最新中考数学一次函数应用题

合集下载

中考数学专题练——专题6 一次函数及其应用(试题精选,含答案)

中考数学专题练——专题6 一次函数及其应用(试题精选,含答案)

专题六一次函数及其应用一、单选题1.(2019九下·兴化月考)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图,交直线于点B i.则+ 的值为()象于点AA. B. 2 C. D.2.(2019·广州模拟)如图,等腰直角的直角边长为1,正方形MNPQ的边长为2,C、M、A、N在同一条直线上,开始时点A与点M重合,让向右平移,当完全移出正方形MNPQ 时停止,设三角形与正方形重合的面积为S,点A平移的距离为x,则S关于x的大致图象是()A. B. C. D.3.(2020·北京模拟)如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图象如图2,乙光斑与点B的距离S2(cm)与时间t(s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s,且两图象中△P1O1Q1≌P2Q2O2,下列叙述正确是( )A. 甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍B. 乙光斑从点A到B的运动速度小于1.5cm/sC. 甲乙两光斑全程的平均速度一样D. 甲乙两光斑在运动过程中共相遇3次4.(2020·台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.5.(2019·抚顺模拟)如图,已知在边长为4的菱形ABCD中,∠C=60°,E是BC边上一动点(与点B,C不重合).连接DE,作∠DEF=60°,交AB于点F,设CE=x,△FBE的面积为y.下列图象中,能大致表示y与x的函数关系的是()A. B.C. D.6.(2020九上·昌平期末)二次函数y=x2图象向右平移3个单位,得到新图象的函数表达式是( )A. y=x2+3B. y=x2-3C. y=(x+3)2D. y=(x-3)27.(2019·天门模拟)如图,均匀地向此容器注水,直到把容器注满在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是 A. B. C. D.8.(2020九下·碑林月考)若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:()A. B. C. D.9.(2019·碑林模拟)已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,0)旋转180°,所得的图象经过(0.﹣1),则m的值为()A. ﹣2B. ﹣1C. 1D. 210.(2020九下·无锡月考)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B ,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P 、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A. 线段PQ始终经过点(2,3)B. 线段PQ始终经过点(3,2)C. 线段PQ始终经过点(2,2)D. 线段PQ不可能始终经过某一定点11.(2019·贵池模拟)如图,线段AB=1,点P是线段AB上一个动点(不包括A、B)在AB同侧作Rt△PAC ,Rt△PBD,∠A=∠D=30°,∠APC=∠BPD=90°,M、N分别是AC、BD的中点,连接MN,设AP=x,MN2=y,则y关于x的函数图象为()A. B.C. D.12.(2019·黄冈模拟)如图,在平面直角坐标系中,四边形是菱形,点C的坐标为,,垂直于轴的直线从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线与菱形的两边分别交于点M,N(点M在点N的上方),若的面积为S,直线的运动时间为秒,则能大致反映S与的函数关系的图象是( )A. B.C. D.13.(2020九上·德清期末)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD 上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A. 7B.C.D.14.(2020·遵化模拟)如图,一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).与反比例函数的图像交于点Q,反比例函数图像上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),则四边形PAQO的面积为()A. 7B. 10C. 4+2D. 4-215.(2019·郑州模拟)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A. (1,1)B. (0,)C. ()D. (﹣1,1)16.(2019·唐县模拟)超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,日无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元.设购买A型瓶x (个),所需总费用为y(元),则下列说法不一定成立的是()型号A B单个瓶子容量(升)23单价(元)56A. 购买B型瓶的个数是(5 - x)为正整数时的值B. 购买A型瓶最多为6个C. y与x之间的函数关系式为y=x+30D. 小张买瓶了的最少费用是28元17.(2020九上·南昌期末)如图,直线y=x+与x轴、y轴分别相交于A、B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左移动,当⊙P与该直线相交时,满足横坐标为整数的点P的个数是()A. 3B. 4C. 5D. 618.(2019·颍泉模拟)如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF ,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A. B. C. D. 219.(2019九上·许昌期末)如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A. b≤-2B. b<-2C. b≥-2D. b>-220.(2019·润州模拟)如图,在平面直角坐标系中,对角线为1的正方形OABC,点A在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB l B2C2,照此规律作下去,则点B2019的坐标为()A. (﹣21009,21009)B. (21008,﹣21008)C. (﹣21009,0)D. (0,21008)二、填空题21.(2020九上·南昌期末)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2= (x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=________.22.(2019九下·临洮期中)如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x≥kx+2的解集为________.23.(2019·金昌模拟)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是________.24.(2019·润州模拟)在直角坐标系中,点E(10,0),F(0,5),A(﹣1,0),D(0,2),四边形ABCD为菱形,且点B、C在第二象限,向右平移菱形ABCD,平移的距离为d,当点B在△EOF边及内部时,d的范围是________.25.(2020·西安模拟)若一次函数y=ax+b的图象与一次函数y=mx+n的图象相交,且交点在x轴上,则a、b、m、n满足的关系式是________.26.(2020·南通模拟)如图,等边的边长为2,则点B的坐标为________.27.(2019九下·十堰月考)已知直线与轴的交点在A(2,0),B(3,0)之间(包括A、B两点)则的取值范围是________.28.(2019·徽县模拟)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y= x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是________.29.(2020九下·宝应模拟)如图所示,一次函数(、为常数,且)的图象经过点,则不等式的解集为________.30.(2019·上海模拟)已知一次函数y = kx + b图像不经过第二象限,那么b的取值范围是________.31.(2020九上·路桥期末)对于实数a和b,定义一种新的运算“*”,,计算=________.若恰有三个不相等的实数根,记,则k的取值范围是________.32.(2020九上·常州期末)如图,在平面直角坐标系中,以O为圆心,6为半径画圆弧,与两坐标轴分别交于点A、B,已知点C(5,0)、D(0,3),P为AB上一点,则2PD+CP的最小值为________.33.(2019九上·克东期末)如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为________.34.(2020九上·建湖月考)关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不含-1和0),则a的取值范围是________.35.(2019九上·克东期末)如图,若直线与轴、轴分别交于点、,并且,,一个半径为的,圆心从点开始沿轴向下运动,当与直线相切时,运动的距离是________.三、解答题36.(2019九上·松滋期末)x1、x2是方程2x2—3x—6=0的二根,求过A(x1+x2,0)B(0,x l·x2)两点的直线解析式.37.(2019九上·越城月考)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的CD的长.38.(2019九上·伍家岗期末)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A 顺时针旋转90°后得到△AO′B′,求点B′的坐标.39.(2019·合肥模拟)《算法统宗》中记载了一个“李白沾酒”的故事,诗云:“今携一壶酒,游春郊外走。

