单元检测:圆周运动及应用

合集下载

圆周运动规律及应用+答案

圆周运动规律及应用+答案

圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。

2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。

3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。

角速度:Tt πθω2== 描述物体转动的快慢。

转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。

向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。

二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。

当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。

2024届高考物理二轮专题学案:圆周运动的规律及应用

2024届高考物理二轮专题学案:圆周运动的规律及应用

考点03 圆周运动的规律及应用基础知识一、常见的传动方式及特点同轴转动同缘传动装置图基本特点、、相同轮缘处______相同转动方向相同______【例题1】如图所示,三个齿轮的半径之比为1:3:5,当齿轮转动时,小齿轮边缘的A点和大齿轮边缘的B 点,若A轮顺时针转动,则B轮会_____ 转动,AB两轮的转速之比为______。

【总结】同缘传动,线速度大小相同;同轴转动,角速度、周期、转速相同。

二、圆周运动的多解性问题【例题2】一位同学玩飞镖游戏,已知飞镖距圆盘为L,对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O点的水平轴匀速转动。

若飞镖恰好击中A点,空气阻力忽略不计,重力加速度为g,则飞镖打中A点所需的时间为______;圆盘的半径R为______;圆盘转动的线速度的可能值为______。

【总结】分析思路:1.两个物体运动的有关联性; 2.物体做圆周运动有周期性。

三、匀速圆周运动1.特点:速度与加速度的不变、不断变化。

2.性质:匀速圆周运动是一种___________________________运动。

3.离心运动和近心运动①当时,物体做匀速圆周运动;②当时,物体沿切线飞出;③当时,物体做离心运动; ④当时,物体做近心运动。

四、向心力的来源运动模型汽车转弯水平转台(光滑) 火车转弯图示向心力提供动力学问题【例题3】如图所示,一同学用轻绳拴住一个装有水(未满)的水杯,让水杯在水平面内做匀速圆周运动,不计空气阻力,下列说法中正确的是( )A.水杯匀速转动时,杯中水面呈水平B.水杯转动的角速度越大,轻绳与竖直方向的夹角越大C.水杯转动的周期越小,轻绳在水平方向上的分力越大D.水杯转动的线速度越大,轻绳在竖直方向上的分力越大【总结】思路:1.确定研究对象。

2.确定圆周运动的轨道平面,以及、。

3.对物体进行分析,确定向心力来源。

4.根据牛顿运动定律和圆周运动知识列方程求解。

(完整版)圆周运动及其应用专题复习(解析版)

(完整版)圆周运动及其应用专题复习(解析版)

