14.1.4多项式的乘法(3)
人教版数学八年级上册14.1.4.2 《多项式乘多项式》教案

人教版数学八年级上册14.1.4.2 《多项式乘多项式》教案一. 教材分析《多项式乘多项式》是人教版数学八年级上册第14章的一部分,主要目的是让学生掌握多项式乘以多项式的运算法则。
本节课是在学生已经掌握了整式的乘法、单项式乘以多项式的基础上进行学习的,对于学生来说,这是一个由浅入深的过程。
教材通过具体的例子,引导学生探究多项式乘以多项式的规律,进而总结出运算法则。
二. 学情分析学生在进入八年级之前,已经学习过了整式的乘法和单项式乘以多项式,对于这部分知识有了一定的了解。
但是,多项式乘以多项式的运算规则较为复杂,需要学生通过实际的例题,去探究和理解。
此外,学生对于新知识的接受能力不同,有的学生可能需要更多的引导和帮助。
三. 教学目标1.让学生掌握多项式乘以多项式的运算法则。
2.培养学生独立思考、合作交流的能力。
3.提高学生的数学逻辑思维能力。
四. 教学重难点1.教学重点:掌握多项式乘以多项式的运算法则。
2.教学难点:理解多项式乘以多项式的过程中,各项的系数和指数的变化规律。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考;通过具体的案例,让学生理解和掌握运算法则;通过小组合作学习,培养学生之间的沟通和合作能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾整式的乘法和单项式乘以多项式的知识,为新课的学习做好铺垫。
2.呈现(15分钟)展示几个多项式乘以多项式的案例,让学生观察和分析,引导学生发现其中的规律。
3.操练(20分钟)让学生通过计算,进一步理解和掌握多项式乘以多项式的运算法则。
在这个过程中,教师应及时给予指导和帮助,确保学生能够正确地完成练习。
4.巩固(15分钟)通过一些具有代表性的练习题,让学生巩固所学知识,提高解题能力。
5.拓展(10分钟)引导学生思考:多项式乘以多项式的运算法则能否推广到更高次的多项式?让学生进行一些拓展性的思考。
人教版八年级上14.1.4多项式与多项式相乘(第3课时)课文练习含答案(含答案)

第3课时 多项式与多项式相乘课前预习要点感知 多项式与多项式相乘,先用一个多项式的________乘另一个多项式的________,再把所得的积________.(a +b)(p +q)=____________.预习练习1-1 填空:(1)(a +4)(a +3)=a·a +a ×3+4×________+4×3=________;(2)(2x -5y)(3x -y)=2x·3x +2x·________+(-5y)·3x +(-5y)·________=________________________________________________________________________.1-2 计算:(x +5)(x -7)=____________;(2x -1)(5x +2)=____________.当堂训练知识点1 直接运用法则计算1.计算:(1)(m +1)(2m -1); (2)(2a -3b)(3a +2b);(3)(y +1)2; (4)a(a -3)+(2-a)(2+a).2.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.知识点2 多项式乘以多项式的应用3.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +44.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是____________平方厘米.5.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了________平方米.知识点3(x+p)(x+q)=x2+(p+q)x+pq6.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9)C.(x+3)(x-6) D.(x-3)(x+6)7.计算:(1)(x+1)(x+4); (2)(m-2)(m+3);(3)(y+4)(y+5); (4)(t-3)(t+4).课后作业8.(佛山中考)若(x +2)(x -1)=x 2+mx +n ,则m +n =( )A .1B .-2C .-1D .29.计算:(1)(m -2n)(-m -n);(2)(x 3-2)(x 3+3)-(x 2)3+x 2·x ;(3)(-7x 2-8y 2)·(-x 2+3y 2);(4)(3x -2y)(y -3x)-(2x -y)(3x +y).10.