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案类型 1 方案选取型问题角度1 图象类1.甲、乙两家樱桃采摘园的樱桃品质相同,售价也相同.“五一”假期期间,两家采摘园推出如下优惠方案:甲园:每名游客进园需购买20元的门票,采摘的樱桃六折优惠;乙园:游客进园不需购买门票,采摘的樱桃不超过6 kg时,按原价销售,超过6 kg 时,超过的部分五折优惠.设当游客的采摘量是x kg时,在甲园所需总费用为y1元,在乙园所需总费用为y2元,如图所示是y1,y2与x之间的函数关系图象.(1)优惠前,甲、乙两家采摘园的樱桃的售价是元/kg.(2)求y1,y2关于x的函数解析式.(3)若某游客计划采摘m kg樱桃,则选择哪个采摘园更省钱?角度2 文字类2.某家具厂生产一种餐桌和椅子,每张餐桌的售价为400元,每把椅子的售价为80元,为促进销售,该家具厂制定了如下两种优惠方案:方案一:买一张餐桌送一把椅子;方案二:餐桌和椅子均打九折销售.某饭店准备在该家具厂购买餐桌50张,购买椅子x(x>50)把.设按方案一购买需要花费y1元,按方案二购买需要花费y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)当x取何值时,两种方案所需费用相同?(3)当x=100时,选择方案比较合算;请你设计出一种更省钱的购买方式,并通过计算说明理由.类型 2 方案设计型问题角度1 费用问题3.[2022福建]在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.角度2 利润问题4.[2022江苏苏州]某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量/千克乙种水果质量/千克总费用/元第一次6040 1 520第二次3050 1 360(1)求甲、乙两种水果的进价.(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3 360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.类型 3 图象型问题角度1 行程问题5.[2022浙江湖州]某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2 其他问题6.[2022商丘二模]近年来随着科技的发展,药物制剂正朝着三效(高效、速效、长效)及三小(毒性小、副作用小、剂量小)的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,使药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时起每毫升血液中含药量达到最高12微克,并维持这一最高值至第4小时结束,接着开始衰退,每毫升血液中含药量y(微克)与时间x(小时)的函数关系如图,并发现衰退时y与x成反比例函数关系.(1)填空:①当0.5≤x≤2时,y与x之间的函数关系式为;②当x>4时,y与x之间的函数关系式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.7.现有甲、乙两个底面积不同的圆柱形水槽,如图(1).将甲槽中的水匀速注入乙槽,甲、乙水槽中水的深度y甲(cm),y乙(cm)与注水时间x(min)之间的函数关系图象如图(2)所示(图象不完整).(1)乙槽的底面积是甲槽底面积的倍.(2)求y甲与x之间的函数关系式.(3)小文说:“注水3 min时,甲槽中的水比乙槽中的水深5 cm.”睿睿说:“注水4 min时,两个水槽中的水深度相等.”他们的说法对吗?请说明理由.图(1)图(2)类型 4 物资调运问题8.[2022山东济宁]某运输公司安排甲、乙两种货车24辆恰好一次性将328 t的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如下表:货车类型载重量/(t/辆)运往A地的成本/(元/辆)运往B地的成本/(元/辆)甲种16 1 200900乙种12 1 000750(1)求甲、乙两种货车分别用了多少辆.(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160 t,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A 地的甲种货车为t辆.①写出w与t之间的函数解析式.②当t为何值时,w最小?最小值是多少?答案:1.(1)10解法提示:由题图可知,当x=6时,y2=60,故优惠前,甲、乙两家采摘园的樱桃的售价是60÷6=10(元/kg).(2)由题意得,y1=20+10×0.6x=6x+20.当x≤6时,y2=10x,当x>6时,y2=10×6+(x-6)×10×0.5=5x+30,故y2={10x,5x+30.(3)当x ≤6时,令6x+20=10x ,解得x=5; 当x>6时,令6x+20=5x+30,解得x=10.结合图象分析可知,当m<5或m>10时,选择乙园更省钱; 当5<m<10时,选择甲园更省钱;当m=5或m=10时,选择甲园和选择乙园所需总费用相同. 2.(1)根据题意,得y 1=50×400+(x-50)×80=80x+16 000,y 2=50×400×0.9+80x ×0.9=72x+18 000. (2)令y 1=y 2,则80x+16 000=72x+18 000, 解得x=250.答:当x=250时,两种方案所需费用相同. (3)一先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子. 理由:所设计的购买方式需要花费50×400+50×80×0.9=23 600(元), 只选择方案一需要花费24 000元. 23 600<24 000,故先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子更省钱. 3.(1)设购买绿萝x 盆,吊兰y 盆. 根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8. 因为38>2×8,所以答案符合题意. 答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,吊兰(46-m )盆,购买两种绿植的总费用为W 元, 则W=9m+6(46-m )=3m+276.根据题意,得m ≥2(46-m ),解得m ≥923. 因为3>0,所以W 随m 的增大而增大.又m 为整数,所以m 取最小值31时,W 的值最小. 当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.4. (1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得{60a +40b =1520,30a +50b =1360,解得{a =12,b =20.答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元. (2)设水果店第三次购进x 千克甲种水果,则购进(200-x )千克乙种水果. 根据题意,得12x+20(200-x )≤3 360, 解得x ≥80.设获得的利润为w 元.根据题意,得w=(17-12)×(x-m )+(30-20)×(200-x-3m )=-5x-35m+2 000.∵-5<0,∴w 随x 的增大而减小,∴当x=80时,w 的最大值为-35m+1 600. 根据题意,得-35m+1 600≥800, 解得m ≤1607, ∴正整数m 的最大值为22.5.(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1),解得x=2, 则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时, ∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b ,则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60. (3)由题意,得40(a+1.5)=60×1.5,解得a=34,∴a 的值为34. 6.(1)①y=8x-4 ②y=48x解法提示:①当0.5≤x ≤2时,设y=kx+b ,将(0.5,0),(2,12)分别代入,得{0.5k +b =0,2k +b =12,解得{k =8,b =−4.故当0.5≤x ≤2时,y 与x 之间的函数关系式为y=8x-4.②当x>4时,设y=m x, 把(4,12)代入,得12=m 4,解得m=48. 故当x>4时,y 与x 之间的函数关系式为y=48x . (2)把y=4代入y=8x-4,得4=8x-4, 解得x=1.把y=4代入y=48x,得x=12.故一次服药后的有效时间为12-1=11(小时). 7. (1)2解法提示:由题图(2)可知,甲槽中水面下降的速度为20÷(6-2)=5(cm/min ), 乙槽中水面上升的速度为5÷2=2.5(cm/min ). 设甲槽的底面积为m ,乙槽的底面积为n ,则5m=2.5n , 故n=2m ,即乙槽的底面积是甲槽底面积的2倍. (2)设y 甲=kx+b ,将A (2,20),B (6,0)分别代入,得{2k +b =20,6k +b =0,解得{k =−5,b =30,故y 甲=-5x+30.(3)小文的说法不对,睿睿的说法对. 理由:设y 乙=cx , 将C (2,5)代入,可得c=52, 故y 乙=52x. 当x=3时,y 甲=-5×3+30=15, y 乙=52×3=7.5. 15-7.5=7.5≠5,故小文的说法不对. 令y 甲=y 乙,即-5x+30=52x ,解得x=4, 故睿睿的说法对.8.(1)设甲种货车用了x 辆,则乙种货车用了(24-x )辆, 根据题意,得16x+12(24-x )=328, 解得x=10,则24-x=14.答:甲种货车用了10辆,乙种货车用了14辆.(2)①由题意,得w=1 200t+1 000(12-t )+900(10-t )+750×[14-(12-t )]=50t+22 500.②∵16t+12(12-t )≥160,t ≥0,12-t ≥0,10-t ≥0,14-(12-t )≥0,∴4≤t ≤10. ∵50>0,∴w 随着t 的增大而增大,∴当t=4时,w 最小,最小值为50×4+22 500=22 700.。