圆周运动及其应用专题复习(答案版 )课前复习1. 描绘圆周运动的物理量主要有线速度、角速度、周期、转速、向心加快度、向心力等,现比较以下表:物理量 意义、方向公式、单位线速度① 描绘做圆周运动的物体运动快慢的物理量(v) ①v = l = 2πr② 方向与半径垂直,和圆周相切t T② 单位: m/s角速度① 描绘物体绕圆心转动快慢的物理量 (ω)Δθ 2π②中学不研究其方向① ω= t =T②单位: rad/s周 期 和 ① 周期是物体沿圆周运动一圈的时间 (T)① T =2πr;单位: s转速② 转速是物体在单位时间内转过的圈数((n),也v叫频次 (f)② n 的单位 r/s 、r/min1③ f 的单位: Hz③ 周期与频次的关系为 T = f(a n )向 心 加①描绘速度方向变化快慢的物理量a n =v2速度②方向指向圆心① =ω2rr② 单位: m/s 24π向心力 ①作用成效是产生向心加快度,只改变线速度的v2① F n =m ω2r = m2方向,不改变线速度的大小r = m T 2 r② 方向指向圆心 .②单位: N2.匀速圆周运动有关性质:(1) 定义 :物体沿圆周运动,而且线速度大小到处相等的运动. (2) 匀速圆周运动的特色速度大小不变而速度方向时辰变化的变速曲线运动.只存在向心加快度,不存在切向加快度. 合外力即产生向心加快度的力,充任向心力(3) 条件:合外力大小不变,方向一直与速度方向垂直且指向圆心.课前练习1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的 1.5 倍,则以下说法中正确的选项是 ()A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的 60 倍C .分针端点的线速度是时针端点的线速度的18 倍D .分针端点的向心加快度是时针端点的向心加快度的 1.5 倍【分析】 分针的角速度 ω1= 2π π rad/min ,时针的角速度 ω2= 2π πrad/min.T = 30 T = 36012ω1∶ω2= 12∶1, v 1∶v 2 =ω1r 1∶ω2r 2= 18∶1, a 1∶a 2= ω1 v 1∶ω2v 2= 216∶1,故只有 C 正确. 【答案】C2.摆式列车是集电脑、自动控制等高新技术于一体的新式高速列车,以下图.当列车转弯时,在电脑控制下,车厢会自动倾斜,抵消离心力的作用;行走在直线上时, 车厢又恢还原状, 就像玩具“不倒翁”同样. 假定有一超高速列车在水平面行家驶,以 360 km/h 的速度拐弯,拐弯半径为1 km ,则质量为 50 kg 的乘客,在拐弯过 程中所遇到的火车给他的作使劲为 (g 取 10 m/s 2)( )A . 500 NB .1 000 N C. 500 2 N D . 0【分析】 乘客所需的向心力:v 2F = m500 N ,故火车对乘客的R = 500 N ,而乘客的重力为作使劲大小为 N = F 2 +G 2= 500 2 N , C 正确. 【答案】 C讲堂复习:考点 1: 圆周运动的运动学剖析21.对公式 v = ωr 和 a = vr = ω2r 的理解(1) 由 v =ωr 知, r 一准时, v 与 ω成正比; ω一准时, v 与 r 成正比; v 一准时, ω与 r 成反比.2(2) 由 a =v= ω2r 知,在 v 一准时, a 与 r 成反比;在ω一准时, a 与 r 成正比.r(1) 同轴传动:固定在一同共轴转动的物体上各点角速度同样.(2) 皮带传动:不打滑的摩擦传动和皮带(或齿轮 )传动的两轮边沿上各点线速度大小相等.例 1:(2013 届连云港高三模拟 )以下图,半径为r =20 cm 的两圆柱体 A 和 B ,靠电动机带动按同样方向均以角速度 ω= 8 rad/s 转动,两圆柱体的转动轴相互平行且在同一平面内, 转动方向已在图中标出,质量平均的木棒水平搁置其上,重心在刚开始运动时恰在 B 的正上 方,棒和圆柱间动摩擦因数μ=,两圆柱体中心间的距离 s = 1.6 m ,棒长 l >m ,重力加快度取 10 m/s 2,求从棒开始运动到重心恰在A 的正上方需多长时间?【审题视点】(1) 开始时,棒与 A 、B 有相对滑动先求出棒加快的时间和位移.(2)棒匀速时与圆柱边沿线速度相等,求出棒重心匀速运动到A 正上方的时间. 【分析】棒开始与 A 、 B 两轮有相对滑动,棒受向左摩擦力作用,做匀加快运动,末速度v = ωr=8× 0.2 m/s = 1.6 m/s ,加快度a = μg= 1.6 m/s 2,时间vt 1= a =1 s ,t 1 时间内棒运动位移12s 1= 2at 1 = 0.8 m.今后棒与A 、B 无相对运动,棒以v = ωr 做匀速运动,再运动s 2= s - s 1= 0.8 m ,重心到 A 的正上方需要的时间s 2t 2= v = 0.5 s ,故所求时间 t =t 1+ t 2= 1.5 s.【答案】1.5 s例 2.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:迅速丈量自行车的骑行速度. 他的假想是: 经过计算脚踏板转动的角速度, 计算自行车的骑行速度. 经过骑行,他获得以下的数据:在时间t 内脚踏板转动的圈数为N ,那么脚踏板转动的角速度ω= ________;要计算自行车的骑行速度, 还需要丈量的物理量有 ____________________ ;自行车骑行速度的计算公式 v = ________.【分析】 θ 依照角速度的定义式ω==2N πtv t ;要计算自行车的骑行速度,因为 =ω 后 R ,还要知道自行车后轮的半径 R ,r 1ω后= ω飞轮 ,而 ω飞轮 r 2= ω牙盘 r 1,ω牙盘 = ω,联立以上各式解得 v = R ω r 2 Nr 1 =2 πR tr 2【答案】.故还需知道后轮半径R ,牙盘半径 r 1,飞轮半径r 2. 2N πtr 2r 1 R ω 或r 2Nr 12πR tr 2考点 2:圆周运动的动力学剖析 1.向心力的根源向心力是按力的作用成效命名的,能够是重力、弹力、摩擦力等各样力,也能够是几个力的协力或某个力的分力,所以在受力剖析中要防止再此外增添一个向心力. 2. 向心力确实定(1) 确立圆周运动的轨道所在的平面,确立圆心的地点.(2) 剖析物体的受力状况,找出全部的力沿半径方向指向圆心的协力就是向心力.3. 解决圆周运动问题的主要步骤(1) 审清题意,确立研究对象.(2) 剖析物体的运动状况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等. (3) 剖析物体的受力状况,画出受力表示图,确立向心力的根源. (4) 据牛顿运动定律及向心力公式列方程.(5) 求解、议论.例 3:(2012 福·建高考 )以下图,置于圆形水平转台边沿的小物块随转台加快转动,当转速达到某一数值时,物块恰巧滑离转台开始做平抛运动.现测得转台半径 R = 0.5 m ,离水平 地面的高度 H = 0.8 m ,物块平抛落地过程水平位移的大小 s =0.4 m .设物块所受的最大静 摩擦力等于滑动摩擦力,取重力加快度 g = 10 m/s 2.求:(1) 物块做平抛运动的初速度大小v 0;(2) 物块与转台间的动摩擦因数μ. 【审题视点】(1) 应理解掌握好 “ 转台边沿 ” 与 “恰巧滑离 ” 的含义.(2)临界问题是静摩擦力达到最大值.【分析】 (1) 物块做平抛运动,在竖直方向上有H = 1gt 2①2在水平方向上有 s = v 0t ②g由①②式解得v0= s2H ③代入数据得v0= 1 m/s.(2)物块走开转台时,最大静摩擦力供给向心力,有2v0f m= m R④f m=μN=μ mg⑤2v0由④⑤式得μ=gR代入数据得μ=0.2.【答案】(1)1 m/s规律总结:(1)不论是匀速圆周运动仍是非匀速圆周运动,沿半径方向指向圆心的协力均为向心力.