已知|2a +3b -7|+(a -9b +7)2=0,试求(14a 2-12ab +b 2)(12a +b)的值.11.若多项式(x 2+mx +n)(x 2-3x +4)展开后不含x 3和x 2项,求m 和n 的值.12.一个正方形的一边增加3 cm ,相邻的一边减少3 cm ,得到的长方形的面积与这个正方形每一边减少1 cm 所得的正方形的面积相等,求这个长方形的面积.挑战自我13.由课本第100页的问题3可知,一些代数恒等式可以用平面几何图形的面积来表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用如图1的图形的面积表示.(1)请直接写出图形2表示的代数恒等式:________________________;(2)试画出一个几何图形,使它的面积表示为(a+b)(a+3b)=a2+4ab+3b2.第3课时 多项式与多项式相乘要点感知 每一项 每一项 相加 ap +aq +bp +bq预习练习1-1 (1)a a 2+7a +12 (2)(-y) (-y) 6x 2-17xy +5y 2 1-2 (1)x 2-2x -35 (2)10x 2-x -2 当堂训练1.(1)原式=2m 2-m +2m -1=2m 2+m -1. (2)原式=6a 2+4ab -9ab -6b 2=6a 2-5ab -6b 2. (3)原式=(y +1)(y +1)=y 2+y +y +1=y 2+2y +1. (4)原式=a 2-3a +4+2a -2a -a 2=-3a +4. 2.原式=x 2+2x -5x -10-x 2+2x -x+2=-2x -8.当x =-4时,原式=-2×(-4)-8=0. 3.B 4.(34a 2+7a +16) 5.(20x -25) 6.D 7.(1)原式=x 2+5x +4. (2)原式=m 2+m -6. (3)原式=y 2+9y +20. (4)原式=t 2+t -12. 课后作业8.C 9.(1)原式=-m 2-mn +2mn +2n 2=-m 2+mn +2n 2. (2)原式=x 6+x 3-6-x 6+x 3=2x 3-6. (3)原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4. (4)原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2. 10.由题意,得⎩⎪⎨⎪⎧2a +3b =7,a -9b =-7.解得⎩⎪⎨⎪⎧a =2,b =1.原式=18a 3+b 3=18×23+13=2. 11.原式=x 4-3x 3+4x 2+mx 3-3mx 2+4mx +nx 2-3nx +4n =x 4+(m -3)x 3+(4-3m +n)x 2+(4m -3n)x +4n.∵多项式展开后不含x 3和x 2项,∴m -3=0,4-3m +n =0.∴m =3,n =5. 12.设正方形的边长为x cm.依题意得(x +3)(x -3)=(x -1)(x -1).解得x =5.∴长方形的面积为(5+3)×(5-3)=16(cm 2).挑战自我13.(1)(a +2b)(2a +b)=2a 2+5ab +2b 2 (2)如图所示.。
人教版八年级数学上册14.1.4整式的乘法(第3课时)优秀教学案例

(四)反思与评价
1.学生自我反思:引导学生对自己在课堂学习过程中的表现进行反思,如:学习态度、参与程度、问题解决能力等,鼓励学生总结经验,提高自我认知。
2.同伴评价:学生之间相互评价,关注同伴在小组合作过程中的表现,如:沟通协作、问题解决能力等,培养学生的评价能力。
2.讨论交流:引导学生小组内讨论交流,探讨整式乘法的运算规律,分享解题心得。
3.问题解决:鼓励学生提出在计算过程中遇到的问题,由小组成员共同解决,培养学生的合作能力。
(四)总结归纳
1.整式乘法的概念:引导学生总结整式乘法的定义,即两个整式相乘得到一个新的整式。
2.整式乘法的法则:让学生归纳整式乘法的法则,包括系数相乘、字母相乘、指数相加等。
2.整式乘法的法则:讲解整式乘法的法则,包括系数相乘、字母相乘、指数相加等,并通过具体例子进行演示。
3.整式乘法的运算步骤:引导学生掌握整式乘法的运算步骤,包括:确定结果的系数、展开字母、合并同类项等。
(三)学生小组讨论
1.小组活动:将学生分成若干小组,每组提供几个整式乘法的例子,让学生运用所学知识进行计算。
3.整式乘法的运算步骤:总结整式乘法的运算步骤,包括:确定结果的系数、展开字母、合并同类项等。
(五)作业小结
1.布置作业:布置一些与本节课内容相关的练习题,让学生巩固所学知识,提高学生的实践能力。
2.课堂小结:引导学生对本节课的内容进行小结,帮助学生梳理知识点,巩固学习成果。
3.课后反思:鼓励学生在课后反思自己的学习过程,总结经验,提高自我认知。
二、教学目标
(一)知识与技能