九年级数学 专题25题一次函数应用典型例题

九年级数学 专题25题一次函数应用典型例题

25题一次函数应用专题 一、近五年某某中考一次函数应用题 例1(09某某)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一X 标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x X 、按裁法二裁yX 、按裁法三裁z X ,且所裁出的A 、B 两种型号的板材刚好够用.(1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的X 数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少X ?解:(1)0 ,3.(2)由题意,得x+2y=240,∴y=120–12 x .2x+3z=180,∴z=60–23x .(3)由题意,得Q =x+y+z=x+120–12 x+60–23x .整理,得 .Q=180–16x由题意,得⎩⎪⎨⎪⎧120–12x ≥060–23≥0 解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小.此时按三种裁法分别裁90X 、75X 、0X .例2(07某某)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:手机型号 A型 B 型 C 型(1)用含x ,y (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25.解:(1)60-x-y ; …………………………………………………………………(2分)(2)由题意,得 900x+1200y+1100(60-x-y )= 61000,整理得 y=2x-50. ………………………………………………………(5分)(3)①由题意,得 P= 1200x+1600y+1300(60-x-y )- 61000-1500,整理得 P=500x+500. …………………………………………………(7分)②购进C 型手机部数为:60-x-y =110-3x .根据题意列不等式组,得⎩⎪⎨⎪⎧x ≥82x-50≥8110–3x ≥8解得 29≤x ≤34.∴ xX 围为29≤x ≤34,且x 为整数.(注:不指出x 为整数不扣分) …(10分)∵P 是x 的一次函数,k=500>0,∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. ………(11分)此时购进A 型手机34部,B 型手机18部,C 型手机8部. ………(12分)例3(06某某)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式;②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?解:(1)2;10; ……………………………………………………………………(2分)(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60),∴6 k 1=60,解得k 1=10,∴y =10x . …………………………………………………………………(4分)②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),时)∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩ ∴y =5x +20. …………………………………………………………(7分)③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队. ………………(9分)(说明:通过观察图象并用方程来解决问题,正确的也给分)(3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=…………………………………………………(11分) 解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米. ……………………(12分)例4(05某某)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x(小时)之间的关系如图10所示. 请根据图象提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是______________________,从点燃到燃烧尽所用的时间分别是_______________________.;(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?二、一次函数应用——方案设计例5(某某市2009年)某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据: x 的取值X 围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.1.解:(1)依题意列不等式组得94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤ ······································· 3分 由不等式①得32x ≤ ························································································· 4分由不等式②得30x ≥ ························································································· 5分 x ∴的取值X 围为3032x ≤≤ ············································································ 6分(2)7090(50)y x x =+- ·············································································· 8分 化简得204500y x =-+200y -<∴,随x 的增大而减小. ··································································· 9分 而3032x ≤≤∴当32x =,5018x -=时,203245003860y =-⨯+=最小值(元) ··················· 11分 答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元. ····························································································· 12分 迁移点拨:本题是一道表格信息题,既考查不等式,又考查一次函数解析式及一次函数最值问题,通常一次函数的最值问题首先油不等式找到x 的取值X 围,进而利用一次函数的增减性在前面X 围的前提下求出最值。

【数学中考一轮复习】 一次函数的最值应用(含答案)

【数学中考一轮复习】 一次函数的最值应用(含答案)

