第三章勾股定理及应用

合集下载

新苏科版八年级上册初中数学 3-3 勾股定理的简单应用 教学课件

新苏科版八年级上册初中数学 3-3 勾股定理的简单应用 教学课件

D
D1
C
A 1 A1
3
C1 2
B1
AC1= = AB12 B12C12 42 22≈4.47(cm).
∵4.24<4.47<5.10,
∴最短路程约为4.24cm.
第十八页,共二十四页。
课堂小结
勾 股 定 理 的 简 单 应 用
生活中有关直角三角形的实际问题
勾股定理与其逆定理的应用
第十九页,共二十四页。
答:爬行的最短路程约为10.77cm.
第十二页,共二十四页。
新课讲解
如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面需要 爬行的最短路程又是多少呢?(精确到0.01cm)
B
B
10
A
A 10
10
C
解:最短路程即为长方形的对角线AB,
答:爬行的最短路程约是22.36cm,
第十三页,共二十四页。
第十六页,共二十四页。
新课讲解
(2)当蚂蚁经过前面和右面时,如图,最短路程为
D1
A1 D
A
B1 B
C1
A1 C
A
B1
C1
1
3
B2 C
ቤተ መጻሕፍቲ ባይዱ
AB= AC2 CC12 = 52 12≈5.10(cm).
第十七页,共二十四页。
新课讲解
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
D1
A1 D
A
B1
B
C1
新课讲解
练一练
如果盒子换成如图长为3cm,宽为2cm,高为1cm的长方 体,蚂蚁沿着表面由A爬到C1需要爬行的最短路程又是多少呢 ?
D1 A1
D A
C1 B1

