2019届中考数学总复习(15)一次函数-精练精析(1)及答案解析

合集下载

中考总复习精练精析15一次函数含答案解析.doc

中考总复习精练精析15一次函数含答案解析.doc

函数——一次函数1一.选择题(共8小题)1.函数y=x﹣1的图象是()A.B. C.D.2.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.4.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.5.直线y=﹣x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限6.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣8.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限二.填空题(共7小题)9.直线l过点M(﹣2,0),该直线的解析式可以写为_________.(只写出一个即可)10.已知一次函数y=(1﹣m)x+m﹣2,当m_________时,y随x的增大而增大.11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_________.12.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)_________.13.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第_________象限.14在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_________ y2.(填“>”“<”或“=”)15.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1_________y2(填“>”或“<”或“=”).三.解答题(共8小题)16.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是_________元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?17.设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.19.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于_________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.20.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.23.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?函数——一次函数1参考答案与试题解析一.选择题(共8小题)1.函数y=x﹣1的图象是()A.B.C.D.考点:一次函数的图象.专题:数形结合.分析:根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.解答:解:∵一次函数解析式为y=x﹣1,∴令x=0,y=﹣1.令y=0,x=1,即该直线经过点(0,﹣1)和(1,0).故选:D.点评:本题考查了一次函数图象.此题也可以根据一次函数图象与系数的关系进行解答.2.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C. D.考点:一次函数的图象;正比例函数的图象.专题:数形结合.分析:根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.解答:解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.点评:此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.4.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集.专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.5.直线y=﹣x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数的性质解答即可.解答:解:由于k=﹣1<0,b=1>0,故函数过一、二、四象限,故选:B.点评:本题考查了一次函数的性质,一次函数解析式:y=kx+b(k≠0),k、b的符号决定函数所经过的象限.6.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解答:解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.7.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣考点:一次函数图象与系数的关系.分析:根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.解答:解:∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,∵直线y=ax+b(a≠0)过点(2,﹣3),∴2a+b=﹣3,∴a=,b=﹣2a﹣3,∴s=a+2b=+2b=b﹣≤﹣,s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,即s的取值范围是﹣6<s≤﹣.故选:B.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.专题:数形结合.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.二.填空题(共7小题)9.直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2.(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.10.已知一次函数y=(1﹣m)x+m﹣2,当m<1时,y随x的增大而增大.考点:一次函数的性质.专题:常规题型.分析:根据一次函数的性质得1﹣m>0,然后解不等式即可.解答:解:当1﹣m>0时,y随x的增大而增大,所以m<1.故答案为:<1.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7.考点:一次函数的性质.专题:计算题.分析:由于k的符号不能确定,故应对k>0和k<0两种情况进行解答.解答:解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.12.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x.考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.13.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第一象限.考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解答:解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故答案为:一.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.14.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)考点:一次函数图象上点的坐标特征.分析:根据一次函数的性质,当k>0时,y随x的增大而增大.解答:解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.点评:此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共8小题)16.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是7元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?考点:待定系数法求一次函数解析式.分析:(1)根据函数图象可以得出出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(3)将x=18代入(2)的解析式就可以求出y的值.解答:解:(1)该地出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,代入(2,7)、(4,10)得解得∴y与x的函数关系式为y=x+4;(3)把x=18代入函数关系式为y=x+4得y=×18+4=31.答:这位乘客需付出租车车费31元.点评:此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.17.设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.考点:待定系数法求一次函数解析式.专题:计算题;待定系数法.分析:直接把A点和B点坐标代入y=kx+b,得到关于k和b的方程组,然后解方程组即可.解答:解:把A(1,3)、B(0,﹣2)代入y=kx+b得,解得,故k,b的值分别为5,﹣2.点评:本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.考点:两条直线相交或平行问题;一次函数图象上点的坐标特征;一次函数与一元一次不等式.专题:代数几何综合题;数形结合.分析:(1)①将x=﹣1代入y=﹣2x+1,得出B点坐标,进而求出k的值;②求出A,C点坐标,进而得出AC的长,即可得出△ABC的面积;(2)分别得出当x0=﹣2以及﹣1时k的值,进而得出k的取值范围.解答:解:(1)①∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;②∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=;故答案为:;(2)∵直线y=kx+4(k≠0)与x轴交于点E(x0,0),﹣2<x0<﹣1,∴当x0=﹣2,则E(﹣2,0),代入y=kx+4得:0=﹣2k+4,解得:k=2,当x0=﹣1,则E(﹣1,0),代入y=kx+4得:0=﹣k+4,解得:k=4,故k的取值范围是:2<k<4.点评:此题主要考查了一次函数图象上点的坐标性质以及两直线相交问题等知识,得出A,C,E点坐标是解题关键.20.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:几何综合题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b 可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.考点:两条直线相交或平行问题;二元一次方程组的解.专题:计算题;代数几何综合题.分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解答:解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.考点:一次函数的应用;一元一次方程的应用.专题:行程问题;数形结合.分析:(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.解答:解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.点评:本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.23.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?考点:一次函数的应用.专题:函数思想.分析:(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.解答:解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为y=kx,则3k=60,解得k=20,所以,y=20x,设DE的解析式为y=mx+n,解得,所以,y=45x﹣45,由题意得,解得,所以,B出发小时后两人相遇.点评:本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.。