1.理解整式乘法的概念,掌握整式乘法的基本运算法则;
14.1.4第1课时单项式与单项式、多项式相乘

第十四章整式的乘法与因式分解整式的乘法整式的乘法第1课时单项式与单项式、多项式相乘学习目标:1.掌握单项式与单项式、单项式与多项式相乘的运算法则.2.能够灵活地进行单项式与单项式、单项式与多项式相乘的运算.重点:掌握单项式与单项式、单项式与多项式相乘的运算法则.难点:进行单项式与单项式、单项式与多项式相乘的运算. 一、知识链接1.幂的运算性质:(1)同底数幂的乘法公式:a m ·a n =____________(m ,n 为正整数).(2)幂的乘方公式:(a m )n =____________(m ,n 为正整数).(3)积的乘方公式:(ab )n =____________(n 为正整数).2.判断正误,并改正。
①m 2·m 3=m 6()②(a 5)2=a 7()③(ab 2)3=ab 6()④m 5+m 5=m 10()⑤(-x)3·(-x)2=-x 5( )3.计算:(1)x 2·x 3·x 4=____________;(2)(x 3)6=____________;(3)(-2a 4b 2)3=____________;(4)(a 2)3·a 4=____________;(5)=553553⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭____________.二、新知预习问题1假如要给下面这张风景图片加一个美丽的相框,需要知道这幅图片的大小,现在告诉你,图片的长为2x ,宽为2,你能计算出图片的面积吗若另一张风景图片的长为ab,宽为b,你能计算出图片的面积吗?问题2光的速度约为3×105km/s ,太阳光照射到地球上需要的时间大约是5×102s ,你知道地球与太阳的距离约是多少吗列式:____________________________想一想:怎样计算这个式子计算过程中用到了哪些运算律及运算性质 问题3如果将上式中的数字改为字母,比如ac 5·bc 2,怎样计算这个式子 议一议:根据以上计算,想一想如何计算单项式乘以单项式要点归纳:单项式与单项式相乘,把它们的_______、________分别相乘,对于只在一个单项式里含有的字母,则连同它的________作为积的一个因式.三、自学自测1.判断正误,并改正.(1)6321025a a a =⋅(2)54532x x x =⋅(3)()77623s s s -=-⋅(4)()632a a -=-⋅ 列式:计算:________________列式:计算:________________2.计算:(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).四、我的疑惑一、____________________________________________________________ ________________________________________________________________ ______________________________探究点1:单项式乘以单项式例1:计算:(1)3x2·5x3;(2)4y·(-2xy2);(3)(-3x)2·4x2;(4)(-2a)3(-3a)2.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算,有乘方运算,要先算乘方,再算乘法;(3)不要漏掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.例2:已知-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,求m2+n的值.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可. 探究点2:单项式与多项式相乘问题1:如图,试求出三块草坪的的总面积是多少?面积为____________面积为____________面积为____________总面积为_______________________问题2:若将三块小长方形草坪拼成一个大长方形草坪,那么如何求此大长方形的面积? 根据等积法,你能得出的结论是_________________=__________________.根据此结论,议一议如何计算单项式乘以多项式?要点归纳:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.典例精析例3:先化简,再求值:3a(2a 2-4a +3)-2a 2(3a +4),其中a =-2. 方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要乘错.