专项训练一次函数的最值应用一、一次函数最值问题的基本模型1.如果n≤x≤m,那么y=kx+b有最大或最小值.当x=n时,y有最小值,当x=m时,y有最大值.当x=n时,y有最大值,当x=m时,y有最小值.2.如果x≥n,那么y=kx+b有最大或最小值.当x=n时,y有最小值;当x=n时,y有最大值.3.如果x≤m,那么y=kx+b有最大或最小值.当x=m时,y有最大值;当x=n时,y有最小值.4.如果n<x<m,x取值不定,那么y=kx+b既没有最大值也没有最小值.但是,如果x 取特殊值(如x取整数值),可参照前述三条求最值.二、一次函数最值应用的步骤1.审题,求一次函数的解析式;3.根据题意确定自变量的取值范围;4.结合增减性和自变量的取值范围确定函数的最值.类型一实际应用中直接求最值1.为迎接国庆节的到来,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍各种奖品的单价如下表所示如果计划一等奖买x件,买50件奖品的总钱数是w元.(1)求与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少,最少是多少元?2.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要原料0.25吨,每生产1吨乙产品需要原料0.5吨,受市场影响,该厂能获得的原料至多为1000吨,其他原料充足.求该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.4.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如表所示:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)10 8(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元分别写出当0≤x≤50和x>50时,y与x的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?5.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?类型二方案设计中的最值6.煤炭是陕西省的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如表(表中运费栏“元/t·km”表示每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.7.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.8.年初,武汉暴发新冠疫情,“一方有难,八方支援”,某地为助力武汉抗疫,紧急募集到一批物资运往武汉的A,B两县,用载重量为16吨的大货车8辆和载重量10吨的小货车10辆恰好一次性运完这批物资.运往A,B两县的运费标准如表:(1)如果安排到A,B两县的货车都是9辆,设前往A县的大货车为x辆,前往A,B两县的总运费为y元,求出y与x的函数关系式(写出自变量的取值范围);(2)在(1)的条件下,若运往A县的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.9.在抗击新冠肺炎疫情期间,市场上的消毒液和防护口罩热销.某药店推出两种优惠方案,方案①:购买1瓶消毒液,赠送1个口罩,方案②:消毒液和口罩一律按9折优惠.消毒液每瓶定价40元,口罩每个定价5元小明需买4瓶消毒液和若干个口罩(不少于4个),设购买口罩x 个,用优惠方案①购买费用为y 1元,用优惠方案②购买费用为y 2元. (1)请分别写出y 1,y 2与x 之间的函数关系式; (2)什么情况下选择方案②更优惠?(3)若要买4瓶消毒液和12个口罩,请你设计怎样购买最便宜.参考答案1.解:(1)w = 12x +10(2x-10)+5[50-x-(2x-10)]= 17x +200.由⎪⎪⎩⎪⎪⎨⎧-⨯≤--->--->->)102(105.1)]102(50[50)]102(50[01020x x x x x x x ,得10≤x <20.∴自变量的取值范围是10≤x <20,且x 为整数;(2)w =17x +200,∵k =17>0,∴w 随x 的增大而增大,减小而减小. ∵1≤0x <20,当x =10时,有w 最小值,最小值为w =17×10+200=370. 2.解: (1) y =0.3x +0.4(2500-x )=-0.1x +1000, 因此y 与x 之间的函数表达式为:y =-0.1x +1 000;⎧≤-+1000)2500(5.025.0x x又∵k =-0.1<0,∴y 随x 的减小而增大. ∴当x =1000时, y 最大,此时2500-x =1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大.3,解:(1)设y 甲=k 1x ,根据题意得:5k 1=100,解得:k 1=20.∴у甲=20x. 设y 乙=k 2x +100,根据题意得:20k 2+100=300,解:k 2=10. ∴y 乙= 10x +100;(2)①y 甲<y 乙,即20x <10x-100,解得:x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x-100,解得:x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即 20x >10x +100,解得:x >10,当入园次数大于10次时,选择乙消费卡比较合算.4,解:(1)由表格可得,40×10=400(元), 答:小刚购买苹果40千克,应付400元; (2)由题意可得,当0≤x ≤50时, y 与x 的关系式是y =10x ,当x >50时,y 与x 的关系式是y =10×50—8(x-50)=8x +100, 即当x >50时,y 与x 的关系式是y =8x +100;(3)小刚若一次性购买80千克所付的费用为:8×80-100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800—740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40 千克)所付的费用少60元.5.