(2)当采纳正交分解法剖析向心力的根源时,做圆周运动的物体在座标原点,必定有一个坐标轴沿半径方向指向圆心.例 4.(2013 届淮州中学四月调研 )以下图,用一根长为 l= 1 m 的细线,一端系一质量为 m =1 kg 的小球 (可视为质点 ),另一端固定在一圆滑锥体顶端,锥面与竖直方向的夹角θ= 37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为 T.(g 取 10 m/s 2,结果可用根式表示)求:(1)若要小球走开锥面,则小球的角速度ω0起码为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?【分析】(1)若要小球恰巧走开锥面,则小球遇到重力和细线拉力如图示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定2律及向心力公式得: mgtan θ= mω0lsin θ2=g=g解得:ω0,即ω0= 12.5 rad/s.l cos θlcos θ(2)同理,当细线与竖直方向成 60°角时,由牛顿第二定律及向心力公式: mgtan α= mω′2lsin α解得:ω′2=g ,即ω′=lcos α【答案】(1) 12.5 rad/s (2) 20 rad/sg=20 rad/s. lcos α考点 3:“轻绳模型”与“轻杆模型”轻绳模型轻杆模型均是没有支撑的小球均是有支撑的小球常有种类v 2过最高点的临界条件由 mg =m r 得v 临= 0v 临 = gr(1) 当 v = 0 时, F N =mg ,F N为支持力,沿半径背叛圆心(1)过最高点时, v ≥ gr ,F N (2) 当 0< v < gr 时, mg - F N+mg =m v 2 v 2r ,绳、轨道对球产 = m ,F N 背叛圆心, 随 v 的r议论剖析生弹力 F N增大而减小 (2)当 v < gr 时,不可以过最高 (3) 当 v = gr 时, F N =0点,在抵达最高点前小球已经 (4) 当 v > gr 时, F N + mg =离开了圆轨道v 2m r ,F N 指向圆心并随 v 的增大而增大例 5:长 L =0.5 m 质量可忽视的轻杆,其一端可绕 O 点在竖直平面内无摩擦地转动,另一端固定着一个小球 A.A 的质量为 m = 2 kg ,当 A 经过最高点时,以下图,求在以下几种状况下杆对小球的作使劲:(1)A 在最高点的速率为1m/s(2)A 在最高点的速率为 4m/s(3) 假如将原题中的轻杆换成轻绳,则结果怎样?【分析】( 1)向上的支持力 16N(2) 向下的压力 44N(3)换成细绳最小速度为根号5,故只好是向下压力课后思虑: (4)A 在最低点的速率为21m/s ;(5) A 在最低点的速率为 6 m/s.44N( 1)动能定理求出最高点速度1m/s, 向上的支持力 16N(2) 动能定理求出最高点速度 4m/s ,向下压力 44N.圆周运动及其应用课后练习 :●考察圆周运动中的运动规律1.(2010 ·纲全国高考大 )如图是利用激光测转速的原理表示图,图中圆盘可绕固定轴转动,盘边沿侧面上有一小段涂有很薄的反光资料.当盘转到某一地点时,接收器能够接收到反光涂层所反射的激光束,并将所收到的光信号转变为电信号,在示波器显示屏上显示出来 (如图 ).(1)若图中示波器显示屏横向的每大格(5 小格 )对应的时间为× 10-2 s,则圆盘的转速为______转 /s.(保存 3 位有效数字 )(2)若测得圆盘直径为 10.20 cm,则可求得圆盘侧面反光涂层的长度为 ______ cm.( 保存 3 位有效数字 )【分析】(1)从图可知圆盘转一圈的时间在横坐标上显示22 格,由题意知图中横坐标上每小格表示× 10-2 s,所以圆盘转动的周期是0.22 s,则转速为 4.55 转 /s.(2)反射光惹起的电流图象在图中的横坐标上每次一小格,说明反光涂层的长度占圆盘周长12πr×的22,则涂层长度L=22=22cm= 1.46 cm.【答案】●利用圆周运动测分子速率散布2. (多项选择 )(2012 上·海高考 )图为丈量分子速率散布的装置表示图.圆筒绕此中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M 为正对狭缝的地点.从原子炉R 中射出的银原子蒸汽穿过屏上S缝后进入狭缝 N,在圆筒转动半个周期的时间内接踵抵达并堆积在薄膜上.展开的薄膜如图 b 所示, NP, PQ 间距相等.则 ()A .抵达 M 邻近的银原子速率较大B.抵达 Q 邻近的银原子速率较大C.位于 PQ 区间的分子百分率大于位于NP 区间的分子百分率D.位于 PQ 区间的分子百分率小于位于NP 区间的分子百分率d【分析】分子在圆筒中运动的时间t=v,可见速率越大,运动的时间越短,圆筒转过的角度越小,抵达地点离M 越近,所以 A 正确, B 错误;依据题图 b 可知位于 PQ 区间的分子百分率大于位于 NP 区间的分子百分率,即 C 正确, D 错误.【答案】AC●圆周运动的动力学识题3.(多项选择 )(2012 绍·兴一中月考 )以下图,放于竖直面内的圆滑金属圆环半径为 R,质量为 m 的带孔小球穿于环上同时有一长为 R 的细绳一端系于球上,另一端系于圆环最低点.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能是 ()3gB.3gA. 2R Rg1g C.R D. 2R【分析】以下图,若绳上恰巧无拉力,则有mgtan 60°= mRω2sin 60°,ω=2g R,所以当ω>2gA 、B 选项正确.R时,物体受三个力的作用【答案】AB●圆周、平抛相联合4. (多项选择 )(2012 浙·江高考 )由圆滑细管构成的轨道以下图,此中AB 段和 BC 段是半径为 R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平川面高为H 的管口 D 处静止开释,最后能够从A 端水平抛出落到地面上.以下说法正确的选项是()A .小球落到地面时有关于 A 点的水平位移值为2 RH- 2R2B .小球落到地面时有关于 A 点的水平位移值为2 2RH- 4R2C.小球能从细管 A 端水平抛出的条件是H> 2R5D.小球能从细管 A 端水平抛出的最小高度H min=2R【分析】要使小球从 A 点水平抛出,则小球抵达 A 点时的速度 v> 0,依据机械能守恒定12,所以 H> 2R,应选项 C 正确,选项 D 错误;小球从 A 点水平律,有 mgH-mg·2R= mv212抛出时的速度 v=2gH-4gR,小球走开 A 点后做平抛运动,则有2R=2gt ,水平位移 x =v t,联立以上各式可得水平位移 x= 2 2RH- 4R2,选项 A 错误,选项 B 正确.【答案】BC●竖直面内圆周运动问题5. (2011 北·京高考 )以下图,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小能够忽视).(1) 在水平拉力 F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力争,并求力 F 的大小;(2)由图示地点无初速开释小球,求当小球经过最低点时的速度大小及轻绳对小球的拉力. (不计空气阻力 ).【分析】(1)受力剖析如图依据均衡条件,应知足T cos α= mg,Tsin α= F则拉力大小 F = mgtan α.(2)运动中只有重力做功,系统机械能守恒12mgl(1- cos α)= mv则经过最低点时,小球的速度大小v=2gl 1-cos αv2依据牛顿第二定律T′ - mg= m l解得轻绳对小球的拉力v2T′= mg+ m l= mg(3- 2 cos α),方向竖直向上.【答案】(1)看法析(2) 2gl 1- cos αmg(3- 2 cos α),方向竖直向上。