长为__________________例4:如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.方法总结:在整式乘法的混合运算中,要注意运算顺序.注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.针对训练1.计算-3xy2z·x2y的结果是()若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为() A.3x3-4x2B.6x2-8xC.6x3-8x2D.6x3-8x3.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于()A.1B.-D.0计算:(1)(2xy2-3xy)·2xy;(2)-2ab(a b-3ab2-1);(3)x2(3-x)+x(x2-2x);(4)(-ab)(ab2-2ab+b+1).二、课堂小结实质注意事项单项式乘以单项式转化为同底数幂的运算(1)注意符号问题;(2)不要出现漏乘现象(3)运算要有顺序(4)对于混合运算,注意最后应合并同类项单项式乘以多项式转化为单项式×单项式1.计算3a2·2a3的结果是()计算(-9a2b3)·8ab2的结果是()若(a m b n)·(a2b)=a5b3,那么m+n=()计算:(1)4(a-b+1)=__________;(2)3x(2x-y2)=_______________;(3)(2x-5y+6z)(-3x)=_______________;(4)(-2a2)2(-a-2b+c)=_____________.5.计算:-2x2·(xy+y2)-5x(x2y-xy2).6.解方程:8x(5-x)=34-2x(4x-3).7.如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.拓展提升8.某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-2x+1,那么正确的计算结果是多少?。
人教版八年级数学上册14.1.4.3《多项式与多项式相乘》教学设计

人教版八年级数学上册14.1.4.3《多项式与多项式相乘》教学设计一. 教材分析人教版八年级数学上册14.1.4.3《多项式与多项式相乘》是整式乘法的一个重要内容。
这部分内容主要让学生掌握多项式乘多项式的法则,并能灵活运用这个法则进行计算。
在学习了单项式乘单项式和多项式乘单项式的基础上,学生能够更好地理解和掌握多项式乘多项式的概念和方法。
二. 学情分析学生在学习这个知识点时,已经掌握了单项式乘单项式和多项式乘单项式的知识,具备了一定的数学基础。
但学生在应用多项式乘多项式的法则时,可能会出现混淆和错误。
因此,在教学过程中,需要引导学生明确多项式乘多项式的法则,并通过大量的练习来巩固这个知识点。
三. 教学目标1.让学生理解多项式乘多项式的概念,掌握多项式乘多项式的法则。
2.培养学生运用多项式乘多项式的法则进行计算的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:掌握多项式乘多项式的法则,并能灵活运用。
2.难点:理解多项式乘多项式的法则,并在实际计算中运用。
五. 教学方法1.采用讲解法,引导学生理解多项式乘多项式的概念和法则。
2.采用练习法,让学生在实践中运用多项式乘多项式的法则。
3.采用小组合作法,让学生在小组讨论中解决问题,提高合作能力。
六. 教学准备1.准备相关的教学PPT,展示多项式乘多项式的例子。
2.准备一些练习题,用于课堂练习和课后作业。
3.准备黑板,用于板书解题过程。
七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生回顾单项式乘单项式和多项式乘单项式的知识,为新课的学习做好铺垫。
2.呈现(10分钟)展示多项式乘多项式的例子,引导学生观察和思考。
让学生尝试用自己的语言描述多项式乘多项式的过程,培养学生的数学表达能力。
3.操练(10分钟)让学生独立完成一些多项式乘多项式的练习题,教师巡回指导,及时纠正学生的错误。
这个环节可以让学生更好地理解和掌握多项式乘多项式的法则。
14.1.4(第3课) 多项式乘以多项式

多项式与多项式相乘的法则 多项式与多项式相乘,先用一个多项 式的每一项分别乘以另一个多项式的 每一项,再把所得的积相加 在进行多项式乘法运算的推导过程 中运用了哪些数学思想方法?与同伴交 流。
运用了整体、转化和数形结合的数学思想。
【例1】计算:
回忆
1.单项式乘单项式的法则 2.单项式乘多项式的法则
回忆
单项式乘以多项式计算法则
单项式与多项式相乘,就是 用单项式去乘多项式的每 一项,再把所得的积相加.