解:(1)依题意得:y =4x +3(50-x ) =x +150;(2)依题意得:⎩⎨⎧≤-+≤-+,②,①17)50(4.03.019)50(2.05.0x x x x解不等式①得:x ≤30,解不等式②得:x ≥28, ∴不等式组的解集为28≤x ≤30.∵y =x +150, y 是随2的增大而增大,且28≤x ≤30,∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,y 最小=28+150=1786,解:(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨. 依题意得:y =200×0.45x +150×a ×(1000-x )=90x-150ax + 150000a =(90-150a )x + 150000a ,依题意得⎩⎨⎧≤-≤8001000600x x ,解得200≤x ≤600.故函数关系式为y =(90-150a )x +150000a , (200≤x ≤600) ; (2)当0<a <0.6时,90-150a >0,∴当x =200时,y 最小=(90-150a )×200+150000a =120000a +18000. 此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a )×600+150000a =60000a +54000. 此时,1000-x =1000-600=400.当a =0.6时,y =90000,答:当0<a <0.6时,运往A 厂200吨, B 厂800吨时,总运费最低,最低运费(120000a +18000)元.当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60000a +54000)元.当a =0.6时,运费90000元.7.解:(1)由题意可得,y =400x +320(8-x )=80x +2560. 即y 与x 的函数关系式为y =80x +2560;(2)由题意可得,45x +35(8-x )≥340,解得,x ≥6, ∵y =80x +2560,∴k =80,y 随x 的增大而增大. ∴当x =6时, y 取得最小值,此时y =3040,8-x =2.答:最节省费用的租车方案是大货车6辆,小货车2辆,最低费用是3040元.8.解:(1)设前往A 县的大货车为z 辆,则前往A 县的小货车为(9-x )辆;前往B 县的大货车为(8-x )辆,前往B 县的小货车为(1+x )辆,根据题意得:y =1080x +750(9-x )+120(8-x )+950(1+x )=80x +17300 (0≤x ≤8); (2)由题意得,16x +10(9-x )≥120,解得x ≥5. 又∵0≤x ≤8,∴5≤x ≤8且为整数.∵y =80x +17300,且80>0,∴y 随x 的增大而增大, ∴当x =5时,y 最小,最小值为y =80×5+17300=17700.货车前往B县.最少运费为17700元.9.解:(1)由题意得:y1=40×4+5(x-4)=5x+140;y2=40×0.9×4+5×0.9x=4.5x+144;(2)当y1>y2时,5x+140>4.5x+144,解得x>8,答:当x>8时,选择方案②更优惠;(3)方案①:y1=5×12+140=220(元);方案②:y2=4.5×12+144=198(元);方案③:先按方案①买4瓶消毒液,送4个口罩,剩下8个口罩按方案②购买,总价为:40×4+5×0.9×8=196(元),∵200>198>196,∴方案③最省钱.答:购买4瓶消毒液和12个口罩用方案③最优惠.。

中考数学一次函数的实际应用题型都在这了,快看看掌握了没!

中考数学一次函数的实际应用题型都在这了,快看看掌握了没!

中考数学一次函数的实际应用题型都在这了,快看看掌握了
没!
一次函数的实际应用
一、利用函数的解析式解决问题
1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.。

(完整word版)初中一次函数典型应用题

(完整word版)初中一次函数典型应用题

中考一次函数应用题近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。

例1 已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0。

9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0。

4米,可获利润50元。

若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元.(1)求y与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元.(1)写出每月电话费y(元)与通话次数x之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27。

8元,求该月通话的次数.例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0。

5万元,用一节B型货厢的运费是0。

8万元。

(1)设运输这批货物的总运费为y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。

2022年中考数学复习:一次函数的实际应用(word版、含答案)

2022年中考数学复习:一次函数的实际应用(word版、含答案)