学而思圆周运动:圆周运动的基本规律、圆周运动的各种应用

学而思圆周运动:圆周运动的基本规律、圆周运动的各种应用

匀速圆周运动做匀速圆周运动的物体的速度大小是恒定的,但速度方向时刻改变,所以匀速圆周运动是变速运动 做匀速圆周运动的物体并不处于平衡状态物体做匀速圆周运动的条件是物体时刻受到与速度方向垂直的合外力作用,并且这个合外力总沿着半径指向圆心,所以叫向心力向心力总是指向圆心,而线速度沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体线速度的方向而不改变线速度的大小向心力是根据力的作用效果命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,还可以是某个力的分力向心加速度①意义:它是描述线速度方向改变快慢的物理量,向心力产生的加速度叫向心加速度,它遵循牛顿第二定律②方向:始终指向圆心,并且时刻变化③大小22224v a r r v r Tπωω====向做匀速圆周运动的物体,向心加速度大小不变对向心加速度的几点说明①向心加速度通过牛顿第二定律由物体所受向心力来确定由于做匀速圆周运动的物体在运动的过程中角速度、速率、周期都是不变的,因而物体在做匀速圆周运动的过程中,向心加速度的大小是不变的,但是向心加速度的方向在时刻变化着,所以匀速圆周运动是变加速曲线运动②向心加速度是匀速圆周运动的瞬时加速度而不是平均加速度在匀速圆周运动中,加速度不是恒定的,这里的向心加速度,是指某时刻或某一位置的瞬时加速度 ③向心加速度不一定是物体做圆周运动的实际加速度【例1】下列说法正确的是( )A .匀速圆周运动是一种匀速运动B .匀速圆周运动是一种匀变速运动C .匀速圆周运动是一种变加速运动D .物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小圆周运动:圆周运动的基本规律、圆周运动的各种应用【例2】质点做匀速圆周运动,则①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的路程都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等以上说法中正确的是( )A.①②B.③④C.①③D.②④【例3】做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a1和a2,且a1>a2,下列判断正确的是( )A.甲的线速度大于乙的线速度B.甲的角速度比乙的角速度小C.甲的轨道半径比乙的轨道半径小D.甲的速度方向比乙的速度方向变化得快【例4】甲、乙两物体均做匀速圆周运动,其向心加速度a随半径r变化的关系图线,分别如图中a甲、a乙所示,图线a甲是一条过原点的直线;图线a乙是以横轴和纵轴为渐近线的双曲线。

