12.2.1三角形全等的判定
12.2.1三角形全等的判定(第二课时)

D
C
思 考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上,AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以 外,还应该有什么条件?怎样才能得到这个条件? 解:要证明△ABC ≌△ FDE, A 还应该有AB=DF这个条件 ∵AD=FB ∴ AD+DB=FB+DB 即 AB=FD
C
AO=DO(已知)
∠ AOB ∠ DOC 对顶角相等 ) ______=________(
BO=CO(已知)
∴ △AOB≌△DOC( SAS )
例1
已知: 如图:AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB.
C
证明:
△ACB ≌ △ADB
A
B
这两个条件够吗?
D
例1
Байду номын сангаас
已知: 如图,AC=AD ,∠CAB=∠DAB. 求证: △ACB ≌ △ADB.
解:在CMO和CNO中,
(已知) OM=ON, C O , CM=CN(已知) N CO=CO, B (公共边) CMO ≌CNO (SSS) . (全等三角形对应角相等) COM =CON .
M
A
OC是AOB的平分线 .
思 考 A
小明做了一个如图所 示的风筝,他想去验证 B ∠BAC与∠DAC是否相等, 但手头却只有一把足够 长的尺子。你能帮助他 想个方法吗?说明你这 样做的理由。
BC = BC
(2)如图,D、F是线段BC上的两点,
AB=CE,AF=DE,要使△ABF≌△ECD , 还需要条件 BF=DC 或 BD=FC. B D F C
12.2 第1课时三角形的全等的判定(一)数学人教版八上同步课堂教案

第十二章全等三角形12.2 三角形全等的判定第1课时三角形的全等的判定(一)(SSS)一、教学目标1.通过探究判定三角形全等条件的过程,提高分析和解决问题的能力.2.理解并掌握“边边边”判定方法,能利用“边边边”证明两个三角形全等.3.会用尺规作一个角等于已知角,了解图形的作法.二、教学重难点重点:利用“边边边”证明两个三角形全等.难点:用尺规作一个角等于已知角.三、教学过程【新课导入】[课件展示]教师利用多媒体展示如下两个三角形的重合过程.[复习导入]1. 观察这两个三角形,它们之间是什么关系?(它们是全等三角形,因为能够重合的两个三角形叫全等三角形.)2.如图,已知△ABC与△DEF全等,用几何语言表达全等三角形的性质,找出其中相等的边与角.(∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF;(全等三角形对应边相等)∠A=∠D,∠B=∠E,∠C=∠F.(全等三角形对应角相等))学生通过演示复习全等三角形的定义及性质,为探究新知识作好准备.[提出问题]如果AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F,那么△ABC 和△△DEF能够完全重合,即可判定△ABC≌△△DEF.那么一定要满足三条边分别相等,三个角分别相等,才能保证两个三角形全等吗?能否选取其中的一部分条件,简捷地判定两个三角形全等呢?让我们带着这个问题一起走进全等三角形的判定之旅.【新知探究】知识点1 探究判定三角形全等的条件[提出问题](1)一个对应条件可以吗?画出两个三角形,使得满足一个相等条件,此时的两三角形全等吗?①只有一条边相等(假设为3cm).[动手操作]每个学生在准备好的卡纸上画出一条边为3cm长的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,比如两人画的都是等边三角形,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[提出问题]②只有一个角相等(假设为45°).[动手操作]每个学生在准备好的卡纸上画出一个角为45°的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,比如两人画的都是等腰直角三角形,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]满足一个对应条件相等的两个三角形不一定全等.[提出问题](2)两个对应条件可以吗?先来思考下有几种情况?[交流讨论]小组之间交流讨论.得出有三种情况:①有两条边对应相等.②有两个角对应相等.③有一条边和一个角分别对应相等.[提出问题]画出两个三角形,使得满足两个相等条件,此时的两三角形全等吗?①有两条边对应相等(假设一条边为3cm,另一条边为4cm).②有两个角对应相等(假设一个角为30°,另一个角为60°).③有一条边和一个角分别对应相等(假设一条边为4cm,一个角为30°).[动手操作]将学生分为三大组,每组同学负责一种情况的三角形.各组学生在准备好的卡纸上画出满足条件的三角形,之后剪下来,和同桌所作的满足相同条件的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]满足两个对应条件相等的两个三角形不一定全等.[提出问题]由探究1可知,满足六个条件中的一个或两个条件对应相等,都不能保证两个三角形全等,那么满足六个条件中的三个条件对应相等,能否保证两个三角形全等呢?