2022年中考数学复习:一次函数的实际应用一、单选题(本大题共12小题)1.(2022·北京东城·一模)将一圆柱形小水杯固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度(cm)h 与注水时间(s)t 的函数图象大致是( )A .B .C .D . 2.(2022·河南南阳·一模)如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S 与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系3.(2022·黑龙江哈尔滨·一模)甲、乙两人一起步行到火车站,两人步行速度一样,途中发现忘带预购的火车票了,于是甲立刻以原速返回,然后乘出租车赶往火车站,途中与乙相遇后,带上乙一同前往,结果比预计早到了3分钟,他们距公司的距离y (米)与所用时间t (分)间的函数关系如图.则下列结论错误的是( )A.步行的速度为80米/分B.出租车的速度为320米/分C.公司距离火车站1600米D.相遇时两人距车站400米4.(2022·山东济南·二模)如图,在Rt ABO中,∠OBA=90°,A(4,4),点C在边AB上,且13 ACCB,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,1)B.(13,83)C.(83,83)D.(83,13)5.(2022·山东济南·模拟预测)如图,在平面直角坐标系中,两条直线分别为y=2x,y=kx,且点A在直线y=2x上,点B在直线y=kx上,AB∠x轴,AD∠x轴,BC∠x轴垂足分别为D和C,若四边形ABCD 为正方形时,则k=()A.14B.12C.23D.26.(2022·重庆鼓楼学校一模)周末老张和小胜相约从各自的家出发去体育馆打羽毛球,且老张家,小胜家,体育馆顺次在同一直线上,老张先从家出发4分钟后来到小胜家和小胜汇合,汇合时间忽略不计,两人以老张的速度一起走了4分钟后,小胜发现自己装备带错了需回家换装备,于是立即加速回家用了少许时间取了装备后又以加速后的速度赶往体育馆,老张仍以原速前行,结果小胜比老张提前1分钟到达体育馆.若老张与小胜两人和体育馆之间的距离y(米)与小胜出发的时间x(分钟)之间的函数图象如图所示.则以下说法错误的是().A.小胜加速后的速度为250米/分钟B.老张用了24分钟到达体育馆C.小胜回家后用了0.6分钟取装备D.小胜取了装备后追上老张时距离老张家3025米7.(2022·重庆·模拟预测)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,你认为正确的结论是()∠小帅的骑车速度为16千米/小时;0.5,0;∠点C的坐标为()∠线段AB对应的函数表达式为()=+≤≤;840.5 2.5y x x∠当小帅到达乙地时,小泽距乙地还有4千米.A.∠∠B.∠∠C.∠∠∠D.∠∠∠∠8.(2022·浙江绍兴·一模)为积极响应党中央关于体育强国的号召,在某市半程马拉松开赛前,小明和小斌为了取得更好的成绩,进行了一次迷你马拉松的训练.如图是两人分别跑的路程y(千米)与时间x (分钟)的函数关系.他们同时出发,其中小明60分钟时到达终点,小斌由于在40分钟时不小心崴了脚便原地休息一会儿,最终在65分钟时到达终点,已知小斌后半程速度为0.15千米/分钟,则在这个过程中:∠小明在10到50分时,保持0.25千米/分钟的速度前进;∠小斌休息的时间为4分钟;∠小明和小斌在55分时刚好相遇;∠在整个过程中,小明和小斌相距0.2千米的次数有4次.以上说法正确的个数是()A.1个B.2个C.3个D.4个9.(2022·重庆·模拟预测)春节前,某加工厂接到面粉加工任务,要求5天内加工完220吨面粉.加工厂安排甲、乙两组共同完成加工任务.乙组加工中途停工一段时间维修设备,然后提高加工效率继续加工,直到与甲队同时完成加工任务为止.设甲、乙两组各自加工面粉数量y(吨)与甲组加工时间x (天)之间的关系如图所示,结合图象,下列结论错误的是()A.乙组中途休息了1天B.甲组每天加工面粉20吨C.加工3天后完成总任务的一半D.3.5天后甲乙两组加工面粉数量相等10.(2022·河南·一模)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10.点A、B的坐标分别为(1,0),(7,0),将Rt△ABC沿x轴向右平移,当点C落在直线y=2x﹣10时,线段BC扫过的面积为()A.16B.32C.64D.7211.(2022·重庆·字水中学三模)甲乙两人在同一直线跑道AB上进行往返跑,甲从起点A出发,乙在甲前方C处与甲同时同向出发,当甲超越乙到达B地时,休息了100秒又以原速返回A地,而乙到达终点B 地后马上以原速的2.5倍往回跑,最后乙比甲晚10秒到达A地,两人距A地的距离记为y(米),乙的跑步时间记为x(秒),y与x的函数关系如图所示,则下列说法:∠B、C之间的距离为100米;∠乙返回A地时共用了510秒;∠乙从B地返回A地的速度为5米/秒;∠当甲和乙两人第二次相遇时,他们距离B地2003米.其中正确的说法有()个.A.1B.2C.3D.412.(2022·重庆·字水中学一模)快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y(千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:∠两车在途中相遇时都停留了1小时;∠快车从甲地去乙地时每小时比慢车多行驶40km;∠快车从乙地返回甲地的速度为120km/h;∠当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.1二、填空题(本大题共5小题)13.(2022·福建三明·二模)在平面直角坐标系xOy中,一次函数y = m(x + 3)- 1(m≠0)的图象为直线l,在下列结论中:∠无论m 取何值,直线l 一定经过某个定点;∠过点O 作OH ∠l ,垂足为H ,则OH ;∠若l 与x 轴交于点A ,与y 轴交于点B ,△AOB 为等腰三角形,则m = 1;∠对于一次函数y 1= a (x - 1)+ 2(a ≠0),无论x 取何值,始终有y 1>y ,则m < 0或0 <m <3? 4?. 