2023年2月人教版高中物理 第六章 圆周运动 单元检测+答案

2023年2月人教版高中物理 第六章 圆周运动 单元检测+答案

高一物理必修第二册第六章圆周运动单元检测班级姓名学号分数(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。

2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。

3.回答第II卷时,将答案直接写在试卷上。

第Ⅰ卷(选择题共48分)一、选择题(共12小题,每小题4分,共48分。

在每小题给出的四个选项中,第1-8题只有一项符合题目要求,第9-12题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

)1.下列关于匀速圆周运动的说法正确的是()A.匀速圆周运动是匀加速曲线运动B.做匀速圆周运动的物体所受合外力是保持不变的C.做匀速圆周运动的物体所受合外力就是向心力D.随圆盘一起匀速转动的物体受重力、支持力和向心力的作用2.如图是一种新概念自行车,它没有链条,共有三个转轮,A、B、C转轮半径依次减小。

轮C与轮A啮合在一起,骑行者踩踏板使轮C动,轮C驱动轮A转动,从而使得整个自行车沿路面前行。

对于这种自行车,下面说法正确的是()A.转轮A、B、C线速度v A、v B、v C之间的关系是v A>v B>v CB.转轮A、B、C线速度v A、v B、v C之间的关系是v A=v B>v CC.转轮A、B、C角速度ωA、ωB、ωC之间的关系是ωA<ωB<ωCD.转轮A、B、C角速度ωA、ωB、ωC之间的关系是ωA=ωB>ωC3.自行车的大齿轮、小齿轮、后轮三个轮子的边缘上有A、B、C三点,向心加速度随半径变化图像如图所示,则()A.A、B两点加速度关系满足甲图线B.A、B两点加速度关系满足乙图线C.A、C两点加速度关系满足甲图线D.A、C两点加速度关系满足乙图线4.如图所示,质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B点,当轻杆绕轴OO′以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,a绳与水平面成θ角,b 绳平行于水平面且长为l,重力加速度为g,则下列说法正确的是()A .a 绳与水平方向夹角θ随角速度ω的增大而一直减小B .a 绳所受拉力随角速度的增大而增大C .当角速度ωtan g l θb 绳将出现弹力 D .若b 绳突然被剪断,则a 绳的弹力一定发生变化5.在修筑铁路时,弯道处的外轨会略高于内轨,如图所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v ,重力加速度为g ,两轨所在面的倾角为θ,则( )A .当火车质量改变时,规定的行驶速度大小也随之改变B .当火车速率大于v 时,外轨将受到轮缘的挤压C .当火车速率大于v 时,内轨将受到轮缘的挤压D .该弯道的半径2sin v r g θ= 6.如图所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点时受到的摩擦力是f F ,则物块与碗的动摩擦因数为( )A .f F mgB .f 2F v mg m R+ C .f 2F v mg m R - D .f m F R7.我国短道速滑项目在北京冬奥会上获得 2 金 1 银 1 铜。

曲线运动,圆周运动及应用

曲线运动,圆周运动及应用

单元综合测试四(曲线运动 万有引力与航天)班级: 学号: 姓名:试卷满分为100分.考试时间为90分钟.一、 选择题(本题共20小题,每题2分,共40分.)1.如图5-1-5所示,MN 为一竖直墙面,图中x 轴与MN 垂直.距墙面L 的A 点固定一点光源.现从A 点把一小球以水平速度向墙面抛出,则小球在墙面上的影子运动应是A .自由落体运动B .变加速直线运动C .匀速直线运动D .无法判定2.如图5-1-14示,在河岸上用细绳拉船,为了使船匀速靠岸,拉绳的速度必须是( ) A .加速拉 B .减速拉 C .匀速拉 D .先加速后减速拉3.一条河宽100m ,水流速度为3m /s ,一条小船在静水中的速度为5m /s ,关于船过河的过程,下列说法正确的是( )A .船过河的最短时间是20sB .船要垂直河岸过河需用25s 的时间C .船不可能垂直河岸过河D .只要不改变船的行驶方向,船过河一定走一条直线4.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为2v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同 5.正在水平匀速飞行的飞机,每隔1秒钟释放一个小球,先后共释放5个.不计阻力则( )A .这5个球在空中排成一条直线B .这5个球在空中处在同一抛物线上C .在空中,第1、2两球间的距离保持不变D .相邻两球的落地点间距离相等6.如图5-2-10所示,竖直放置的锥形漏斗,内壁光滑,内壁上有两个质量相同的小球P 、Q ,各自在不同水平面内做匀速圆周运动,则下列关系正确的是( )A .线速度V P >V QB .角速度ωP >ωQC .向心加速度a P >a QD .漏斗对小球压力N P >N Q7.如图5-2-11,细线吊着一个小球,使小球在水平面内做匀速圆周运动.关于小球的受力情况,正确的是( )A .重力、绳子的拉力、向心力B .重力、绳的拉力C .重力D .以上说法均错误8.一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动。

