三角形的面积ppt_PPT课件
合集下载
人教版数学五年级上册6.2三角形的面积课件(共32张PPT)

第六单元 多边形的面积
第2课时 三角形的面积
1、探索并掌握三角形的面积计算公式,能正确计算 三角形的面积。 (重点)
2.理解三角形面积计算公式的推导过程以及拼成的 平行四边形和本来三角形的关系。 (难点)
1.一个平行四边形的底是8 dm、高是12 dm,它的面积是 ( 96 )dm²。
2.把平行四边形转化成长方形时,长方形的长等于 ( 平行四边形的底 ),长方形的宽等于( 平行四边形的高 )。
2.用三角形面积计算公式解决实际问题时,三角形 的面积、底和高,知道其中任意两个量都可以求 第三个量。
作业1:完成教材P93练习二十第7、8题。 作业2:完成教材详解对应的练习题。
(3)演示结果。 两个完全一样的钝角三角形可以拼成一个平行四边形。
演示三: (1)取两张完全一样的直角三角形纸片拼摆,方法同演示一。 (2)拼摆展示。
(3)演示结果。 两个完全一样的直角三角形可以拼成一个长方形或
一个平行四边形。
视察拼成的平行四边形和三角 形,找出两者之间的联系
拼成的长方形的面积= (三角形的底÷2)×(三角形的高÷2)
知识提炼
用三角形面积计算公式解决实际问题时,三角形的面 积、底和高,知道其中任意两个量都可以求第三个量。
小试牛刀
填一填
(1)用两个完全一样的三角形拼成一个平行四边形,这个平行四
边形的底是三角形的( 底 ),高是三角形的( 高 ),面 积是一个三角形面积的( 2倍)。所以三角形的面积等于
( 底×高÷2 ),用字母表示是( S=ah÷2 )。
(2)一个三角形的面积是18平方分米,底是6分米,高是 ( 6 )分米。
例 判断题。(对的打“√”,错的打“×”) (1)平行四边形的面积是三角形的2倍。( )
第2课时 三角形的面积
1、探索并掌握三角形的面积计算公式,能正确计算 三角形的面积。 (重点)
2.理解三角形面积计算公式的推导过程以及拼成的 平行四边形和本来三角形的关系。 (难点)
1.一个平行四边形的底是8 dm、高是12 dm,它的面积是 ( 96 )dm²。
2.把平行四边形转化成长方形时,长方形的长等于 ( 平行四边形的底 ),长方形的宽等于( 平行四边形的高 )。
2.用三角形面积计算公式解决实际问题时,三角形 的面积、底和高,知道其中任意两个量都可以求 第三个量。
作业1:完成教材P93练习二十第7、8题。 作业2:完成教材详解对应的练习题。
(3)演示结果。 两个完全一样的钝角三角形可以拼成一个平行四边形。
演示三: (1)取两张完全一样的直角三角形纸片拼摆,方法同演示一。 (2)拼摆展示。
(3)演示结果。 两个完全一样的直角三角形可以拼成一个长方形或
一个平行四边形。
视察拼成的平行四边形和三角 形,找出两者之间的联系
拼成的长方形的面积= (三角形的底÷2)×(三角形的高÷2)
知识提炼
用三角形面积计算公式解决实际问题时,三角形的面 积、底和高,知道其中任意两个量都可以求第三个量。
小试牛刀
填一填
(1)用两个完全一样的三角形拼成一个平行四边形,这个平行四
边形的底是三角形的( 底 ),高是三角形的( 高 ),面 积是一个三角形面积的( 2倍)。所以三角形的面积等于
( 底×高÷2 ),用字母表示是( S=ah÷2 )。
(2)一个三角形的面积是18平方分米,底是6分米,高是 ( 6 )分米。
例 判断题。(对的打“√”,错的打“×”) (1)平行四边形的面积是三角形的2倍。( )
人教版五年级上册数学三角形的面积课件(共20张PPT)

三角形的面积
一、创设情境,引出问题 1.出示情境图
一、创设情境,引出问题
2.提出问题
怎样算出红领巾的面积呢?