2013年秋八年级上期中复习《勾股定理》知识点及相关练习

2013年秋八年级上期中复习《勾股定理》知识点及相关练习

初二(上)数学知识点第三章——勾股定理1、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方∵ ∴例1:(1)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,正方形A 、B 、C 的面积分别是8 cm 2、10 cm 2、14 cm 2,则正方形D 的面积是_______cm 2.(2)如图,已知1号、4号两个正方形的面积为为7,2号、3号两个正方形的面积和为4,则a ,b ,c 三个方形的面积和为(3)如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的面积和为100.则大的半圆面积是__________.例2:(1)在Rt △ABC 中,∠A =90°,∠B =45°,AB =3,则AC =_______.BC =______.(2)在Rt △ABC 中,∠B =90°,∠C =30°,AB =3,则AC =_______.BC =______. (3)在Rt △ABC 中,∠C =90°,AC:AB=3:4,AB =25,则AC =_______.BC =______. (4).在Rt △ABC 中, AB =6,AC =8,则BC= .例3:(1)如图,已知AB =13,BC =14,AC =15,AD ⊥BC 于D ,求AD 长.(2)已知△ABC 中,AB =13, AC =15,AD ⊥BC ,且AD=12,求BC 的长.例4:(1)在Rt △ABC 中,∠A =90°,∠B =45°,BC =6, 求AC 和BC . (2)在Rt △ABC 中,∠B =90°,∠C =30°,BC =3,求AB 和AC .(3)若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,求斜边的长. (4)等腰三角形ABC 的面积为12,底上的高AD 为4,求它的腰长 (5)等腰三角形的周长是20 cm ,底边上的高是6 cm ,求它的面积.例5:(1)在△ABC 中,∠C =90°,AB =6,BC =8,DE 垂直平分AB ,求BE 的长. (2)在△ABC 中,∠C =90°,AB =6,BC =8,AE 平分∠CAE ,ED ⊥AB,求BE 的长. (3)如图,折叠长方形纸片ABCD ,是点D 落在 边BC 上的点F 处,折痕为AE ,AB=CD=6, AD=BC=10,试求EC 的长度.2、勾股定理的逆定理:一个三角形中,如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形∵ ∴例1:每个小正方形的边长为1.(1)求ΔABC 的面积 (2)判断ΔABC 的形状例2:如图,在四边形ABCD 中,AB =3 cm ,AD =4 cm ,BC =13 cm ,CD =12 cm ,∠A =90°,求四边形ABCD 的面积.例3:如图,在△ABC 中,CD 是AB 边上的高,AD =9,BD =1,CD =3试问:△ABC 是直角三角形吗?为什么?例4:如图,在△ABC 中,AB=17 cm ,BC=16 cm ,BC 边上的中线AD=15 cm ,求AC3、勾股数: 常见勾股数有:3、 、 ;5、 、 ;6、 、 ;7、、;8、、;9、、;例:下列命题中,是假命题的是( ).A .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形 B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形4、补充:①长方体盒子内最长的线段d;=②长方体盒子外小虫爬行的最短路线d;=其二、例1:如图,一块长方体砖宽AN=5 cm,长ND=10 cm,CD上的点B距地面的高BD=8 cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是多少?例2:底面周长为12,高为8的圆柱体上有一只小蚂蚁要从点A爬到点B,则蚂蚁爬行的最短距离是( ).A.10 B.8C.5 D.4例3:如图,将一根25 cm长的细术棒放入长、宽、高分别为8 cm、6 cm和103cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是__________cm.例4:如图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支12㎝的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为 m5、勾股定理的应用(1)一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e 例1:/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距(2)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5 m,消防车的云梯最大升长为13 m,则云梯可以达到该建筑物的最大高度是(3)一棵树在离地面9m处断裂,树的顶部落在离底部12 m处,树折断之前有_______m.例2:如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B',那BB'等于( )A.3m B.4 m C.5 m D.6 m例3:(1)在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求这里的水深是多少米?(2)学校旗杆顶端垂下一绳子,小明把它拉直到旗杆底端,发现绳子还多2米,他把绳子全部拉直且使绳的下端接触地面,绳下端离开旗杆底部6米,则旗杆的高度是多少米?例4:《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街道上直道行驶,如图某一时刻刚好行驶到路对面“车速检测仪A ”正前方50米C 处,过了6秒后,测得“小汽车”位置B 与“车速检测仪A ”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.例5:铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =15km ,CB =10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少千米处?例6:如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC =1 km ,BD =3 km ,CD =3 km 现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20 000元/千米,请你在河CD 边上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用?作业选做:1、如图,圆柱高8 cm ,底面半径2 cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行最短路程( 取3)是_______cm .2、如图,长方体的长为15,宽为10,高为20,点B 到点C 的距离为5,如果一只蚂蚁要D沿着长方体的表面从点A 爬到点B ,那么它需要爬行的最短距离是 ( ) A .5 B .25 C .15 D .353、如图,一只蜘蛛在一块长方体木块的一个顶点A 处,一只苍蝇在这个长方体的对角顶点G 处,若AB=3cm,BC=5cm,BF=6cm,蜘蛛走过的路程是多少厘米?4、在长和宽都是3、高是8的长方体纸箱的外部.一只蚂蚁从顶点A B 点,那么它所行的最短路线的长是_________.5、甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,两船相距_______海里6、已知DC=6m ,AD=8 m ,∠ADC=90°,BC=24 m ,AB=26 m .求图中阴影部分的面积.7、某开发区有一空地ABCD ,如图所示,现计划在空地上种草皮,经测量,∠B =90°,AB =3m ,BC =4 m ,AD =12 m ,CD =13 m ,若每种植1平方米草皮需要100元,问总共需要投入多少元?8、如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?9、A市接到台风警报时,台风中心位于A市正南方向125 km的B处,正以15km/h的速度沿BC方向移动。

鲁教版七年级上册数学第三章勾股定理

鲁教版七年级上册数学第三章勾股定理

自信是成功的起点,坚持是成功的终点!七年级数学个性化培优讲义第五讲:勾股定理任课教师:张修伟数学学科辅导讲义授课对象授课时间教学目标掌握勾股定理的公式及应用教学重点和难点勾股定理的应用考点分析勾股定理的应用教学流程及授课详案第五讲勾股定理知识点归纳1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13时间分配及备注3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,若一个锐角等于30°,则它所对的直角边等于斜边的一半。

(3)在直角三角形中,若一条直角边等于斜边的一半,则该直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线☆ Round 1 ☆ 小试牛刀(一)结合三角形:1.已知∆ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则∆ABC 为 三角形2.在∆ABC 中,若2a =(b +c )(b -c ),则∆ABC 是 三角形,且∠ ︒90 3.在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长为4.已知,0)10(8262=-+-+-c b a 则以a 、b 、c 为边的三角形是5.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为_____________.6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是_______cm 2.7.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为___________.8.如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD+PE+PF 等于9.如图Rt △ABC 中,AB=BC=4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为( )A 、25B 、23C 、25+2D 、23+210.直角三角形的三边为a-b ,a ,a+b 且a 、b 都为正整数,则三角形其中一边长可能为( )A 、61B 、71C 、81D 、91 11.已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。