2021届新高考物理能力培养专训——《圆周运动及应用》复习检测(Word版附答案)

2021届新高考物理能力培养专训——《圆周运动及应用》复习检测(Word版附答案)

圆周运动及其应用时间:60分钟满分:100分一、选择题(本题共11小题,每小题7分,共77分。

其中1~9题为单选,10~11题为多选)1.如图所示,质量相等的A、B两物体紧贴在匀速转动的圆筒的竖直内壁上,随圆筒一起做匀速圆周运动,则下列关系中正确的是()A.线速度v A=v BB.角速度ωA=ωBC.受到的合力F A合=F B合D.受到的摩擦力F f A>F f B2.在修筑铁路时,弯道处的外轨会略高于内轨。

如图所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2 g sinθB.当火车质量改变时,规定的行驶速度大小随之变化C.当火车速率大于v时,外轨将受到轮缘的挤压D.当火车以规定速度行驶时,火车只受重力和支持力3.如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法不正确的是()A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B对A的动摩擦因数μA大于盘对B的动摩擦因数μB4.如图所示,两个相同材料制成的水平摩擦轮A和B,两轮半径R A=2R B,A 为主动轮。

当A轮匀速转动时,在A轮边缘处放置的小木块恰能在A轮的边缘上与A轮相对静止,若将小木块放在B轮上让其相对B轮静止,木块与B轮转轴间的最大距离为()A.R B8 B.R B2C.R BD.R B 45.如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),重力加速度为g。

要使物体能与圆盘始终保持相对静止,则物体与转轴间最大的距离为()A.μg cosθω2 B.g sinθω2C.μcosθ-sinθω2g D.μcosθ+sinθω2g6.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T,则F T随ω2变化的图象是()7.如图所示,竖直平面内有一光滑圆环,圆心为O,OA连线水平,AB为固定在A、B两点间的光滑直杆,在直杆和圆环上分别套着一个相同的小球M、N。

【精准解析】2021版新高考物理人教版测评 十二 4.3 圆周运动及其应用

【精准解析】2021版新高考物理人教版测评 十二 4.3 圆周运动及其应用

核心素养测评十二圆周运动及其应用(45分钟100分)一、选择题(本题共9小题,每小题6分,共54分,1~6题为单选题,7~9题为多选题)1.关于物体做圆周运动的说法中正确的是( )A.匀速圆周运动是匀变速曲线运动B.匀速圆周运动是向心力不变的运动C.做圆周运动的物体加速度可以不指向圆心D.竖直平面内做圆周运动的物体通过最高点的最小向心力等于物体的重力【解析】选C。

匀速圆周运动的加速度方向始终指向圆心,方向时刻改变,所以匀速圆周运动不是匀变速曲线运动,故A错误;匀速圆周运动的向心力大小不变,方向指向圆心,时刻改变,故B错误;做变速圆周运动的物体加速度沿半径方向分量改变速度方向,指向圆心,沿切向分量改变速度大小,合加速度不指向圆心,故C正确;如果是杆模型,竖直平面内做圆周运动的物体通过最高点的最小向心力可以为零,故D错误。