其中正确的是(填写所有正确结论的序号)______________.14.(2022·湖南·株洲市景弘中学一模)如图,把Rt ABC △放在直角坐标系内,其中90,10CAB BC ∠=︒=.点A 、B 的坐标分别为(1,0),(7,0),将Rt ABC 沿x 轴向右平移,当点C 落在直线210y x =-时,线段BC 扫过的面积为________.15.(2022·广西·一模)星期六,王力上午 8:00 从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (单位:千米) 与时间t (单位:分钟)的关系如图所示,则上午 8 :45 王力离图书馆__________________ 千米.16.(2022·湖北黄石·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A 的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC =::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.17.(2022·江苏无锡·模拟预测)定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.三、解答题(本大题共6小题)18.(2022·辽宁·沈阳市南昌初级中学(沈阳市第二十三中学)一模)如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为()3,4-,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=_________;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S≠,点P的运动时间为t秒,∠当53t<<时,求S与t之间的函数关系式;∠在点P运动过程中,当2S=,请直接写出t的值.19.(2022·陕西·交大附中分校模拟预测)李叔叔承包了一片土地种植某种经济作物,为了提高产量,通常会采用喷施药物的方法控制其生长高度.已知在一定条件下,该种经济作物的平均高度y(m)与每公顷所喷施药物的质量x(kg)之间的关系近似满足一次函数关系.下表为该经济作物生长过程中所记录的一些数据.(1)求y与x之间的函数关系式;(2)李叔叔根据经验判断,该种经济作物平均高度在1.5m左右时产量最高,此时每公顷应喷施约多少药物?20.(2022·辽宁·沈阳市第七中学模拟预测)如图1,在平面直角坐标系中,点O是坐标原点,直线y=+x轴交于点A,与y轴交于点B,矩形CDEF的顶点F的坐标为(2,-,D点与原点重合,将矩形CDEF沿x轴正方向以每秒2个单位长度的速度平移,点D到达点A时运动停止,设运动时间为t秒,矩形CDEF与ABO重叠部分的面积为S.(1)填空:t=秒时,点E落在直线AB上;(2)如图2,当01t<<时,求S与t的函数关系式;(3)当矩形CDEF与ABO重叠部分为四边形,且S=t的值.21.(2022·湖北恩施·二模)北京2022年冬奥会于2月4日开幕,2月20日闭幕.冬奥会期间实行闭环管理,所有在闭环内的冬奥会参与者不会与外界有任何接触,大家都会在闭环中得到很好的保护.为使住宿、餐饮、医疗、交通等各项服务保障更充分,城市防疫与冬奥防疫一体推进工作体系更加优化,某场馆给此次冬奥会志愿者每人采购了一顶印有“2022北京冬奥志愿者”的御寒帽,利于防寒防疫与服务时识别.该场馆组委会决定购买A型红色和B型蓝色两种帽子共100顶,并制定了几种购买方案,这些方案满足:A型不能少于B型的一半,也不能多于B型的34,负责采购的同志核算了一下,若按A型最多的方案买,需付款884元,若按A型最少的方案买,需要868元.(1)试求出A型和B型两种帽子的单价.(2)由于所购货物较多,商家决定给予优惠,A型帽子在九折的基础上再降价m元;(0<m≤2),问在组委会制定的几种方案中,哪种方案在给予了优惠后费用最少?请说明理由.22.(2022·云南·开远市教育科学研究所二模)滇池是云南最大的淡水湖,素有“高原明珠”的称号.每年冬天,来自西伯利亚的红嘴鸡都会随着季节的变化来滇池过冬,但滇池污染问题严重,为了更好地治理滇池,保护环境,综合治理指挥部决定购买10台污水处理设备.现有A、B两种型号的设备,其中A型设备每台每月可处理污水220吨,B 型设备每台每月可处理污水180吨.经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元.(1)请分别求出购买一台A 型设备和B 型设备的价格;(2)设购买A 型设备x 台,A 、B 两种型号的设备每月总共能处理污水y 吨.求y 与x 之间的函数关系式,并直接写出x 的取值范围;(3)由于受资金限制,河道综合治理指挥部决定购买污水处理设备的总资金不超过110万元,则每月最多能处理污水多少吨?23.(2022·福建漳州·二模)“戴口罩、勤洗手、常通风”已成为当下人们的生活习惯.某校计划购买一批相同的洗手液,已知某超市推出以下两种优惠方案:方案一,从第一瓶开始一律按标价的八折销售;方案二,购买量不超过100瓶时,按标价销售,超过100瓶时,超过的部分按标价的六折销售.设学校在该超市购买x 瓶洗手液,方案一的费用为1y 元,方案二的费用为2y 元,12,y y 关于x 的函数图象如图所示.(1)求该种洗手液每瓶的标价;(2)当100x ≥时,分别求12,y y 关于x 的函数表达式;并说明当300x =时,选择哪种方案购买费用较少?参考答案:1.B2.D3.D4.C5.C6.D7.D8.C9.D10.C11.C12.B13.∠∠∠14.6415.0.5 1216.(4,3)或(3,4)17.y=﹣12x+5218.(1)5(2)1522 y x=-+(3)∠91544tS=-+53t⎛<<⎫⎪⎝⎭;∠79t=或11519.(1)y=-0.24x+3(0≤x≤12.5)(2)6.25kg20.(1)1(2)S=(3)12或5221.A型10元/顶;B型8元/顶22.(1)购买一台A型设备价格为12万元,购买一台B型设备价格为10万元;(2)401800y x =+(010x ≤≤,且x 为整数);(3)每月最多能处理污水2000吨. 23.(1)该种洗手液每瓶的标价为每瓶20元(2)1216,12800,y x y x 方案二省钱。