一次函数知识点总复习含答案解析

一次函数知识点总复习含答案解析

一次函数知识点总复习含答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.3.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( ) A . B . C . D .【答案】B【解析】【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能.故选:B .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.4.已知点M (1,a )和点N (3,b )是一次函数y =﹣2x+1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k <0,y 随x 的增大而减小解答.【详解】解:∵k =﹣2<0,∴y 随x 的增大而减小,∵1<3,∴a >b .故选A .【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.6.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 10.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.11.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y=kx+b (k≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得:156k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为165y x =+(0≤x≤50), 故②的结论正确;当x=40时,1406145y =⨯+=, 即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y =⨯+=, 即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=()() 3001306012x xx x⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x时,解得x=2 , 3则M坐标为(23,20),故③正确.当两人相遇前相距10km时,30x+15x=30-10x=49,当两人相遇后,相距10km时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( ) A .﹣12B .﹣2C .﹣1D .1【答案】A 【解析】 【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可. 【详解】解:∵正比例函数y =kx 的图象经过第二、四象限, ∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ), ∴2km 12k m =⎧⎨=⎩,解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去).故选:A . 【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.15.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C【分析】设购买A型瓶x个,B(253x-)个,由题意列出算式解出个选项即可判断.【详解】设购买A型瓶x个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B型瓶的个数是1522533xx -=-,∵瓶子的个数为自然数,∴x=0时,253x-=5; x=3时,253x-=3; x=6时,253x-=1;∴购买B型瓶的个数是(253x-)为正整数时的值,故A成立;由上可知,购买A型瓶的个数为0个或3个或6个,所以购买A型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.16.一次函数 y = mx +1m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.∵一次函数y=mx+|m-1|中y 随x 的增大而增大, ∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2), ∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去). 故选B . 【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A 【解析】 【分析】由30kx b ++<即y<-3,根据图象即可得到答案. 【详解】∵y kx b =+,30kx b ++<, ∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3), ∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3, 故选:A. 【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.19.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!20.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