知识点2 “SSS”证全等[提出问题]先任意画出一个△ABC,再画出一个△A'B'C',使得A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下来,放到△ABC上,它们全等吗?[动手操作]按照老师的要求,每个学生在准备好的卡纸上画出满足条件两个三角形△ABC和△A'B'C',,之后剪下来,看两者是否能够重合(发现重合,所以得到结论是“全等”).之后教师利用多媒体展示示例,验证结论,并说明画△A'B'C'的方法,帮助不会画的学生.[归纳总结]三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,AB=A'B',,,∴△ABC≌△A'B'C'(SSS).[课件展示]教师利用多媒体展示如下例题:例在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD .证明:∵D 是BC中点,∴BD =DC.在△ABD与△ACD 中,,,,∴△ABD≌△ACD(SSS).[归纳总结]根据例题,总结如下步骤和规则:[课件展示]跟踪训练(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△CDA和△DCB中,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.提醒学生:有些题目的已知条件隐含在题设或图形之中,如公共边,公共角,对顶角等;在图形中,通过证明两个三角形全等,可以为进一步寻求边等、角等、线段间的特殊关系等提供了方法和依据.知识点3 用尺规作一个角等于已知角[课件展示]三角形中线的定义.[提出问题]已知:∠AOB.求作:∠A'O'B'=∠AOB.你会怎么做?根据“三边分别相等判定三角形全等”的结论思考一下吧![交流讨论]小组之间交流讨论,之后在准备好的卡纸上试着作一作.[课件展示]教师利用多媒体展示作法:作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O'A',以点O'为圆心,OC长为半径画弧,交O'A'于点C';(3)以点C'为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D';(4)过点D'画射线O'B',则∠AOB=∠A'O'B'.【课堂小结】【课堂训练】1.如图,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定( C )A.△ACD≌△BCDB.△ADE≌△BDEC.△ACE≌△BCED.以上都对2.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使能利用“SSS”判定△ABC≌△EDF,需添加的条件为 BC=DF .【解析】利用SSS判定,则两三角形的三条边应对应相等. 添加BC=DF.∵AD=BE,∴AD+DB=BE+BD,即AB=ED.又知AC=EF,∴添加的条件是BC=DF时,可证得△ABC≌△EDF.提醒学生:等边加同边,其和还是等边.3.(2021•东莞市二模)如图,OA=OB,AC=BC,∠ACO=30°,则∠ACB= 60° .【解析】在△ACO和△BCO中,∴△AOC≌△BOC(SSS).∴∠BCO=∠ACO=30°.∴∠ACB=∠BCO+∠ACO=60°,故答案为60°.4.如图,AB=AC,DB=DC,请说明∠B=∠C.解:连接AD.在△ABD和△ACD中,,,,∴△ABD≌△ACD(SSS).∴∠B=∠C.提醒学生:学会作辅助线帮助解题.5.如图,在△ABC中,AB=AC,D,E是BC的三等分点,AD=AE,求证:△ABE≌△ACD.证明:∵D,E是BC的三等分点,∴BD=DE=EC .∴BD+DE=DE+EC,即BE=CD .在△ABE和△ACD中,,,,∴△ABE≌△ACD(SSS).提醒学生:等边加同边,其和还是等边.6.如图,已知AC=FE,AD=FB,BC=DE.求证:AC//EF,DE//BC.证明:∵AD=FB,∴AD+DB=FB+BD,即AB=FD.在△ABC和△FDE中,,,,∴△ABC≌△FDE(SSS),∴∠A=∠F,∠ABC=∠FDE.∴AC//EF,DE//BC.7.如图,过点C作直线DE,使DE//AB.解:作法:(1)过点C作直线MN与AB相交,交点为F;(2)在直线MN的右侧作∠FCE,使∠FCE=∠AFC;(3)反向延长CE,则直线DE即为所求.【教学反思】本节课是判定三角形全等的第一节课,对于新知识的接受,一部分同学表现出了吃力.刚开始,探究判定三角形全等的条件时,对许多学生来说进行分类有困难,因为他们不知到从什么地方下手,以及做到不重不漏,课堂上,我给予了学生这样一个分类讨论的步骤:第一种情况:满足一个元素;第二种情况:满足两个元素;第三种情况:满足三个元素.在每种情况中,再分边与角.这样分类的好处就是:渗透了数学中的分类讨论思想;明确对应关系,使得后继学习变得顺利.在做练习时,学生对于新知识的掌握在细节上还不牢固,比如,证明全等时的书写格式,有同学忘记写在哪两个三角形中证全等,有同学漏写大括号等等,在今后的教学中,一定要纠正细节,保证学生对而准确地完成一道题.。
12.2.1三角形全等的判定(SSS)

C
• 例4.如图,AB=AD,BC=CD,求证: • (1)△ABC≌△ADC; (2)∠B=∠D.