勾股定理的证明及其应用

勾股定理的证明及其应用

勾股定理的证明及其应用第一章前言勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。

也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人研究,反复被人论证。

1940 年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367 种不同的证明方法。

实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500 余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。

这是任何定理的证明无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras ,约公元前580 -公元前500 ).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000 多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M •克莱因教授曾经指出:我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5 的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000 年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30 个单位的棍子直立在墙上,当其上端滑下6 个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5 三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1 到15 的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15 组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.勾股定理同时也是数学中应用最广泛的定理之一。

第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)

第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)

第三章勾股定理培优专题折叠问题中的勾股定理应用(含解析)中小学教育资源及组卷应用平台第三章勾股定理培优专题折叠问题中的勾股定理应用类型1 勾股定理在三角形折叠中的应用1.如图,Rt△ABC 中,AB=9,BC=6,△B=90°,将△ABC折叠,使点A 与BC的中点D重合,折痕为MN,则线段BN 的长为( )C.4D.5第1题图第2题图2.如图,三角形纸片ABC中,△BAC=90°,AB=2,AC=3.沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C 与点D重合,若折痕与AC 的交点为E,则AE 的长是( )3.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE.(1)如果AC=6 cm,AB=10 cm,可求得△ACD的周长为___________cm;(2)如果△CAD:△BAD=1:4,可求得△B 的度数为_____________;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,AB=15 cm,请求出CD的长.类型2 勾股定理在四边形折叠中的应用4.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F 处,则CE 的长为_____________.第4题图第5题图5.如图,有一张长方形纸片ABCD,AB=8cm,BC=10 cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边. 恰好经过点D,则线段DE的长为_____________cm.6.如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD 相交于点F,则AP 的长为____________.7.如图,将长方形纸片ABCD折叠,使点B与点D重合,点A 落在点P处,折痕为EF.(1)试说明:△PDE△△CDF;(2)若CD=4 cm,EF=5cm ,求BC 的长.参考答案1. C 【解析】由折叠知DN=AN=9-BN.因为点D为BC的中点,所以因为△B=90°,所以NB +DB =DN ,即BN +3 =(9-BN) ,解得BN=4.故选C.2. A 【解析】因为沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处,所以AD=AB=2,△B=△ADB.因为折叠纸片,使点C与点D重合,所以CE=DE,△C=△CDE.因为△BAC=90°,所以△B+△C=90°.所以△ADB+△CDE=90°.所以△ADE=90°.所以AD +DE =AE .设AE=x,则CE=DE=3-x.所以2 +(3-x) =x ,解得所以故选A.3.解:操作一:(1)14【解析】在Rt△ABC 中,AC=6 cm,AB=10 cm,根据勾股定理,得BC=8cm .由折叠知AD=BD.所以△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=6+8=14(cm).(2)40°.操作二:在Rt△ABC中,AC=9 cm,AB=15 cm,根据勾股定理,得BC =AB -AC =15 -9 =144.所以BC=12 cm.由折叠知AE=AC=9 cm.因为AB=15 cm,所以BE=AB-AE=6cm.设CD=x cm,则BD=(12-x) cm,DE=CD=x cm.在Rt△BDE中,根据勾股定理,得DE +BE =BD ,即x +6 =(12-x) .解得x=4.5.所以CD=4.5cm .【解析】设CE=x,则BE=6-x.由折叠性质,知EF=CE=x,DF=CD=AB=10.在Rt△DAF中,AD=6,DF=10,所以AF=8.所以BF=AB-AF=10-8=2.在Rt△BEF中,BE +BF =EF ,即((6-x) +2 =x .解得5.5 【解析】因为将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,所以C'E,所所以所以因为,即DE =4 +(8-DE) ,所以DE=5cm .6. 【解析】因为OD=OE,△D=△E=90°,△DOP=△EOF,所以△DPO△△EFO(ASA).所以PO=FO,EF=DP.所以PE=DF.设AP的长为x,则PE=DF=x,DP=EF=6-x,所以BF=BE-EF=8-(6-x)=2+x,CF=DC-DF=8-x.在Rt△BCF中,.BF =BC +CF ,即(2+x) =6 +(8-x) .所以7.解:(1)因为四边形ABCD是长方形,所以△A=△ADC=△B=△C=90°,AB=CD.由折叠得AB=PD,△A=△P=90°,△B=△PDF=90°,所以PD=CD.因为△PDF=△ADC=90°,所以△PDE=△CDF.在△PDE和△CDF中,所以△PDE△△CDF(ASA).(2)如图,过点E作EG△BC于点G,所以△EGF=90°,EG=CD=4 cm.在Rt△EGF中,由勾股定理,得FG =EF -EG =5 -4 =9,所以FG=3cm.设CF=x cm,则PE=AE=BG=x cm.因为△PDE△△CDF,所以DF=DE=CG=(x+3) cm.在Rt△CDF中,由勾股定理,得DF =CD +CF ,即x +4 =(x+3) ,所以所以所以BC的长为21世纪教育网 精品试卷·第2 页(共2 页)21世纪教育网()。