历年初三数学中考复习一次函数练习及答案

历年初三数学中考复习一次函数练习及答案

一次函数【回顾与思考】一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k【例题经典】理解一次函数的概念和性质例1 若一次函数y=2x 222m m --+m-2的图象经过第一、第二、三象限,求m 的值.【分析】这是一道一次函数概念和性质的综合题.一次函数的一般式为y=kx+b (k ≠0).首先要考虑m 2-2m-2=1.函数图象经过第一、二、三象限的条件是k>0,b>0,而k=2,只需考虑m-2>0.由222120m m m ⎧--=⎨->⎩便可求出m 的值.用待定系数法确定一次函数表达式及其应用例2 鞋子的“鞋码”和鞋长(cm )存在一种换算关系,•下表是几组“鞋码”与鞋长的对应数值:(1)分析上表, (2)设鞋长为x ,“鞋码”为y ,求y 与x 之间的函数关系式; (3)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【评析】本题是以生活实际为背景的考题.题目提供了一个与现实生活密切联系的问题情境,以考查学生对有关知识的理解和应用所学知识解决问题的能力,同时为学生构思留下了空间.建立函数模型解决实际问题例3某块试验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,•那么应从第几天开始进行人工灌溉?【评析】本题提供了一个与生产实践密切联系的问题情境,要求学生能够从已知条件和函数图象中获取有价值的信息,判断函数类型.建立函数关系.为学生解决实际问题留下了思维空间.【考点精练】 基础训练1.下列各点中,在函数y=2x-7的图象上的是( ) A .(2,3) B .(3,1) C .(0,-7) D .(-1,9)2.如图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( )A .x>0B .x>2C .x>-3D .-3<x<2(第2题) (第4题) (第7题) 3.已知两个一次函数y 1=-2b x-4和y 2=-1a x+1a的图象重合,则一次函数y=ax+b 的图象所经过的象限为( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限 4.如图,直线y=kx+b 与x 轴交于点(-4,0),则y>0时,x 的取值范围是( ) A .x>-4 B .x>0 C .x<-4 D .x<05.已知一次函数y=kx-k ,若y 随x 的增大而减小,则该函数的图像经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 6.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.如图,一次函数y=x+5的图象经过点P (a ,b )和点Q (c ,d ),•则a (c-d )-b (c-d )的值为________.8.函数y 1=x+1与y 2=ax+b 的图象如图所示,•这两个函数的交点在y 轴上,那么y 1、y 2的值都大于零的x 的取值范围是_______.9.如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.(第8题) (第9题)10.一次函数的图象过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数的解析式:___________.能力提升11.经过点(2,0)且与坐标轴围成的三角形面积为2•的直线解析式是_________.12.地表以下岩层的温度t(℃)随着所处的深度h(千米)•的变化而变化.t与h之间在一定范围内近似地成一次函数关系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;(2温度t(℃)…90 160 300 …深度h(km)… 2 4 8 …13.甲、乙两车从A地出发,沿同一条高速公路行驶至距A•地400千米的B地.L1、L2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(•如图所示),根据图象提供的信息,解答下列问题:(1)求L2的函数表达式(不要求写出x的取值范围);(2)甲、乙两车哪一辆先到达B地?该车比另一辆车早多长时间到达B地?14.某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程;加工过程中,当油箱中油量为10升时,•机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?15.小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究16.宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)•与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)答案:例题经典例1:m=3 例2:(1)一次函数, (2)设y=kx+b ,则由题意,得2216,22819,10k b k k b b =+=⎧⎧⎨⎨=+=-⎩⎩解得 , ∴y=•2x-10,(3)x=26时,y=2×26-10=42.答:应该买42码的鞋. 例3:解:(1)当x ≤40时,设y=kx+b . 根据题意,得20001050300030,1500.k b k k b b =+=⎧⎧⎨⎨=+=⎩⎩解这个方程组,得, ∴当x•≤40时,y 与x 之间的关系式是y=50x+1500,∴当x=40时,y=50×40+1500=3500,当x ≥40•时,根据题意得,y=100(x-40)+3500,即y=100x-500. ∴当x ≥40时,y 与x 之间的关系式是y=100x-500. (2)当y ≥4000时,y 与x 之间的关系式是y=100x-500, 解不等式100x-50≥4000,得x ≥45, ∴应从第45天开始进行人工灌溉. 考点精练1.C 2.C 3.D 4.A 5.B 6.A 7.25 8.1<x<2 9.42x y =-⎧⎨=-⎩ 10.答案不唯一.例如:y=-x-1 11.y=x-2或y=-x+212.(1)t 与h 的函数关系式为t=35h+20.(2)当t=1770时,有1770=35h+20,解得:h=50千米.13.解:(1)设L 2的函数表达式是y=k 2x+b ,则2230,419400.4k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩解之,得k 2=100,b=-75,∴L 2的函数表达式为y=100x-75. (2)乙车先到达B 地,∵300=100x-75,∴x=154. 设L 1的函数表达式是y=k 1x ,∵图象过点(154,300),∴k 1=80.即y=80x .当y=400时,400=80x ,∴x=5,∴5-194=14(小时), ∴乙车比甲车早14小时到达B 地.14.解:(1)设所求函数关系式为y=kx+b ,由图象可知过(10,100),(30,80)两点,•得1010013080,110k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得:,∴y=-x+110. (2)当y=10时,-x+110=10,x=100,机器运行100分钟时,•第一个加过程停止.。