课 本 P8 工人师傅常用角尺平分一个任意角. 做法如下:如图, AOB是一个任意角,在边OA,OB上分别取OM=ON,移动 角尺,使角尺两边相同的刻度分别与M,N重合. 过角尺顶点 C的射线OC便是AOB的平分线.为什么?
画法:1.画线段B'C'=BC;
2. 分别以B'、C'为圆心, 线段AB、AC为半径画弧, 两弧交于点A ';
3.连接线段A'B'、A'C' .
' ' 则ΔA'BC 为所求作的三角形.
你能得出什 么结论?
三边对应相等的两个三角形全等,简 写为“边边边”或“SSS”。 用上面的结论可以判定两个三角形全等. 判断两个三角形全等的推理过程,叫做证明 三角形全等.
O
C
A
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′; B D
O
C
A
O′
C′
A′
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′; B D′ D
探究活动
你如 能果 说给 出出 有三 哪个 几条 种件 可画 能三 的角 情形 况, ?
三个条件呢?
1. 三个角;
2. 三条边; 3. 两边一角;
4. 两角一边。
12.2.1_三角形全等的判定(一)sss共19页

A
用数学符号语言表述:
在△ABC和△DEF中,
AB=DE, BC=EF, CA=FD,
BD
C
∴ △ABC ≌△ DEF(SSS). E
F
例1 如图, △ABC是一个钢架,AB=AC,AD是连
接A与BC中点D的支架.
求证: △ABD≌△ACD.
A
B
D
C
例2 如图,已知AB=CD,BC=DA.
说出下列判断成立的理由:
在△ABD和△ACD中,
B
∵AB=AC,BD=CD,AD=AD,
∴△ABD≌△ACD(SSS);
在△DBH和△DCH中, ∵BD=CD,BH=CH , DH=DH , ∴△DBH≌△DCH(SSS)
A
D HC
练习3 (1)如图,AB=CD,AC=BD,△ABC和
△DCB是否全等?试说明理由.
A
D
B
2. 已知△ABC ≌△ DEF,找出其中相等的边与角.
A
D
B
CE
F
①AB=DE; ② BC=EF; ③ CA=FD;
④∠A= ∠D; ⑤∠B=∠E; ⑥∠C= ∠F.
复 习 引 入
按照三角形“边、角” 元素进行分
类
{ 一个条件:
一角 一边
{ 两个条件:
两角 两边
一角一边
{ 三个条件:
三角 三边 两角一边 两边一角
转化为三角
在原有条件下,还能推出什么结论?
形问题解 决.
∠ABC=∠ADC,AB∥CD,AD∥BC.
练习2 如图,AB=AC,BD=CD, BH=CH,图中有几组全等的三角 形?它们全等的条件是什么?
解:有三组. 在△ABH和△ACH中 ,
12.2.1三角形全等的判定(sss)(教案)

4.通过实际操作和例题解析,加深对三角形全等判定sss公理的理解和运用。
二、核心素养目标
《12.2.1三角形全等的判定(sss)(教案)》
本节课的核心素养目标旨在培养学生的以下能力:
1.空间观念与几何直观:通过sss全等判定的学习,使学生能够建立起三角形全等的直观认识,提高空间想象能力。
其次,在小组讨论和实验操作环节,学生们表现出了很高的积极性。他们通过合作交流,共同探讨三角形全等判定的应用,不仅加深了对知识点的理解,还提高了合作能力和解决问题的能力。但我也注意到,有些小组在讨论过程中,对于如何运用sss判定仍然存在一些疑问。这提示我在今后的教学中,需要更加关注学生的个体差异,给予他们针对性的指导。
举例:在复杂图形中,找到与题目相关的三角形,并从图中获取已知和求证的信息,进而运用sss判定解决问题。
(4)培养几何直观和空间观念,尤其在解决实际问题时,能够通过观察、分析图形,找到解题的关键信息。
举例:在实际问题中,通过观察和思考,发现隐藏在图形中的全等关系,从而找到解题思路。
四、教学流程
《12.2.1三角形全等的判定(sss)(教案)》
举例:在解决具体问题时,判断哪些信息是已知的,哪些需要求证,从而选择合适的全等判定方法。
(2)正确使用几何符号和术语,避免在证明过程中出现逻辑错误或符号错误。
举例:在证明过程中,要注意区分“=”、“≌”等符号,以及正确使用“对应边”、“对应角”等术语。
(3)在复杂图形中,识别并提取出全等三角形的相关信息,将实际问题转化为几何问题进行解决。
2.逻辑推理与证明能力:通过分析、归纳和推理,让学生掌握sss全等判定的逻辑基础,培养严谨的逻辑推理能力和几何证明技巧。
12.2.1三角形全等的判定(一)说课

二、合作与探究
3、典例精析
学生口述,教师板书并点拨。
例1:如图,△ABC是一个钢架,AB=AC,AD是连结 点 A和BC中点D的支架,求证:△ABD≌△ACD.