2.如图所示,两个用相同材料制成的靠摩擦传动的轮A和B水平放置,两轮半径R A=2R B。

当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

若将小木块放在B轮上,欲使木块相对B 轮也静止,则木块距B轮转轴的最大距离为( )A. B. C. D.R B【解析】选C。

A和B是用相同材料制成的,靠摩擦传动,边缘线速度大小相等,则ωA R A=ωB R B而R A=2R B。

所以=对于在A边缘的木块,最大静摩擦力恰为向心力,即m R A=f max当在B轮上恰要滑动时,设此时半径为R则m R=f max解得R=,故选C。

3.如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。

小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。

整个过程中,物块在夹子中没有滑动。

小环和夹子的质量均不计,重力加速度为g。

下列说法正确的是 ( )A.物块向右匀速运动时,绳中的张力等于2FB.小环碰到钉子P时,绳中的张力大于2FC.物块上升的最大高度为D.速度v不能超过【解析】选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:a、b两轮在同一皮带带动下匀速转动,说明a、b两轮的线速度相等,即va=vb,又ra∶rb=1∶2,由v=rω得:ωa∶ωb=2∶1,又由a轮与A盘同轴,b轮与B盘同轴,则ωa=ωA,ωb=ωB,根据向心力公式F=mrω2得 = = .所以D项正确.
答案:D
4.如图4所示,OO′为竖直轴,MN为固定在OO′上的水平光滑
则小球飞出后的落地点到桌边缘的水平距离为
l=ssin60°=1.73 m.
答案:(1)45 N(2)5 m/s(3)1.73 m
圆周运动及应用
1. (2010·西安铁一中月考)如图1所示,质量为m的物块从半径为R的半
球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点
时受到的摩擦力是Ff,则物块与碗的动摩擦因数为()图1
A. B. C. D.
解析:物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,据牛顿第二定律得FN-mg=m ,又Ff=μFN,联立解得μ= ,选项B正确.
图13
(1)线断开前的瞬间,线受到的拉力大小;
(2)线断开的瞬间,小球运动的线速度;
(3)如果小球离开桌面时,速度方向与桌边缘的夹角为60°,桌面高出地面0.8 m,求小球飞出后的落地点距桌边缘的水平距离.
解析:(1)线的拉力提供小球做圆周运动的向心力,设开始时角速度为ω0,向心力为F0,线断开的瞬间,角速度为ω,线的拉力为FT.
答案:C
9.(2010·湖南三十二校模拟)如图10所示,在倾角α=30°的
系一质量为m=0.2 kg的小球,小球沿斜面做圆周运动.若要小
球能通过最高点A,则小球在最低点B的最小速度是()图10
A.2 m/sB.2 m/s
C.2 m/sD.2 m/s
杆,有两个质量相同的金属球A、B套在水平杆上,AC和BC为
抗拉能力相同的两根细线,C端固定在转轴OO′上.当绳拉直
时,A、B两球转动半径之比恒为2∶1,当转轴的角速度逐渐增
大时()图4
A.AC先断B.BC先断
C.两线同时断D.不能确定哪根线先断
解析:对A球进行受力分析,A球受重力、支持力、拉力FA三个力作用,拉力的分力提供A球做圆周运动的向心力,得:
图12
(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.
解析:(1)物块静止时,对物块进行受力分析如图所示,设筒壁与水平面的夹角为θ.
由平衡条件有
Ff=mgsinθFN=mgcosθ
由图中几何关系有
cosθ= ,sinθ=
答案:A
3.(2010·汕头模考)如图3所示,在验证向心力公式的实验中,质量相同的钢球①放在A盘的边缘,钢球②放在B盘的边缘,A、B两盘的半径之比为2∶1.a、b分别是与A盘、B盘同轴的轮.a轮、b轮半径之比为1∶2,当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力之比为()
图3
A.2∶1B.4∶1C.1∶4D.8∶1
水平方向FAcosα=mrAω2,
同理,对B球:FBcosβ=mrBω2,
由几何关系,可知cosα= ,cosβ= .
所以: = = = .
由于AC>BC,所以FA>FB,即绳AC先断.
答案:A
5.(2010 ·临沂模拟)如图5所示,某同学用硬塑料管和一个质量为m的铁
质螺丝帽研究匀速圆周运动,将螺丝帽套在塑料管上,手握塑料管使其
故有Ff= ,FN=
(2)分析此时物块受力如图所示,
由牛顿第二定律有
mgtanθ=mrω2.
其中tanθ= ,r= ,
可得ω= .
答案:(1) (2)
12.(2010·青岛模拟)如图13所示,一根长0.1 m的细线,一端系着一个质量为0.18 kg的小球,拉住线的另一端,使小球在光滑的水平桌面上做匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线受到的拉力比开始时大40 N,求:
F0=mω02R①
FT=mω2R②
由①②得 = = ③
又因为FT=F0+40 N④
由③④得FT=45 N
(2)设线断开时小球的线速度为v,由FT= 得,
v= = m/s=5 m/s
(3)设桌面高度为h,小球落地经历时间为t,落地点与飞出桌面点的水平距离为s.