中考数学总复习一次函数-精练精析含答案解析

中考数学总复习一次函数-精练精析含答案解析

函数—一次函数2一.选择题(共8小题)1.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对2.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1 B.1 C.2 D.33.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.14.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣15.如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣6.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<07.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=38.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2) D.y=﹣3(x﹣2)二.填空题(共8小题)9.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________ .10.将直线y=2x+1平移后经过点(2,1),则平移后的直线解析式为_________ .11.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是_________ .12.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________ .13.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________ .14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是_________ .15.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于_________ .16.在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为_________ .三.解答题(共8小题)17.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?18.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?19.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为_________ 吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.20.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.21.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是_________ 千米/时,乙车的速度是_________ 千米/时,点C的坐标为_________ ;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?22.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为_________ 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.23.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为_________ cm,匀速注水的水流速度为_________ cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.24.为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是_________ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?函数——一次函数2参考答案与试题解析一.选择题(共8小题)1.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b Ba=b C.a<b D.以上都不对考点:一次函数图象上点的坐标特征.分析:根据一次函数的增减性,k<0,y随x的增大而减小解答.解答:解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选:A.点评:本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.2.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.﹣1 B.1 C.2 D.3考点:一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.专题:数形结合.分析:根据关于x轴的对称点的坐标特点可得B(2,﹣m),然后再把B点坐标代入y=﹣x+1可得m的值.解答:解:∵点A(2,m),∴点A关于x轴的对称点B(2,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣2+1=﹣1,m=1,故选:B.点评:此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.3.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A. 5 B.4 C.3 D.1考点:一次函数图象上点的坐标特征.专题:待定系数法.分析:把点的坐标代入函数解析式计算即可得解.解答:解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.点评:本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.4.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣1考点:一次函数图象上点的坐标特征.专题:计算题.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.5.如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣考点:一次函数图象上点的坐标特征;解直角三角形.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.解答:解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去),故选:C.点评:本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求n.6.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0考点:一次函数图象上点的坐标特征;正比例函数的图象.分析:根据k<0,正比例函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.点评:本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.7.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=3考点:一次函数图象上点的坐标特征.分析:直接把点(2,0),(0,3)代入一次函数y=kx+b(k≠0),求出k,b的值即可.解答:解:∵由函数图象可知函数图象过点(2,0),(0,3),∴,解得.故选:D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2)D.y=﹣3(x﹣2)考点:一次函数图象与几何变换.专题:几何变换.分析:直接利用一次函数平移规律,“上加下减”进而得出即可.解答:解:∵将函数y=﹣3x的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣3x+2.故选:A.点评:此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.二.填空题(共8小题)9.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4 .考点:一次函数与一元一次不等式.专题:数形结合.分析:把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.解答:解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.点评:本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.10.将直线y=2x+1平移后经过点(2,1),则平移后的直线解析式为y=2x﹣3 .考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(2,1)代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把(2,1)代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b (k≠0)平移时k的值不变是解题的关键.11.在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).考点:待定系数法求一次函数解析式;锐角三角函数的定义.分析:已知tan∠ABO=3就是已知一次函数的一次项系数是或﹣.