证明:∵D是BC的中点, ∴BD=CD. A
图形问题按步骤思考:
∴ △ ABD≌ △ACD(SSS). B D 条件问题上图;问题联想转化 ; AD=AD 选择思路试解;梳理解答思路.
一、感知与尝试
设用xmin将污水抽完,则x同时满足不等式
30x>1200 30x<1500
充分体现学生的主体地位,学生通过阅读 习目标,有针对性的自学,能够基本了解 定义: 课内容,同时产生疑问,激发学习热情, 强学习信心,同时养成良好的学习品质。 由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一 次不等式组.
二、合作与探究
1、归纳 重难讲解内容预设如下:
1.分类讨论思想 2.结论数学符号化 文字语言 图形语言 符号语言 新课程标准强调:学生是学习的主人,教师 是学生学习的组织者、引导者与合作者。因 A 此在学生提出疑问后,帮助他们自主探索与 在△ABC和△A'B'C'中 三边分别相 AB=A'B' 合作交流,使他们在数学活动中掌握数学知 C 等的两个三 B AC=A'C' 识与技能、数学思想与方法,获得数学活动 A’ BC=B'C' 角形全等 的经验,培养学生数学核心素养。 ∴ ABC ≌ A'B'C' (SSS)
LOGO
二.教学目标
知识与技能目标 过程与方法目标
育人目标
领悟数学知识来源于生活, 服务于生活,通过相互探 讨和动手操作,体验数学 知识的探究和发现过程, 培养学生合作交流意识和 探索精神,养成有理有据 的科学态度,形成数学思 想,让学生在数学活动中 感受成功喜悦,渗透数学 核心素养,达到立德树人 的目的。
12.2.1三角形全等的判定sss及教学反思

12.2.1三角形全等的判定sss及教学反思•相关推荐12.2.1三角形全等的判定(sss)及教学反思12.2.1三角形全等的判定(SSS)西河九年制学校郭欢教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果ABCA′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的.支架,求证ABDACD.(教师板书)【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.证明:D是BC的中点,∴BD=CD在ABD和ACD中∴ABDACD(SSS).【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.习题11.2第1,2题.2.选做课时作业设计.教学反思:首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。
三角形全等的判定一SSS(分层作业)(解析版)docx

12.2.1三角形全等的判定㈠SSS夯实基础篇一、单选题:1.如图,在△ACE 和△BDF 中,AE =BF ,CE =DF ,要利用“SSS ”证△ACE ≌△BDF 时,需添加一个条件是()A .AB =BCB .DC =BC C .AB =CD D .以上都不对【答案】C 【知识点】三角形全等的判定(SSS )【解析】【解答】要利用“SSS ”证明ACE ≌BDF 时,需.AC BD AC AB BC BD CD BC AC BD ∵,,,.AB CD 故答案为:C.【分析】要利用“SSS ”证明△ACE ≌△BDF 时,根据有三边对应相等的两个三角形全等结合已知条件可知,需AC =BD 即可。
2.如图是一个平分角的仪器,其中AB AD ,BC DC .将点A 放在一个角的顶点,AB 和AD 沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC 是这个角的平分线,这里判定 ABC 和 ADC 是全等三角形的依据是()A .SSSB .ASAC .SASD .AAS【答案】A 【知识点】三角形全等的判定(SSS )【解析】【解答】在△ADC 和△AB C 中∵AD AB DC BC AC AC所以△ADC ≌△ABC (SSS )故答案为:A .【分析】根据SSS 证明三角形全等即可。
3.如图,ABC 中,AB AC ,BE EC ,直接使用“SSS ”可判定()A .ABD ≌ACDB .ABE ≌ACEC .BED ≌CEDD .ABE ≌EDC【答案】B【知识点】三角形全等的判定(SSS )【解析】【解答】解:根据AB =AC ,BE =EC ,AE =AE 可以推出△ABE ≌△AACE ,理由是SSS ,其余△ABD ≌△ACD ,△BED ≌△CED 不能直接用SSS 定理推出,△ABE 和△EDC 不全等,故答案为:B【分析】根据三边对应相等的两个三角形全等可得△ABE≌△AACE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考 工人师傅常用角尺平分一个任意角,做法如下: 如图,∠AOB是一个任意角,在边OA,OB上分别取 OM=ON,移动角尺,使角尺两边相同的刻度分别与M、 N重合,过角尺顶点C的射线OC便是∠AOB的平分线。 为什么?