由h= gt2得
t= =0.4 s
s=vt=2 m
答案:B
2.如图2所示,天车下吊着两个质量都是m的工件A和B,系A的吊
绳较短,系B的吊绳较长.若天车运动到P处突然停止,则两吊绳
所受的拉力FA和FB的大小关系为()
A.FA>FBB.FA<FB图2
C.FA=FB=mgD.FA=FB>mg
解析:天车运动到P处突然停止后,A、B各以天车上的悬点为圆心做圆周运动,线速度相同而半径不同,由F-mg=m ,得:F=mg+m ,因为m相等,v相等,而LA<LB,所以FA>FB,A选项正确.
答案:D
7.(2010·长沙五校联考)如图7所示光滑管形圆轨道半径为R(管径远小
于R),小球a、b大小相同,质量均为m,其直径略小于管径,能
在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当
小球a在最低点时,小球b在最高点,以下说法正确的是()
A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心
F=mgtanθ
根据牛顿第二定律得
F=mgtanθ=mr·ω2
解得直杆和球的角速度为
ω= = rad/s≈3.5 rad/s.
当直杆和球的角速度ω>3.5 rad/s时,b中才有张力.
答案:ω>3.5 rad/s
11.(2009·广东高考)如图12所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半.内壁上有一质量为m的小物块.求:
答案:A
6.如图6所示,靠摩擦传动做匀速转动的大、小两轮接触面互
不打滑,大轮半径是小轮半径的2倍.A、B分别为大、小轮
边缘上的点,C为大轮上一条半径的中点.则()
A.两轮转动的角速度相等
B.大轮转动的角速度是小轮的2倍图6
C.质点加速度aA=2aB
D.质点加速度aB=4aC
解析:两轮不打滑,边缘质点线速度大小相等,vA=vB,而rA=2rB,故ωA= ωB,A、B错误;由an= 得 = = ,C错误;由an=ω2r得 = =2,则 =4,D正确.
保持竖直并沿水平方向做半径为r的匀速圆周运动,则只要运动角速度大
小合适,螺丝帽恰好不下滑.假设螺丝帽与塑料管间的动摩擦因数为μ,
认为最大静摩擦力近似等于滑动摩擦力.则在该同学手转动塑料管使螺图5
丝帽恰好不下滑时,下述分析正确的是()
A.螺丝帽受的重力与最大静摩擦力平衡
B.螺丝帽受到杆的弹力方向水平向外,背离圆心
答案:BD
8.(2010·山东省青岛三中月考)用一根细线一端系一小球(可视为质点),另
一端固定在一光滑锥顶上,如图8所示,设小球在水平面内做匀速圆周
运动的角速度为ω,细线的张力为FT,则FT随ω2变化的图象是图9
中的()图8
图9
解析:小球角速度ω较小,未离开锥面对,设细线的张力为FT,线的长度为L,锥面对小球的支持力为FN,则有FTcosθ+FNsinθ=mg,FTsinθ-FNcosθ=mω2Lsinθ,可得出:FT=mgcosθ+mω2Lsin2θ,可见随ω由0开始增加,FT由mgcosθ开始随ω2的增大,线性增大,当角速度增大到小球飘离锥面时,FT·sinα=mω2Lsinα,得FT=mω2L,可见FT随ω2的增大仍线性增大,但图线斜率增大了,综上所述,只有C正确.
解析:通过A点的最小速度为vA= =2 m/s,则根据机械能守恒定律得: mvB2= mvA2+mgL,解得vB=2 m/s,即C选项正确.
答案:C
10.如图11所示,把一个质量m=1 kg的物体通过两根等长的细绳与
竖直杆上A、B两个固定点相连接,绳a、b长都是1 m,杆AB长度
是1.6 m,直杆和球旋转的角速度等于多少时,b绳上才有张力?
C.此时手转动塑料管的角速度ω=
D.若杆的转动加快,螺丝帽有可能相对杆发生运动
解析:由于螺丝帽做圆周运动过程中恰好不下滑,则竖直方向上重力与最大静摩擦力平衡,杆对螺丝帽的弹力提供其做匀速圆周运动的向心力,有mg=Ff=μFN=μmω2r,得ω= ,选项A正确、B、C错误;杆的转动速度增大时,杆对螺丝帽的弹力增大,最大静摩擦力也增大,螺丝帽不可能相对杆发生运动,故选项D错误.
解析:如图所示,a、b两绳都伸直时,已知a、b绳长均为1 m,即图11
= =1 m, = =0.8 m
在△AOD中,cosθ= = =0.8
sinθ=0.6,θ=37°
小球做圆周运动的轨道半径
r= = ·sinθ=1×0.6 m=0.6 m.
b绳被拉直但无张力时,小球所受的重力mg与a绳拉力FTa的合力F为向心力,其受力分析如图所示,由图可知小球的向心力为
力大5mg图7
B.当v= 时,小球b在轨道最高点对轨道无压力
C.速度v至少为 ,才能使两球在管内做圆周运动
D.只要v≥ ,小球a对轨道最低点的压力比小球b对轨道最高点的压力大6mg
解析:小球在最高点恰好对轨道没有压力时,小球b所受重力充当向心力,mg=m ⇒v0= ,小球从最高点运动到最低点过程中,只有重力做功,小球的机械能守恒,2mgR+ mv02= mv2,解以上两式可得:v= ,B项正确;小球在最低点时,F向=m =5mg,在最高点和最低点所需向心力的差为4mg,A项错;小球在最高点,内管对小球可以提供支持力,所以小球通过最高点的最小速度为零,再由机械能守恒定律可知,2mgR= mv′2,解得v′=2 ,C项错;当v≥ 时,小球在最低点所受支持力F1=mg+ ,由最低点运动到最高点,2mgR+ mv12= mv2,小球对轨道压力F2+mg=m ,解得F2=m -5mg,F1-F2=6mg,可见小球a对轨道最低点压力比小球b对轨道最高点压力大6mg,D项正确.
相关文档
最新文档