能不能把三角形也转化成学过的......
我们试一试。
这节课我们就一起来学习三角形的面积。 回忆一下,我们是怎样推导出平行四边形的面积计算公式的?
首先,我们用割补法把平行四边形转化成了长方形;然后找 到图形之间的联系;最后推导出了平行四边形的面积公式。
(1)三角形的面积是平行四边形面积的一半。( )
(2)两个三角形可以拼成一个平行四边形。( )
(3)两个三角形的面积相等,那么它们的形状也 相同。( ) (4)在一个正方形内画一个最大的三角形,三 角形的面积是正方形面积的一半。( )
六、解决问题,巩固提升 1.红领巾的底是10cm,高是33cm,它的 面积是多少平方厘米?
(1)两个完全一样的三角形的可以拼成一个(平行四边)形。
(2)三角形的面积是和它( 等底等高)的平行四边形面 积的一半。
(3)等底等高的三角形和平行四边形,三角形的面积是 24平方厘米,平行四边形的面积是( 48平方)厘。米
(4)一个三角形的底3分米,高是4分米,面积是 ( 6平方分米)。
五、巩固练习 2.判断。
二、动手实践,深入探究
1.请你利用手中的锐角三角形、直角 三角形、钝角三角形等,动手操作。
二、动手实践,深入探究 借助拼摆,自主探究
2.问题:你能根据已有的经验,借助手中的 三角形 推导出三角形的面积公式吗?
3.要求:两人一组,借助手中的三角形纸片,可以拼 一拼、画一画、剪一剪,看能不能把三角形转化成 我们学过的图形?再找找它们之间的联系,在纸上 做好记录,让别人一眼就能看出你是如何推导出三 角形的面积公式的。看看谁的方法多。
一、创设情境,引出问题 1.出示情境图
一、创设情境,引出问题
2.提出问题
怎样算出红领巾的面积呢?
能不能把三角形也转化成学过的......
我们试一试。
这节课我们就一起来学习三角形的面积。 回忆一下,我们是怎样推导出平行四边形的面积计算公式的?
首先,我们用割补法把平行四边形转化成了长方形;然后找 到图形之间的联系;最后推导出了平行四边形的面积公式。
(1)三角形的面积是平行四边形面积的一半。( )
(2)两个三角形可以拼成一个平行四边形。( )
(3)两个三角形的面积相等,那么它们的形状也 相同。( ) (4)在一个正方形内画一个最大的三角形,三 角形的面积是正方形面积的一半。( )
六、解决问题,巩固提升 1.红领巾的底是10cm,高是33cm,它的 面积是多少平方厘米?
(1)两个完全一样的三角形的可以拼成一个(平行四边)形。
(2)三角形的面积是和它( 等底等高)的平行四边形面 积的一半。
(3)等底等高的三角形和平行四边形,三角形的面积是 24平方厘米,平行四边形的面积是( 48平方)厘。米
(4)一个三角形的底3分米,高是4分米,面积是 ( 6平方分米)。
五、巩固练习 2.判断。
二、动手实践,深入探究
1.请你利用手中的锐角三角形、直角 三角形、钝角三角形等,动手操作。
二、动手实践,深入探究 借助拼摆,自主探究
2.问题:你能根据已有的经验,借助手中的 三角形 推导出三角形的面积公式吗?