第三章勾股定理勾股定理的应用课件苏科版数学八年级上册(共21张)

第三章勾股定理勾股定理的应用课件苏科版数学八年级上册(共21张)

AB=15,AD=12,AC=13, 求 △ ABC 的
周长和面积。
A
A
B
D
C
B
DC
图5
图6
材料1:如图7,在△ABC中,AB=25, BC=7,AC=24,问△ABC是什么三角形?
C
A
图7
B
材料2:如图8,在△ABC中,AB=26, BC=20,BC边上的中线AD=24,求AC.
解:∵AD是BC边上的中线,
图2
沿着图2继续画直角三角形,还能得到那些无理数?
2z
5 6
3y
x2 1 1
图2
利用图2你们能在数轴上画出表示 5 的 点吗?请动手试一试!
怎样在数轴上画出表示 5 的点呢?
2z
5 6
3y
x2 1 1
图2
在数轴上表示 6, 7 , 6, 7 的点怎样画出?
图2中的图形的周长和面积分别 是多少?
AD=12,BD=9,AC=13,求△ABC的周长和
面积。
A
周长为42 面积为84
B
D
C
图9
自学检测
1.已知四边形ABCD,∠B=90°,各边尺寸
如图所示,你能求出∠BAD的度数吗?
1D
A
3 2

B2
C
勾股定理与它的逆定理在应 用上有什么区分?
勾股定理主要应用于求线段的长度、 图形的周长、面积;
∴ BD 1 BC 1 6 3
2
2
在Rt△ABC中,
B
D
C
图4
AD AB2 BD2 62 32 27 5.196
∴ SC
1 BC AD 2
1 6 5.196 15.58 15.6 2

第三章 勾股定理 实际应用综合训练(一)2021-2022学年苏科版八年级数学上册

第三章 勾股定理 实际应用综合训练(一)2021-2022学年苏科版八年级数学上册

第三章《勾股定理》实际应用综合训练(一)1.为了积极响应国家新农村建设的号召,遂宁市某镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为600m,假使宣讲车P周围1000m以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是200m/min,如果村庄能听到广播宣传,那么总共能听多长时间?2.如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米.如果将梯子的顶端A沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米?3.图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,求A,C两村之间的距离.4.某初中“数学兴趣小组”开展实践活动,在校园里测量一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池和建筑物遮挡,没有办法直接测量其长度.经测量得知AB=AD=60米,∠A=60°,BC=80米,∠ABC=150°.如果你是数学兴趣小组的成员,请根据测量数据求出CD的长度.5.如图,小磊将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,测得MA=a,梯子的底端P保持不动,将梯子的顶端靠在对面墙上,此时∠MPN=90°,梯子的顶端距离地面的垂直距离记作NB,测得NB=b,求A、B之间的距离.6.绿地广场有一块三角形空地将进行绿化,如图,在△ABC中,AB=AC,E是AC上的一点,CE=5,BC=13,BE=12.(1)判断△ABE的形状,并说明理由;(2)求线段AB的长.7.如图,已知某学校A与直线公路BD相距3000米,且与该公路上一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?8.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路l上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路l上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由9.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?10.学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?11.如图,A城气象台测得台风中心在A城正西方向600km的B处,以每小时200km的速度向北偏东60°的方向移动,距台风中心500km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间?12.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?13.如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D 处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.14.“引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个边长为10尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答)15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.如图所示,公路MN和公路PQ在点P处交汇,点A处有一所中学,AP=160m,点A到公路MN 的距离为80m.假设拖拉机行驶时,周围100m以内会受到噪声影响,那么拖拉机在公路MN上沿PN 方向行驶时,学校是否会受到影响?请说明影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?17.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源,为了不至于走散,他们用两部对讲机联系,已知对讲机的有效距离为13.5km,如图,早上8:00甲先出发,他以6km/h的速度向东行走,1小时后乙出发,他以5km/h的速度向北行走,上午10:00,甲步行到A,乙步行到B.(1)求甲、乙二人相距多远?(2)甲、乙二人是否能保持联系并说明理由?18.郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.19.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈=10尺)20.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿AB由点A向点B移动,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为25km/h,台风影响该海港持续的时间有多长?。