根据函数经过点P,利用待定系数法即可求得函数解析式,进而可得到A的坐标.解答:解:在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,则一次函数y=kx+b中k=±.∵一次函数y=kx+b(k≠0)的图象过点P(1,1),∴当k=时,求可得b=;k=﹣时,求可得b=.即一次函数的解析式为y=x+或y=﹣x+.令y=0,则x=﹣2或4,∴点A的坐标是(﹣2,0)或(4,0).故答案为:(﹣2,0)或(4,0).点评:本题考查求一次函数的解析式及交点坐标.12.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为﹣2≤x≤﹣1 .考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为:﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是x<﹣2 .考点:一次函数与一元一次不等式.专题:整体思想.分析:把x=﹣2代入y1=kx+b与y2=x+a,由y1=y2得出=2,再求不等式的解集.解答:解:把x=﹣2代入y1=kx+b得,y1=﹣2k+b,把x=﹣2代入y2=x+a得,y2=﹣2+a,由y1=y2,得:﹣2k+b=﹣2+a,解得=2,解kx+b>x+a得,(k﹣1)x>a﹣b,∵k<0,∴k﹣1<0,解集为:x<,∴x<﹣2.故答案为:x<﹣2.点评:本题主要考查一次函数和一元一次不等式,本题的关键是求出=2,把看作整体求解集.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题.分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.15.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于 4 .考点:两条直线相交或平行问题.专题:几何图形问题.分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.解答:解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.点评:本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.16.在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A(2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为:≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.三.解答题(共8小题)17.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?考点:一次函数的应用;一元一次不等式的应用.专题:应用题;分段函数.分析:(1)本题是一道分段函数,当0≤x≤90时和x>90时由待定系数法就可以分别求出其结论;(2)由(1)的解析式求出今年前90天平均每天的生产数量,由函数图象可以求出去年的生产总量就可以得出结论;(3)设改进技术后,至少还要a天完成不少于6000台的生产计划,根据前90天的生产量+改进技术后的生产量≥6000建立不等式求出其解即可.解答:解:(1)当0≤x≤90时,设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:.则y=20x+900.当x>90时,由题意,得y=30x.∴y=;(2)由题意,得∵x=0时,y=900,∴去年的生产总量为900台.今年平均每天的生产量为:(2700﹣900)÷90=20台,厂家去年生产的天数为:900÷20=45天.答:厂家去年生产的天数为45天;(3)设改进技术后,至少还要a天完成不少于6000台的生产计划,由题意,得2700+30a≥6000,解得:a≥110.答:改进技术后,至少还要110天完成不少于6000台的生产计划.点评:本题考查了分段函数的运用,待定系数法起一次函数的解析式的运用,列不等式解实际问题的运用,解答时求出一次函数的解析式及分析函数图象的意义是关键.18.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?考点:一次函数的应用.专题:应用题.分析:(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x>1时,可以求出y与x的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.解答:解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.点评:本题考查了分段函数的运用,一次函数的解析式的运用,由自变量的值求函数值的运用,解答时求出函数的解析式是关键.19.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为270 吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.考点:一次函数的应用.专题:数形结合.分析:(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为 270吨;(2)先求出甲队每小时的清雪量,再求出m.(3)设乙队调离后y与x之间的函数关系式为:y=kx+b,把A,B两点代入求出函数关系式.解答:解:(1)由函数图象可以看出乙队调离时,甲、乙两队已完成的清雪总量为 270吨;故答案为:270.(2)乙队调离前,甲、乙两队每小时的清雪总量为=90吨;∵乙队每小时清雪50吨,∴甲队每小时的清雪量为:90﹣50=40吨,∴m=270+40×3=390吨,∴此次任务的清雪总量为390吨.(3)由(2)可知点B的坐标为(6,390),设乙队调离后y与x之间的函数关系式为:y=kx+b(k≠0),∵图象经过点A(3,270),B(6,390),∴解得∴乙队调离后y与x之间的函数关系式:y=40x+150.点评:本题主要考查一次函数的应用,解题的关键是甲队每小时的清雪量.20.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.考点:一次函数的应用.专题:数形结合.分析:(1)根据行程问题的数量关系:速度=路程÷时间及路程=速度×时间就可以得出结论;(2)由(1)的结论可以求出点D的坐标,再由题意可以求出快车的速度就可以求出点B的坐标,由待定系数法求出AB的解析式及OD的解析式就可以求出结论;(3)根据(2)的结论,由待定系数法求出求出直线BC的解析式和直线EF的解析式,再由一次函数与一元一次方程的关系建立方程就可以求出结论.解答:解:(1)由题意,得慢车的速度为:480÷(9﹣1)=60千米/时,∴a=60×(7﹣1)=360千米.答:慢车的行驶速度为60千米/时,a的值为360千米;(2)由题意,得5×60=300,∴D(5,300),设y OD=k1x,由题意,得300=5k1,∴k1=60,∴y OD=60x.∵快车的速度为:(480+360)÷7=120千米/时.∴480÷120=4小时.∴B(4,0),C(8,480).设y AB=k2x+b,由题意,得,解得:,∴y AB=﹣120x+480∴,解得:.∴480﹣160=320千米.答:快车与慢车第一次相遇时,距离甲地的路程是320千米;(3)设直线BC的解析式为y BC=k3x+b3,由题意,得,解得:,∴y BC=120x﹣480;设直线EF的解析式为y EF=k4x+b4,由题意,得,解得:,∴y EF=60x﹣60.当60x﹣(﹣120x+480)=200时,解得:x=;当60x﹣(﹣120x+480)=﹣200时解得:x=;当120x﹣480﹣(60x﹣60)=200时,解得:x=>9(舍去).当120x﹣480﹣(60x﹣60)=﹣200时解得:x=<4(舍去);当120x﹣480﹣60x=﹣200时解得:x=.综上所述:两车出发小时、小时或小时时,两车相距的路程为200千米.点评:本题考查了行程问题的数量关系路程=速度×时间的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出一次函数的解析式是关键.21.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/时,乙车的速度是96 千米/时,点C的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?考点:一次函数的应用.专题:数形结合.分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.解答:解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.点评:此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.22.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为560 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.考点:一次函数的应用.专题:应用题.分析:(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.解答:解:(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴,解得:.∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).点评:此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.23.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.。