3.要求:两人一组,借助手中的三角形纸片,可以拼 一拼、画一画、剪一剪,看能不能把三角形转化成 我们学过的图形?再找找它们之间的联系,在纸上 做好记录,让别人一眼就能看出你是如何推导出三 角形的面积公式的。看看谁的方法多。
三角形面积课件ppt

计算圆的面积
总结词
理解圆的面积计算公式
详细描述
圆的面积计算公式为π乘以半径的平方,通过这个公式可以计 算出圆的面积。
04 三角形面积的实例
直角三角形的面积计算
总结词
直角三角形面积计算公式为底乘高的一半,适用 于所有直角三角形。
公式
面积 = (底 × 的一半,其中 底是直角三角形的直角边,高是从直角顶点垂直 于底边的线段。这个公式适用于所有直角三角形 ,无论其形状如何。
感谢您的观看
THANKS
03 三角形面积的应用
计算三角形的面积
总结词
掌握三角形面积的计算方法
详细描述
三角形面积的计算公式为底乘以高再除以2,通过这个公式可以快速准确地计算出三角形的面积。
计算多边形的面积
总结词
多边形面积计算的基本原理
详细描述
多边形可以分解为多个三角形,通过 计算每个三角形的面积,然后将它们 相加即可得到多边形的总面积。
在几何学、工程、建筑等领域中,当需要快速估算三角形面积时,可以采用近似计算方 法。
三角形面积的几何意义
要点一
三角形面积的几何意义是
表示三角形占用的空间大小。
要点二
三角形面积与其他几何量的关系
三角形的面积与其底、高、周长等几何量之间存在一定的 关系,这些关系在解决几何问题时具有重要意义。
三角形面积与其他几何量的关系
三角形面积课件
目录
CONTENTS
• 三角形面积基础知识 • 三角形面积的推导 • 三角形面积的应用 • 三角形面积的实例 • 三角形面积的扩展知识
01 三角形面积基础知识
三角形面积的定义
三角形面积
三角形面积是指一个平面内,由 三条边围成的封闭图形的内部区 域大小。
《三角形面积》ppt课件完整版

性质
三角形的两边之和大于第三边,两 边之差小于第三边;三角形具有稳 定性等。
三角形分类标准
按角分
锐角三角形、直角三角形、钝角三角 形。
按边分
等腰三角形、等边三角形、不等边三角 形。
等腰、等边与直角三角形特点
01
02
03
等腰三角形
有两边相等,且底角相等; 具有轴对称性。
等边三角形
三边相等,三个角都是 60°;具有轴对称性和中 心对称性。
精度控制
根据题目要求,合理控制计算结果的精度,避免不必要的误差。
避免常见错误类型及原因分析
忘记除以2
在使用底和高计算面积时,容易忘记将结果除以2,导致答案偏大。
误用公式
在选择公式时,可能会因为对题目条件理解不清或记忆错误而选用 错误的公式。
计算错误
在进行具体的数值计算时,可能会因为粗心大意或计算能力不足而 导致错误。
直角三角形面积计算技巧
利用两条直角边长计算
01
直角三角形面积等于两条直角边长的乘积的一半,即面积S =
(直角边1 × 直角边2) / 2。
利用斜边和高计算
02
在已知直角三角形的斜边长度和斜边上的高时,可以通过公式
求出面积。
利用三角函数计算
03
已知直角三角形的任意两边和夹角,可以通过三角函数求出第
三边,进而计算出面积。
如中线、角平分线、高线等,可以利用这些 特殊线段的性质求出三角形的面积。
04
三角形面积在实际问题中应 用
土地测量中三角形面积计算
不规则地块测量
对于不规则形状的地块, 可以通过将其划分为多个 三角形,分别计算面积后 求和。
边界确定
在土地测量中,利用三角 形面积公式可以帮助确定 地块的边界和顶点位置。
三角形的两边之和大于第三边,两 边之差小于第三边;三角形具有稳 定性等。
三角形分类标准
按角分
锐角三角形、直角三角形、钝角三角 形。
按边分
等腰三角形、等边三角形、不等边三角 形。
等腰、等边与直角三角形特点
01
02
03
等腰三角形
有两边相等,且底角相等; 具有轴对称性。
等边三角形
三边相等,三个角都是 60°;具有轴对称性和中 心对称性。
精度控制
根据题目要求,合理控制计算结果的精度,避免不必要的误差。
