你能证明它吗?没有加“在角的内部”时,是假命题.(由学生自己独立思考完成,在全班讨论交流,对困难学生可个别辅导)已知:在么AOB内部有一点P,且PD上OA,PE⊥OB,D、E为垂足且PD=PE,求证:点P在么AOB的角平分线上.证明:逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理.我们就把它叫做角平分线的判定定理。
用直尺和圆规画已知角的平方线及作图的依据讨论。
3.巩固应用(约7分钟)综合利用角平分线的性质和判定、直角三角形的相关性质解决问题。
进一步发展学生的推论证明能力。
在学生独立完成推理过程的基础上,教师要给出书写示范例题:(见课本29页例1)随堂练习课本第29页1、2题【训练环节】(约15分钟)1. 与相交的两直线距离相等的点在()A :一条直线上B :一条射线上C :两条互相垂直的直线上D :以上都不对2. 在RT △ABC 中,∠C=90°,AD 是∠BAC 的平分线,若BC=16,BD=10,则D 到AB 的距离是________. 3、如图,E 是线段AC 上的一点,AB ⊥EB 于B ,AD ⊥ED 于D ,且∠1 =∠2,CB = CD 。
求证:∠3 =∠4。
4.如图,AB = AC ,DE 为△ABC 的AB 边的垂直平分线,D 为垂足,DE 交BC 于E 。
求证:BE + EC = AB 。
(五)教学反思231EDABC4E DA BC(一)章节题目:第一章 三角形的证明 1.4角平分线(2) 第 2 课时 (二)学习目标:1.进一步发展学生的推理证明意识和能力2.能够利用尺规作已知角的平分线(三)重点、难点:重点:角平分线的相关结论难点:角平分线的相关结论的应用(四)教学过程【导入环节】(约2分钟)问题l 习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?于是,首先证明“三角形的三个内角的角平分线交于一点” . 【目标出示】(约1分钟)1.进一步发展学生的推理证明意识和能力2.能够利用尺规作已知角的平分线【自学环节】探究一:角平分线的相关推论1.自学指导(约2分钟)让学生看书第30页的内容2.自主学习(约3分钟)学生按要求进行自学,教师要注意学生的学习动向,对于疑难问题及时进行提示,注意发现学生所存在的问题,以便在导学中有的放矢,重点解决。
3.教师导学(约5分钟)已知:如图,设△ABC 的角平分线.BM 、CN 相交于点P , 证明:P 点在∠B AC 的角平分线上. 证明:(让学生在教师指导下证明)在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?D FEMNC BA P(PD=PE=PF,即这个交点到三角形三边的距离相等.)于是我们得出了有关三角形的三条角平分线的结论,即:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理三边垂直平分线三条角平分线三角形锐角三角形交于三角形内一点交于三角形内一点钝角三角形交于三角形外一点直角三角形交于斜边的中点交点性质到三角形三个顶点的距离相等到三角形三边的距离相等探究二:逆向思维,探索判定1.自主学习(约3分钟)如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?2.教师导学(约7分钟)组织学生思考、交流。
学生1:有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.学生2:我找到四处.除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BC A的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P33.巩固应用(约7分钟)例题:(见课本31页例3)随堂练习课本第31页1题【训练环节】(约15分钟)1. 到一个角的两边距离相等的点在.2. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.3. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为 . 引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .4. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点;D.不能确定5.已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C.D.E.F,且AC=AD求证:BE=BF(五)教学反思(一)章节题目:第一章三角形的证明回顾与思考(1)第 1 课时(二)学习目标:1.在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法.2.进一步体会证明的必要性,发展学生的初步的演绎推理能力;提高学生用规范的数学语言表达论证过程的能力(三)重点、难点:重点:通过例题的讲解和课堂练习对所学知识进行复习巩固是重点。
难点:是本章知识的综合性应用对学生来讲是难点。
(四)教学过程【导入环节】通过提问方式复习本章所学习的相关基本知识,如定理、逆定理等。
【目标出示】(约1分钟)1.在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法.2.进一步体会证明的必要性,提高学生用规范的数学语言表达论证过程的能力【自学环节】(约1分钟)1.自学指导自主进行章节知识梳理或画出知识导图。
2.自主学习(约10分钟)要求:①看课本和参考《助学》“回顾与思考”进行本章知识梳理(5分钟)。
②展示环节(5分钟)。
采用提问、板演相结合的方式检查自学效果。
【导学环节】(约10分钟)1.可利用微课助学展示知识导图来进行本章知识梳理。
本章的内容总结如下:2. 例题讲解 例2、如图,在△ABC 中,AB=A C ,AB 的垂直平分线交AC 于点E ,已知△BCE 的周长为8,AC -BC=2. 求AB 与BC 的长.分析:由已知AC -BC=2,即AB -BC=2,要求AB 和BC 的长,利用方程的思想,需找另一个AB 与BC 的关系.【训练环节】A 组:夯实基础题1. 命题:“全等三角形的对应角相等”的逆命题是_____________________________. 这条逆命题是______命题(填“真”或“假”)2. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;3. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC =10,则△ODE 的周长为 .通过探索、猜测、计算、证明得到的定理与等腰三角形、等边三角形有关的结论与直角三角形有关的结论 与一般三角形有关的结论命题的逆命题及其真假尺规作图线段的垂直平分线角的平分线EDCAB4. 如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .5. 如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 .B组:巩固技能题6. 如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数(2)AD和CD的长.C组:拓展创新题7.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD(五)教学反思。