2019年全国各地中考数学真题汇编:一次函数(含答案)

2019年全国各地中考数学真题汇编:一次函数(含答案)

中考数学真题汇编:一次函数
一、选择题
1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x >1时,函数值y随自变量x增大而增大“的是()
A.①③
B.③④
C.②④D .②③
【答案】B
2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()
A. B. C. D.
【答案】D
3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A.5
B.4
C.3
D.2
【答案】C
4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()
A. B.
C. D.
【答案】A
5.如图,函数和( 是常数,且)在同一平面直角坐标系的
图象可能是()
A. B. C. D.
【答案】B
6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿
方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停
止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间
的函数关系的是()
A. B.
C. D.
【答案】D。

2019中考一次函数专题训练(1)包含答案.docx

2019中考一次函数专题训练(1)包含答案.docx

2019中考一次函数专题训练(1)一、选择题1. (2018<常徳)若一次函数y 二(k ・2) x+1的函数值y 随x 的增大而增大,则 ( )A. k <2B. k >2C. k >0D. k <02. (2018>湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( )A. (0, 2)B. (0, 一2)C. (2, 0)D. ( - 2, 0)3. (2018<娄底)将直线y=2x ・3向右平移2个单位,再向上平移3个单位后, 所得的直线的表达式为() A. y=2x - 4 B. y 二2x+4 C. y=2x+2 4. (2018<陕西)如图,在矩形AOBC中,A ( - 2, 0) ,B (0, 1)・若正比例5. (2018>枣庄)如图,直线I 是一次函数y 二kx+b 的图象,若点A (3, m )在 直线I 上,则m 的值是()A. - 5B. yC.昔D. 7 6. (2018>贵阳)一次函数y=kx - 1的图象经过点P,且y 的值随x 值的增大而 增大,则点P 的坐标可以为( )A. (-5, 3) B ・(1, - 3) C. (2, 2) D. (5,- 1) 7. (2018<天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速 度行驶lh 后,乙车才沿相同路线行驶.乙车先到达B 地并停留lh 后,再以原 速按原路返回,直至与甲车相遇.在此过程屮,两车之间的距离y (km )与乙车 行驶吋间x (h )之间的函数关系如图所示•下列说法:①乙车的速度是120km/h ;函数y 二kx 的图象经过点C,则k 的值为( C BA 0 X A ,气B ・* ) C. - 2 D. 2 D. y=2x - 2②m=160;③点H的坐标是(7, 80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④& (2018*沈阳)在平面直角坐标系屮,一次函数y二kx+b的图象如图所示,则k 和b的取值范围是()A. k>0, b>0B. k>0, b<0C. k<0, b>0 D・ k<0, b<09. (2018*湘潭)若b>0,则一次函数y= - x+b的图象大致是()10. (2018>遵义)如图,直线y二kx+3经过点(2, 0),则关于x的不等式kx+3>0的解集是()A. x>2B. x<2C. x22D・ xW211. (2018*咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.己知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲岀发的吋间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其屮正确的结论有()A. 1个B. 2个C. 3个D・4个12. (2018<陕西)若直线I]经过点(0, 4) , I?经过点(3, 2),且丘与0关于x轴对称,则I]与J的交点坐标为()A. (-2, 0)B. (2, 0) C・(-6, 0) D. (6, 0)13. (2018*南充)直线y=2x 向下平移2个单位长度得到的直线是() A. y=2 (x+2) B. y=2 (x - 2) C. y=2x - 2 D. y=2x+214. (2018>南通模拟)函数y=-x 的图象与函数y=x+l 的图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限 二、填空题15. (2018*长春)如图,在平而直角坐标系中,点A 、B 的坐标分别为(1, 3)、 (n, 3),若直线y 二2x 与线段AB 有公共点,则n 的值可以为 _______ ・(写出一 个即可)16. (2018*济宁)在平面直角坐标系中,已知一次函数y= - 2x+l 的图象经过 Pi (xi ,y x )、P 2(x 2, y 2)两点,若 Xi <x 2,则 % ________ y 2.(填“>"<〃—〃)17. (2018*邵阳)如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2, 0), 与y 轴相交于点(0, 4),结合图象可知,关于x 的方程ax+b 二0的解是 ________18. (2018<安顺)正方形AiBAO, A 2B 2C 2C!,A 3B 3C 3C 2, ...按如图的方式放置, 点Ai ,A 2,A 3...和点C I ,C2,G.・.分别在直线y=x+l 和x 轴上,则点B n 的坐标为三、解答题19. (2018*徐州)为缓解油价上涨给出租车待业带来的成本压力,某市自2018 年口月17 R 起,调整出租车运价,调整方案见下列表格及图象(其中a, b, c 为常数) 行驶路程收费标准调价前调价后 不超过3km 的部分起步价6元 起步价a 元 超过3km 不超出6km 的部分超出6km 的部分每公里2.1元每公里b 元 每公里c 元设行驶路程xkm时,调价前的运价yi (元),调价后的运价为丫2 (元)如图, 折线ABCD表示丫2与x之间的函数关系式,线段EF表示当0WxW3时,“与x的函数关系式,根据图表信息,完成下列各题:①填空:a= ____ , b= ____ , c= ____ .②写出当x>3时,y】与x的关系,并在上图中画出该函数的图象.③函数“与丫2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的20. (2018•上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程屮,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?代(升)O 150 米)21. (2018・南通模拟)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车俩行驶的时间为Xh,两车之间的距离为ykm,图中的折线表示y与x 之间的函数关系,根据图象解决以下问题:(1) 慢车的速度为___ km/h,快车的速度为_m/h;(2) 解释图中点C的实际意义并求出点C的坐标;(3) 求当x为多少时,两车之间的距离为500km・。

2019年数学中考真题知识点汇编15 函数初步(含平面直角坐标系)(含解析).docx

2019年数学中考真题知识点汇编15  函数初步(含平面直角坐标系)(含解析).docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一、选择题5.(2019·滨州)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是()A.(-1,1)B.(3,1)C.(4,-4)D.(4,0)【答案】A【解析】点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到(1-2,-2+3),即B(-1,1).故选A.8.(2019·广元)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD 的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )第8题图【答案】A【解析】点P在整个运动过程中,△PAD的底边AD始终不变,故面积的变化取决于AD边上高线的变化,当点P在AB上运动时,高线均匀变大,故面积也均匀变大,当点P在BC上运动时,由于BC∥AD,平行线间距离处处相等,故高线不变,∴面积也不发生改变,当点P在CD上运动时,高线又会均匀变小,故面积也会均匀变小,故选A.6.(2019·绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于( )A. -1B. 0C. 3D. 4【答案】C【解析】设直线的解析式为y=kx+b(k≠0),A(1,4)、B(2,7),得472k bk b=+⎧⎨=+⎩,解得31kb=⎧⎨=⎩,得直线的解析式为y=3x+1,把点C(a,10)代入中,得a=3,故选C.9.(2019·嘉兴)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A .(2,﹣1)B .(1,﹣2)C .(﹣2,1)D .(﹣2,﹣1)【答案】A【解析】∵点C 的坐标为(2,1),∴点C ′的坐标为(﹣2,1),∴点C ″的坐标的坐标为(2,﹣1), 故选A .2. (2019·杭州)在平面直角坐标系中,点A (m ,2)与点B(3,n)关于y 轴对称,则( )A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=3 【答案】B【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B . 8.(2019·淮安)当矩形面积一定时,下列图象中能表示它的长y 和宽x 之间函数关系的是( )【答案】B【解析】设矩形的面积为k (k >0),则xy=k ,∴xky =(k >0),所以符合要求的函数图象是B. 6.(2019·株洲)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】根据平面直角坐标系中点的坐标特点可知,第四象限的点的坐标符号为(+,-),所以D 。