初中数学中考复习综合专题:一次函数应用题

初中数学中考复习综合专题:一次函数应用题

初中数学中考复习综合专题:一次函数应用题一、综合题(共30题;共360分)1.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.2.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往A、B两城镇的运费分别为每辆800元和900元,用小货车运往A、B两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A城镇,其余货车前往B城镇,设前往A城镇的大货车为x辆,前往A、B两城镇总费用为y元,试求出y与x的函数解析式.若运往A城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.3.一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)轿车从乙地返回甲地时与货车相遇的时间.4.某小区游泳馆夏季推出两种收费方式.方式一:先购买会员证,会员证200元,只限本人当年使用,凭证游泳每次需另付费10元:方式二:不购买会员证,每次游泳需付费20元.(1)若甲计划今年夏季游泳的费用为500元,则选择哪种付费方式游泳次数比较多?(2)若乙计划今年夏季游泳的次数超过15次,则选择哪种付费方式游泳花费比较少?5.某环卫公司承包了市区两个片区道路的清扫任务,需要购买某厂家A,B两种型号的马路清扫车,购买5辆A型马路清扫车和6辆B型马路清扫车共需171万元;购买3辆A型马路清扫车和12辆B型马路清扫车共需237万元.(1)求这两种马路清扫车的单价;(2)恰逢该厂举行30周年庆,决定对这两种马路清扫车开展促销活动,具体方案如下:购买A型马路清扫车按原价的八折销售,购买B型马上清扫车不超过10辆时按原价销售,超过10辆的部分按原价的七折销售.设购买x辆A种马路清扫车需要y1元,购买x(x>0)个B型马路清扫车需要y2元,分别求出y1,y2关于x的函数关系式;(3)若该公司承包的道路清扫面积为118000m2,每辆A型马路清扫车每天清扫5000m2,每辆B 型马路清扫车每天清扫6000m2,公司准备购买20辆马路清扫车,且B型马路清扫车的数量大于10.请你帮该公司设计出最省钱的购买方案.请说明理由.6.学校为奖励在家自主学习有突出表现的学生,决定购买笔记本和钢笔作为奖品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习-----好资料 更多精品文档 2013中考一次函数应用题

1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是( )

A. 加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25 B. 途中加油21升 C. 汽车加油后还可行驶4小时 D. 汽车到达乙地时油箱中还余油6升 2、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过l0千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元; ③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折: ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ). (A)1个 (B)2个 (C)3个 (D) 4个 3、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.

4、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是 .

5、(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型 价格 进价(元/盏) 售价(元/盏) A型 30 45 B型 50 70 (1)若商场预计进货款为3500元,则这两种台灯各购进多少盏? (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元? 学习-----好资料 更多精品文档 6、(13年安徽省8分、18)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2)、图(3),……。

(1)观察以上图形并完成下表: 图形的名称 基本图的个数 特征点的个数 图(1) 1 7

图(2) 2 12

图(3) 3 17

图(4) 4

… … 猜想:在图(n)中,特征点的个数为 (用n表示) (2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1= ;图(2013)的对称中心的横坐标为

7、(2013年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发 1小时后到达南亚所(景点),游玩一段时间后按原速前 往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同

路线前往湖光岩,如图是他们离家的路程ykm与小明离

家时间xh的函数图象. (1)求小明骑车的速度和在南亚所游玩的时间; (2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上 小明,求妈妈驾车的速度及CD所在直线的函数解析式. 8、(2013•恩施州)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中

1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为. (1)求袋子里2号球的个数. (2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率. 学习-----好资料 更多精品文档 9、(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品. (1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式; (2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品? (3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?

10、(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题: (1)写出A、B两地直接的距离; (2)求出点M的坐标,并解释该点坐标所表示的实际意义; (3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

11、(2013•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元. (1)根据图象,求y与x之间的函数关系式; (2)求甲、乙两种品牌的文具盒进货单价; (3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?

12、(2013•遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨. (1)若将这批货物一次性运到灾区,有哪几种租车方案? (2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元? 学习-----好资料 更多精品文档 13、(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题: (1)A、B两市的距离是 千米,甲到B市后, 小时乙到达B市; (2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围; (3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.

14、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元). (1)请你设计出进货方案; (2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元? (3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.

15、(2013•绥化)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所

走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了 小时; (2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米? (3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?

16、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:

相关文档
最新文档