避免常见错误类型及原因分析
忘记除以2
在使用底和高计算面积时,容易忘记将结果除以2,导致答案偏大。
误用公式
在选择公式时,可能会因为对题目条件理解不清或记忆错误而选用 错误的公式。
计算错误
在进行具体的数值计算时,可能会因为粗心大意或计算能力不足而 导致错误。
直角三角形面积计算技巧
利用两条直角边长计算
01
直角三角形面积等于两条直角边长的乘积的一半,即面积S =
(直角边1 × 直角边2) / 2。
利用斜边和高计算
02
在已知直角三角形的斜边长度和斜边上的高时,可以通过公式
求出面积。
利用三角函数计算
03
已知直角三角形的任意两边和夹角,可以通过三角函数求出第
三边,进而计算出面积。
如中线、角平分线、高线等,可以利用这些 特殊线段的性质求出三角形的面积。
04
三角形面积在实际问题中应 用
土地测量中三角形面积计算
不规则地块测量
对于不规则形状的地块, 可以通过将其划分为多个 三角形,分别计算面积后 求和。
边界确定
在土地测量中,利用三角 形面积公式可以帮助确定 地块的边界和顶点位置。
PPT三角形面积计算PPT

直角三角形面积计算
总结词
直角三角形面积计算公式为 S = (1/2) * b * c,其中b和c分别为直角三角形的 两条直角边长度。
详细描述
直角三角形是一种有一个角为90度的三角形。在计算直角三角形的面积时,我 们需要知道两条直角边的长度,然后使用上述公式进行计算。
03
三角形面积计算在生活中 的应用
比的平方,推导出三角形面积的计算公式。
法国数学家加斯帕尔·蒙日
02
蒙日提出了“蒙日定理”,将三角形面积与圆的面积联系起来,
为三角形面积的计算提供了新的思路。
德国数学家卡尔·弗里德里希·高斯
03
高斯通过代数方法,利用三角形的边长和角度,计算出三角形
的面积。
三角形面积计算在数学领域的应用
01
02
03
几何学
三角形面积计算在建筑规划中还应用于计算建筑物的日照 时间、阴影面积等,为建筑物的采光、通风和节能设计提 供数据支持。
航海导航
在航海导航中,三角形面积计算也是 重要的工具之一。例如,在计算航程 、航速和航向时,需要利用三角形面 积计算来推算船只的位置和轨迹。
航海导航中的三角形面积计算还应用 于潮汐和海流分析等方面,有助于保 障船只的安全航行和海洋环境的保护 。
04
三角形面积计算的注意事 项
计算单位要统一
确保在计算过程中使用的所有单位都 是统一的,避免出现单位混淆的情况。
如果在PPT中需要展示不同单位的数 值,应明确标注单位转换的过程和结 果。
计算结果要准确
在进行三角形面积计算时,要确保使 用的数学公式和计算方法是正确的, 以避免误差。
VS
在得出计算结果后,应进行验算或使 用其他方法进行验证,以确保结果的 准确性。
三角形的面积计算公式ppt课件

案例三
在机械工程中,利用三角形面积计算公式计算复杂零件的表面积。需要 考虑测量设备的精度、零件表面的形状等因素,确保计算结果的准确性 和实用性。
05
拓展:相关几何知识 回顾与延伸
相似三角形性质及其判定方法
性质 对应角相等
对应边成比例
相似三角形性质及其判定方法
01
判定方法
02
三边对应成比例
03
两边对应成比例且夹角相等
三角形的面积计算 公式ppt课件
目 录
• 三角形基本概念与性质 • 三角形面积计算公式推导 • 具体实例分析与计算 • 误差分析与实际应用注意事项 • 拓展:相关几何知识回顾与延伸 • 总结回顾与课堂互动环节
01
三角形基本概念与性 质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首尾 顺次连接所组成的封闭图形。
选择合适的算法
针对具体问题,选择稳定 性好、精度高的算法。
增加计算精度
如采用高精度数据类型、 增加计算位数等。
误差估计和校正
对计算结果进行误差估计, 并采用相应方法进行校正。
实际测量中误差避免策略
测量设备校准
确保测量设备的准确性和可靠性, 定期进行校准。
选择合适的测量方法