[想一想] 我们曾经做过这样的实验:将三根木条 钉成一个三角形木架,这个三角形木架的形状、 大小就不变了,这说明三角形具有稳定性。
如 何 用 符 号 语 言 来 表 达 呢
A
D
B
C
E
F
在△ABC和△DEF中 AB=DE
AC=DF
BC=EF ∴△ABC≌△DEF(SSS)
?
例1:如图所示,△ABC是一个钢架,AB=AC, AD是连接点A与BC中点D的支架。 A 求证:△ABD≌△ACD。 间接条件先证好 证明:∵D是BC的中点 ∴BD=CD C B D 在△ABD和△ACD中 AB=AC 隐含条件直接摆 BD=CD 进来 AD=AD ∴△ABD≌△ACD(SSS)
6cm 4cm 6cm
探究一
2.给定两个条件: (2)一边一角
30º 6Hale Waihona Puke m失 败30º 6cm
(3)两角
30º 20º 30º 20º
三边对应相等的两个三角形全等。 (可以简写成“边边边”或“SSS”) 探究二 (1)三边 (2)两边一角 给定三个条件: (3)一边两角 (4)三角 [动手画一画] 先任意画一个△ABC,再画一个 △A’B’C’使得A’B’=AB,B’C’=BC, A’C’=AC;观察所得的两个三角形 是否全等。
O
C
A
O′
C′
A′
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB. B
B′
D′
D
O
C
A
O′
C′
A′
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D; (2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′; (3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′; (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
三组对应边、三组对应角 六个条件分别相等。
问题1:若两个三角形三组对应边、三组对应 角分别相等,则这两个三角形是否一定全等? 两个三角形全等 三组对应边、三组对应角 六个条件分别相等。
问题2:两个三角形满足六个条件中的几个条 件才能确保这两个三角形全等呢?
(1)一条边 1.给定一个条件: (2)一个角 失 败 (1)两边 4cm
B
C
∴ ∠B=∠D(全等三角形对应角相等)
A
小结:四边形问题转化为三角形问题解决。 D
问:此题添加辅助线,若连结BD行吗? 在原有条件下,还能推出什么结论? B 答:∠ABC=∠ADC,AB∥CD,AD∥BC
C
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D; B D
课堂小结
(1)本节课学习了哪些主要内容? (2)探索三角形全等的条件,其基本思路是什么? (3)“SSS”判定方法有何作用?
经过本节课的学习, 你有哪些收获?
O
C
A
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′; B D
O
C
A
O′
C′
A′
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′; B D′ D
复习回顾
1、全等三角形的定义 2、已知△ABC≌ △A’B’C’
A C B B’ A’ C’
问题1:其中相等的边有: (全等三角形的对应边相等)
AB=A’B’
BC=B ’ C ’
AC=A ’ C ’
问题2:其中相等的角有: (全等三角形的对应角相等)
∠A=∠A ’
∠B=∠B ’
∠C=∠C ’
两个三角形全等
已知如图所示,AC=FE,BC=DE,AD=FB, 试证明△ABC≌△FDE。
A D E B F E C A B C D F
练习1:
∵AD=BF ∴ AD+DB=BF+DB 即 AB=FD
变式
练习2:如图,已知AB=CD,AD=CB,求证:∠B=∠D 证明:连结AC, 在△ABC和△ ADC中 A AB=CD(已知) BC=DA(已知) AC=CA(公共边) ∴ △ ABC≌ △ CDA(SSS) D