思路:单×多
分配律
单×单
回顾 & 思考
回顾与思考 如何进行单项式与多项式乘法的运算? ① 将单项式分别乘以多项式的各项,
3、结果应化为最简式 {合并同类项}.
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
辨一辨
2
判别下列解法是否正确, 若错请说出理由.
2
(2 x 3)(x 2) ( x 1)
解:原式
3x
2x 4x + 6 ( x 1)(x 1) 2 2 2x 4x + 6 ( x 2x + 1) 2 2 2x 4x + 6 x + 2x 1 2 x 2x + 5
2
( 2) x 2 xy 35 y
2
2
(3) 4m 9n
2 2
2 2
( 4) 4a + 12ab + 9b
你注意到了吗?
多项式乘以多项式,展 开后项数很有规律,在合并 同类项之前,展开式的项数 恰好等于两个多项式的项数 的积。
八年级上册 14.1.4 整式的乘法(第3课时)整式的除法课件 1

2.计算 2x3÷x2 的结果是( B ).
A.x
B.2x
C.2x5
D.2x6
3.多项式除以单项式,先把这个多项式的每一项除以 这个单项式 ,再
把所得的商相加 .
4.(x2+xy)÷x= x+y .
1.单项式除以单项式 【例 1】 计算:9a5b3c÷(-6a4b).
9a5b3c÷(-6a4b)=[9÷(-6)]·a5-4·b3-1·c=-32ab2c.
(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab. 当 a=2,b=1 时,原式=22-2×2×1=4-4=0.
关闭
答案
第3课时 整式的除法
1.同底数幂相除,底数不变,指数 相减.用式子表示为:am÷an= am-n (a≠0,m,n 都是正整数,并且 m>n). 2.任何不等于 0 的数的 0 次幂都等于 1 ,即 a0=1(a≠0).
1.单项式相除,把系数与同底数幂分别相除作为 商的因式 ;对于只在
被除式里含有的字母,则连同它的指数作为 商的一个因式 .
(2)(36a4b3-24a3b2+6a2b)÷6a2b
=36a4b3÷6a2b-24a3b2÷6a2b+6a2b÷6a2b
=6a2b2-4ab+1.
关闭
答案
1.下列运算中正确的是( ). A.(6x6)÷(3x3)=2x2 B.(8x8)÷(4x2)=2x6 C.(3xy)2÷(3x)=y D.(x2y2)÷(xy)2=xy
B
关闭
答案
2.计算(2x)3÷x 的结果正确的是( ).
A.8x2
B.6x2
14.1.4 第3课时 多项式乘多项式 人教版数学八年级上册同步提优训练(含答案)

14.1.4 第3课时 多项式乘多项式命题点1 多项式乘多项式1.计算(2m+3)(m-1)的结果是( )A.2m2-m-3B.2m2+m-3C.2m2-m+3D.m2-m-32.计算(4a-3b)(-4a-3b)的结果为( )A.16a2-9b2B.-16a2+9b2C.16a2-24ab+9b2D.-16a2-24ab-9b23.下面的计算结果为3x2+13x-10的是( )A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)4.若用两种方法表示中阴影部分的面积,则可以得到的代数恒等式是( )A.(m+a)(m-b)=m2+(a-b)m-abB.(m-a)(m+b)=m2+(b-a)m-abC.(m-a)(m-b)=m2-(a-b)m+abD.(m-a)(m-b)=m2-(a+b)m+ab5.若(3x+2)(x+p)=mx2+nx-2,则下列结论中正确的是( )A.m=6B.n=1C.p=-2D.mnp=36.计算:(1)(2x-7y)(3x+4y-1);(2)(x-y)(x2+xy+y2).7.已知(x+a)(x2-x+c)的展开式中不含x2项与x项,化简(x-a)(x2+x+c).命题点2 形如图(x+a)(x+b)的多项式的乘法8.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为( )A.2B.-2C.4D.-49.若(x-2)(x+1)=x2+ax+b,则a+b的值为( )A.-1B.2C.3D.-310.下列算式的计算结果等于x2-5x-6的是( )A.(x-6)(x+1)B.(x+6)(x-1)C.(x-2)(x+3)D.(x+2)(x-3)11.先观察下列各式,再解答后面的问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30.