中考数学 专题19 一次函数与反比例函数综合题型(解析版)

中考数学 专题19 一次函数与反比例函数综合题型(解析版)

专题19 一次函数与反比例函数综合题型1. (2019·四川自贡中考)如图,在平面直角坐标系中,一次函数b kx y +=1(0≠k )的图象与反比例函数)0(2≠=m xmy 的图象相交于第一、三象限内的A (3,5),B (a ,-3)两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2找一点P 使PB -PC 最大,求PB -PC 的最大值及点P 的坐标; (3)直接写出当21y y >时,x 的取值范围.【答案】见解析.【解析】解:(1)把A (3,5)代入2my x=,15=m , ∴反比例函数的解析式为15y x=. 把B (a ,-3)代入15y x=, 得a =-5, ∴B (-5,-3)把A (3,5),B (-5,-3)代入b kx y +=1得:⎩⎨⎧-=+-=+3553b k b k ,解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2.(2)依题意得,直线AB 与y 轴交点即为P 点, 在y =x +2中,令x =0,则y =2;令y =0,则x =-2, ∴点P 的坐标为(0,2),点C 的坐标为(-2,0),此时PB ,PC ,∴PB -PC 的最大值为.(3)当y 1>y 2时,x 的取值范围是-5<x <0或x >3. 2.(2019·广东广州中考)已知2221()a P a b a b a b=-≠±-+, (1)化简P ;(2)若点(a ,b )在一次函数2-=x y 的图象上,求P 的值. 【答案】见解析. 【解析】解:(1)2221a P ab a b =--+ =22222a a b a b a b ---- =22a b a b +- =1a b- (2)点(a ,b )在一次函数2-=x y 的图象上, ∴b =a,即a -b, ∴P =1a b -3. (2019·广东广州中考)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与BD 交于点P (-1,2),AB ⊥x 轴于点E ,正比例函数y =mx 的图像与反比例函数3n y x-=的图像相交于A ,P 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数——一次函数1一.选择题(共8小题)1.函数y=x﹣1的图象是()A.B.C.D.2.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.4.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.5.直线y=﹣x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限6.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣8.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限二.填空题(共7小题)9.直线l过点M(﹣2,0),该直线的解析式可以写为_________ .(只写出一个即可)10.已知一次函数y=(1﹣m)x+m﹣2,当m _________ 时,y随x的增大而增大.11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_________ .12.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)_________ .13.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第_________ 象限.14在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_________ y2.(填“>”“<”或“=”)15.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1_________ y2(填“>”或“<”或“=”).三.解答题(共8小题)16.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是_________ 元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?17.设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.19.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于_________ ;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.20.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.23.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?函数——一次函数1参考答案与试题解析一.选择题(共8小题)1.函数y=x ﹣1的图象是( )A .B .C .D .考点: 一次函数的图象.专题: 数形结合.分析: 根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.解答: 解:∵一次函数解析式为y=x ﹣1,∴令x=0,y=﹣1.令y=0,x=1, 即该直线经过点(0,﹣1)和(1,0).故选:D .点评: 本题考查了一次函数图象.此题也可以根据一次函数图象与系数的关系进行解答.2.一次函数y=kx ﹣k (k <0)的图象大致是( )A .B .C .D .考点: 一次函数的图象.分析: 首先根据k 的取值范围,进而确定﹣k >0,然后再确定图象所在象限即可.解答: 解:∵k<0,∴﹣k >0,∴一次函数y=kx ﹣k 的图象经过第一、二、四象限,故选:A .点评: 此题主要考查了一次函数图象,直线y=kx+b ,可以看做由直线y=kx 平移|b|个单位而得到.当b >0时,向上平移;b <0时,向下平移.3.正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( )A .B .C .D .考点: 一次函数的图象;正比例函数的图象.专题: 数形结合.分析: 根据正比例函数图象所经过的象限判定k <0,由此可以推知一次函数y =x+k 的图象与y 轴交于负半轴,且经过第一、三象限.解答:解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.点评:此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.4.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集.专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.5.直线y=﹣x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数的性质解答即可.解答:解:由于k=﹣1<0,b=1>0,故函数过一、二、四象限,故选:B.点评:本题考查了一次函数的性质,一次函数解析式:y=kx+b(k≠0),k、b的符号决定函数所经过的象限.6.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解答:解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.7.已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣考点:一次函数图象与系数的关系.分析:根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.解答:解:∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,∵直线y=ax+b(a≠0)过点(2,﹣3),∴2a+b=﹣3,∴a=,b=﹣2a﹣3,∴s=a+2b=+2b=b﹣≤﹣,s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,即s的取值范围是﹣6<s≤﹣.故选:B.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.专题:数形结合.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.二.填空题(共7小题)9.