针对具体测量对象和要求,选择 最合适的测量方法。
04
学生可以分享在学习过程中遇到的困难,以 及他们是如何克服这些困难的。
对未来学习的期望和建议
05
06
学生可以提出对未来学习的期望和建议, 以便教师更好地调整教学策略。
课堂互动环节:小组讨论
01
分组讨论与展示
02
学生可以分组讨论三角形面积计算公式的应用,并展示他们 的讨论成果。
在机械工程中,利用三角形面积计算公式计算复杂零件的表面积。需要 考虑测量设备的精度、零件表面的形状等因素,确保计算结果的准确性 和实用性。
05
拓展:相关几何知识 回顾与延伸
相似三角形性质及其判定方法
性质 对应角相等
对应边成比例
相似三角形性质及其判定方法
01
判定方法
02
三边对应成比例
03
两边对应成比例且夹角相等
三角形的面积计算 公式ppt课件
目 录
• 三角形基本概念与性质 • 三角形面积计算公式推导 • 具体实例分析与计算 • 误差分析与实际应用注意事项 • 拓展:相关几何知识回顾与延伸 • 总结回顾与课堂互动环节
01
三角形基本概念与性 质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首尾 顺次连接所组成的封闭图形。
选择合适的算法
针对具体问题,选择稳定 性好、精度高的算法。
增加计算精度
如采用高精度数据类型、 增加计算位数等。
误差估计和校正
对计算结果进行误差估计, 并采用相应方法进行校正。
实际测量中误差避免策略
测量设备校准
确保测量设备的准确性和可靠性, 定期进行校准。
选择合适的测量方法
针对具体测量对象和要求,选择 最合适的测量方法。
04
学生可以分享在学习过程中遇到的困难,以 及他们是如何克服这些困难的。
对未来学习的期望和建议
05
06
学生可以提出对未来学习的期望和建议, 以便教师更好地调整教学策略。
课堂互动环节:小组讨论
01
分组讨论与展示
02
学生可以分组讨论三角形面积计算公式的应用,并展示他们 的讨论成果。
《三角形的面积》PPT课件

利用向量外积求三角形面积
对于三角形$bigtriangleup ABC$,顶点坐标分别为$A(x_1, y_1)$、$B(x_2, y_2)$、 $C(x_3, y_3)$,则三角形面积为$S = frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2y_1)|$。
04
误差分析与优化方法探讨
测量误差对结果影响分析
误差来源
01
测量设备的精度、人为操作因素、环境因素等。
误差类型
02
随机误差、系统误差和粗大误差。
对结果影响
03
导致计算出的三角形面积与真实值之间存在偏差,影响后续分
析和应用。
减小误差策略和方法
选择高精度测量设备
使用更高精度的测量工具,如激光测距仪、高精度测角仪等。
计算步骤
先测量或计算出三角形的三边长度,然后代入公式进行计算。
实际问题中三角形面积计算
问题类型
包括但不限于土地面积计算、建筑物占地面积计 算、道路设计面积计算等。
计算方法
根据具体问题的条件,选择合适的三角形面积计 算公式进行计算。
注意事项
在解决实际问题时,需要注意单位的统一、数据 的准确性和计算的精度等问题。
三角形拆分法
选择多边形的一个顶点,将其与其他面积并求和。
顶点法
将多边形划分成由相邻顶点构成的三角形,利用 三角形面积公式计算每个三角形的面积,并求和 得到多边形面积。
利用向量外积求多边形面积
向量外积定义
向量$vec{a}$与向量$vec{b}$的外积是一个向量,记作$vec{a} times vec{b}$,其模等于 $vec{a}$和$vec{b}$的模的乘积与它们之间夹角的正弦值的乘积,方向垂直于$vec{a}$和 $vec{b}$所在的平面。
对于三角形$bigtriangleup ABC$,顶点坐标分别为$A(x_1, y_1)$、$B(x_2, y_2)$、 $C(x_3, y_3)$,则三角形面积为$S = frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2y_1)|$。