八上数学第三章 勾股定理复习

八上数学第三章  勾股定理复习

才艺展示
7.如图,圆柱形容器高18cm, 底面周长为24cm,在杯内 壁离杯底4cm的点B处有一 滴蜂蜜,此时已知蚂蚁正 好在杯外壁,离杯上沿 2cm与蜂蜜相对的A处,则 蚂蚁从外壁处到达内壁处 的最短距离

cm。
才艺展示
8.在△ABC中,AB=AC,∠BAC=α(0°<α<60°), 点D为△ABC内一点,BD=BC,且∠CBD=60°.
成无缝隙、无重叠的四边形EFGH,已知EH=3,
EF=4, 则边AD的长
。A H
D
M
E
G
N
B
FC
才艺展示
5.如图,有一个直角三角形纸片,两直角 边AC=6cm,BC=8cm,现将直角边AC沿直线 AD折叠,使它落在斜边AB上,且与AE重合, 你能求出CD的长吗?
才艺展示
6.如图,△ABC中,AB=AC=13,BC=10, AD是BC边上的中线,F是AD上的动点,E是 AC边上的动点,则CF+EF的最小值为
A
13
15
B
D14
C
才艺展示
1.分别以下列四组数为一个三角形的边长: ①6、8、10;②5、12、13;③8、15、17; ④ 32、42、52 . 其中能构成直角三角形的有( ) A.4组 B. 3组 C. 2组 D.1组
才艺展示
2.如图,将边长为8cm的正方形纸片ABCD折叠
使点D落在BC边中点E处,点A落在F处,折痕
“第三章 勾股定理”复习
情境创设
本章知识结构回顾
勾股定理 拼图法

角 勾股定理
判别直角三角形
三 的逆定理 角 形
勾股定理
勾股数 直接应用勾股定理
实 际 应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章勾股定理及应用
考点一:已知两边求第三边
1.在直角三角形中,若两直角边的长分别为6cm,8cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长的平方是________________.
3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为______
4. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是________
5、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是___________
6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要
____________米.
3米
5米
考点二:利用勾股定理求面积
1.求:(1)阴影部分是正方形;
(2)阴影部分是长方形
(3)阴影部分是半圆.
2.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和是______
3.已知,如图在ΔABC中,AB=CA=5cm,BC=6 cm, AD是边BC上的高.
求①AD的长;②ΔABC的面积.
4.已知直角三角形两直角边长分别为5和12, 求斜边上的高.
考点三:勾股定理逆定理
1、如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状。

2、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

3. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

考点四:利用方程求线段的长
1.
如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m 处,已知旗杆原长
16m ,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.
A C
A C 2.如图,铁路上A ,
B 两点相距25km ,
C ,
D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站
E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
考点五:利用方程解决折叠三角形问题
1.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长.
2.如图,小颍同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知BC=10cm ,AC=6cm,你能求出CE 的长吗?
3.在矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按图所示方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长。

4.折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM,
A B
C D
E F C’
D
E B C
考点六:最短路线
1.如图,一圆柱体的底面周长为12㎝,高AB为8㎝,BC是上底面的直径。

一蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程。

2.如图,有一个圆柱体,底面周长为15㎝,高AB为8㎝,在圆柱的下底面A点处有一只蚂蚁,它想绕圆柱体侧面一周爬行到它的顶端C点处,那么它所行走的路程是多少?。

相关文档
最新文档