直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2 .(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得 b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.10.已知一次函数y=(1﹣m)x+m﹣2,当m <1 时,y随x的增大而增大.考点:一次函数的性质.专题:常规题型.分析:根据一次函数的性质得1﹣m>0,然后解不等式即可.解答:解:当1﹣m>0时,y随x的增大而增大,所以m<1.故答案为:<1.点评:本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当b>0时,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴.11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是2或﹣7 .考点:一次函数的性质.专题:计算题.分析:由于k的符号不能确定,故应对k>0和k<0两种情况进行解答.解答:解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得,∴=2;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴=﹣7.故答案为:2或﹣7.点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解.12.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.13.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第一象限.考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.解答:解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故答案为:一.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.14.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)考点:一次函数图象上点的坐标特征.分析:根据一次函数的性质,当k>0时,y随x的增大而增大.解答:解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.点评:此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).考点:一次函数图象上点的坐标特征.分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2的值,再比较出其大小即可.解答:解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共8小题)16.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是7 元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?考点:待定系数法求一次函数解析式.分析:(1)根据函数图象可以得出出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(3)将x=18代入(2)的解析式就可以求出y的值.解答:解:(1)该地出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,代入(2,7)、(4,10)得解得∴y与x的函数关系式为y=x+4;(3)把x=18代入函数关系式为y=x+4得y=×18+4=31.答:这位乘客需付出租车车费31元.点评:此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.17.设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.考点:待定系数法求一次函数解析式.专题:计算题;待定系数法.分析:直接把A点和B点坐标代入y=kx+b,得到关于k和b的方程组,然后解方程组即可.解答:解:把A(1,3)、B(0,﹣2)代入y=kx+b得,解得,故k,b的值分别为5,﹣2.点评:本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.18.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.解答:解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.①求点B的坐标及k的值;②直线y=﹣2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若﹣2<x0<﹣1,求k的取值范围.考点:两条直线相交或平行问题;一次函数图象上点的坐标特征;一次函数与一元一次不等式.专题:代数几何综合题;数形结合.分析:(1)①将x=﹣1代入y=﹣2x+1,得出B点坐标,进而求出k的值;②求出A,C点坐标,进而得出AC的长,即可得出△ABC的面积;(2)分别得出当x0=﹣2以及﹣1时k的值,进而得出k的取值范围.解答:解:(1)①∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;②∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∵y=﹣2x+1,∴C(0,1),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=;故答案为:;(2)∵直线y=kx+4(k≠0)与x轴交于点E(x0,0),﹣2<x0<﹣1,∴当x0=﹣2,则E(﹣2,0),代入y=kx+4得:0=﹣2k+4,解得:k=2,当x0=﹣1,则E(﹣1,0),代入y=kx+4得:0=﹣k+4,解得:k=4,故k的取值范围是:2<k<4.点评:此题主要考查了一次函数图象上点的坐标性质以及两直线相交问题等知识,得出A,C,E点坐标是解题关键.20.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.考点:两条直线相交或平行问题.专题:几何综合题.分析:(1)先利用直线y=x上的点的坐标特征得到点M的坐标为(2,2),再把M(2,2)代入y=﹣x+b 可计算出b=3,得到一次函数的解析式为y=﹣x+3,然后根据x轴上点的坐标特征可确定A点坐标为(6,0);(2)先确定B点坐标为(0,3),则OB=CD=3,再表示出C点坐标为(a,﹣a+3),D点坐标为(a,a),所以a ﹣(﹣a+3)=3,然后解方程即可.解答:解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.考点:两条直线相交或平行问题;二元一次方程组的解.专题:计算题;代数几何综合题.分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解答:解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=﹣x+5得y=5,所以B点坐标为(0,5),所以△POB的面积=×5×2=5.点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.考点:一次函数的应用;一元一次方程的应用.专题:行程问题;数形结合.分析:(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.解答:解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.点评:本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.23.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?考点:一次函数的应用.专题:函数思想.分析:(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.解答:解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为y=kx,则3k=60,解得k=20,所以,y=20x,设DE的解析式为y=mx+n,则,解得,所以,y=45x﹣45,由题意得,解得,所以,B出发小时后两人相遇.点评:本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.。

相关文档
最新文档