04
误差分析与优化方法探讨
测量误差对结果影响分析
误差来源
01
测量设备的精度、人为操作因素、环境因素等。
误差类型
02
随机误差、系统误差和粗大误差。
对结果影响
03
导致计算出的三角形面积与真实值之间存在偏差,影响后续分
析和应用。
减小误差策略和方法
选择高精度测量设备
使用更高精度的测量工具,如激光测距仪、高精度测角仪等。
计算步骤
先测量或计算出三角形的三边长度,然后代入公式进行计算。
实际问题中三角形面积计算
问题类型
包括但不限于土地面积计算、建筑物占地面积计 算、道路设计面积计算等。
计算方法
根据具体问题的条件,选择合适的三角形面积计 算公式进行计算。
注意事项
在解决实际问题时,需要注意单位的统一、数据 的准确性和计算的精度等问题。
三角形拆分法
选择多边形的一个顶点,将其与其他面积并求和。
顶点法
将多边形划分成由相邻顶点构成的三角形,利用 三角形面积公式计算每个三角形的面积,并求和 得到多边形面积。
利用向量外积求多边形面积
向量外积定义
向量$vec{a}$与向量$vec{b}$的外积是一个向量,记作$vec{a} times vec{b}$,其模等于 $vec{a}$和$vec{b}$的模的乘积与它们之间夹角的正弦值的乘积,方向垂直于$vec{a}$和 $vec{b}$所在的平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、用数方格的方法算三角形面积
(不满一格的,都按半格计算)
1平方厘米
小结:不准确,又比较麻烦。
二、操作:
用每一组的两个三角形拼成一个已学过的图形
( 三) (一)
(二)
我们可以这样拼:
┓
┓
长方形
平行四边形
想一想:每个直角三角形的面积与拼成的长 方形或平行四边形的面积有什么关系?
┓
平行四边形
想一想:每个锐角三角形的面积与拼成的平 行四边形的面积有什么关系?
第二组
第三组
因为每个三角形的面积等于 拼成的平行四边形面积的一半。
所以, 三角形的面积= 底×高 ÷2
平行四边形面积
思考:求三角形的面积为 什么要除以2?
五、用字母表示面积公式
用S表示三角形面积,用a和h分别表示 三角形的底和高,那么三角形的面积公式还 可以表示成:
S=ah÷2
1
一种零件有一面是三角形,三角形的 底是5.6厘米,高是4厘米。这个三角 形的面积是多少平方厘米?
5.6×4÷2=11.2(平方厘米) 答:这个三角形的面积 是11.2平方厘米。
5.6 厘米
4厘米
验证:应用公式计算下面三角形的面积
1平方厘米
做一做
指出下面每个三角形的底和高, 并分别算出它们的面积.
3厘米
4厘米
下面中哪个三角形的面积与画阴影的三角形 的面积相等?你能在图中再画出一个与画阴影的 三角形面积相等的三角形吗?试试看。
贾镇中心小学
刘振广
一、复习
1、说说长方形、平行四边形 的面积计算公式。
长方形的面积=长×宽 平行四边形的面积=底×高
2、 计算下面长方形和平行四 边形的面积.
4 厘 米 7厘米
4厘米
7厘米
生活中常见的三角形
思考 : 怎样应用所学的 方法探究三角形的面 积计算公式?
你知道图中红色三角形的面 积是多少吗?
┓ ┓ ┓ ┓ ┓
┓
┓
平行四边形 想一想:每个钝角三角形的面积与拼成的平 行四边形的面积有什么关系?
四、推导面积公式 第一组
第二组 第三组 思考:
每一组两个 完全一样的三角形 与拼成的平行四边 形之间有什么关系?
第一组
这个平行四边形的底 等于三角形的( 底) 这个平行四边形的高 等于三角形的( 高) 每个三角形的 面积是所拼成的长 方形或平行四边形 面积的 ( 一半 )
大约在2000年前,我国数学名著《九章 算术》中的方田章就论述了平面图形面积的 算法。书中说:“方田术曰,广从*步数相 乘得积步。”其中“方田”是指长方形田地, “广”和“从”是指长和宽,也就是说:长 方形面积=长×宽。还说:“圭田术曰,半 广以乘正从。”就是说:三角形面积=底× 高÷2。