(1)乘积中的一次项系数、常数项与两因式中的常数项有何关系?(2)请把以上各式呈现的规律,用式子表示出来.(3)试用你写的式子,直接写出下列两式的结果:①(a+99)(a-100)= ;②(y-500)(y-81)= .命题点3 多项式乘多项式的图形表示12.一些代数恒等式可以用平面几何图形的面积来表示,例如图:2x(x+y)=2x2+2xy就可以用①的面积来表示.(1)请你写出图②所表示的代数恒等式: ;(2)请你写出图③所表示的代数恒等式: ;(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.命题点4 整式的混合运算13.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.14.在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比较20202021×20202018与20202020×20202019的大小.解:设a=20202020,x=20202021×20202018,y=20202020×20202019,那么x=(a+1)(a-2),y=a(a-1).∵x-y= ,∴x y(填“>”或“<”).你学到这种方法了吗?不妨尝试一下,相信你能行!问题:(1)请将上述解答过程补充完整;(2)计算:3.456×2.456×5.456-3.4563-1.4562.15.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…(1)根据以上规律,知(x-1)(x6+x5+x4+x3+x2+x+1)= ;(2)由此归纳出一般规律:(x-1)(x n+x n-1+…+x+1)= (n为正整数);(3)根据(2)中的规律计算:1+2+22+…+234+235.答案1.B2.B3.C 由计算结果的常数项是-10可以排除选项A,B,由计算结果的一次项系数是正的,可以排除选项D.4.D5.D ∵(3x+2)(x+p)=mx2+nx-2,∴3x2+(3p+2)x+2p=mx2+nx-2.故m=3,3p+2=n,2p=-2,解得p=-1,n=-1.故mnp=3.故选D.6.解:(1)原式=6x2+8xy-2x-21xy-28y2+7y=6x2-2x-13xy-28y2+7y.(2)原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3.7.解:(x+a)(x2-x+c)=x3-x2+cx+ax2-ax+ac=x3+(a-1)x2+(c-a)x+ac.∵展开式中不含x2项与x项,∴a-1=0,c-a=0,解得a=1,c=1.∴(x-a)(x2+x+c)=(x-1)(x2+x+1)=x3-1.8.B 根据题意,得(x+m)(x+2)=x2+(m+2)x+2m.由结果中不含x的一次项,得m+2=0,解得m=-2.故选B.9.D (x-2)(x+1)=x2-x-2=x2+ax+b,∴a=-1,b=-2,则a+b=-3.10.A A.(x-6)(x+1)=x2-5x-6;B.(x+6)(x-1)=x2+5x-6;C.(x-2)(x+3)=x2+x-6;D.(x+2)(x-3)=x2-x-6.11.解:(1)两因式中常数项的和等于乘积中的一次项系数,两因式中常数项的积等于乘积中的常数项.(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①a2-a-9900②y2-581y+4050012.解:(1)(x+y)(2x+y)=2x2+3xy+y2(2)(x+2y)(2x+y)=2x2+5xy+2y2(3)以x+y,x+3y为相邻两边长画长方形,如图图所示(图形不唯一).13.解:(x-1)(2x-1)-(x+1)2+1=2x2-x-2x+1-(x2+x+x+1)+1=2x2-3x+1-x2-2x-1+1=x2-5x+1.当x2-5x=14时,原式=(x2-5x)+1=14+1=15.14.解:(1)-2 <(2)设3.456=a,则2.456=a-1,5.456=a+2,1.456=a-2,可得3.456×2.456×5.456-3.4563-1.4562=a(a-1)(a+2)-a3-(a-2)2=a3+a2-2a-a3-a2+4a-4=2a-4.∵a=3.456,∴原式=2×3.456-4=2.912.15.解:(1)x7-1 (2)x n+1-1(3)原式=(2-1)×(1+2+22+…+234+235)=236-1.。