【通用版】2018-2019学年高中理数新创新一轮复习 选修4-5 不等式选讲含解析

合集下载

2019年高考数学一轮复习(文理通用) 选修4-5 不等式选讲 选修4-5 第2讲

2019年高考数学一轮复习(文理通用) 选修4-5  不等式选讲 选修4-5 第2讲

(2)放缩法的注意事项: 12 3 12 ①舍去或加上一些项,如(a+2) +4>(a+2) ; 1 1 1 1 1 2 ②将分子或分母放大(缩小),如k2< ,k2> , < , k k - 1 kk+1 k k+ k-1 1 2 > (k∈N*,k>1)等. k k+ k+1 ③放大或缩小时注意要适当,必须目标明确,合情合理,恰到好处,且不可 放缩过大或过小,谨慎地添或减是放缩法的基本策略.
1.下列结论正确的个数为 导学号 58533693 ( C ) (1)用反证法证明命题“a、b、c 全为 0”时假设为“a、b、c 全不为 0”. (2)若实数 x、y 适合不等式 xy>1,x+y>-2,则 x>0,y>0. x+2y (3)若 >1,则 x+2y>x-y. x-y (4)|a+b|+|a-b|≥|2a|. A.0 C.2 B.1 D.3
选考内容
选修4-5 不等式选讲
第二讲 不等式的证明与柯西不等式
1 2
知 识 梳 理
考 点 突 破
知 识 梳 理
1.均值不等式
2ab 定理 1:设 a、b∈R,则 a2+b2≥________. 当且仅当 a=b 时,等号成立.
a+b ab ,当且仅当 a=b 时,等号成 定理 2:如果 a、b 为正数,则 2 ≥________ 立.
n n n
bn an(当 ai=0 时,约定 bi=0,i=1,2,„,n)时等号成立. (3)柯西不等式的向量形式:设 α、β 为平面上的两个向量,则|α||β|≥|α· β|,当 且仅当 α,β 共线时等号成立.
• 3.不等式的证明方法 反证法 放缩法 • 证明不等式常用的方法有比较法、综合法、分析法、 ________、________等.

2018-2019学年高中一轮复习理数:选修4-5 不等式选讲 含解析

2018-2019学年高中一轮复习理数:选修4-5 不等式选讲 含解析

选修4-5⎪⎪⎪不等式选讲第一节 绝对值不等式本节主要包括2个知识点: 1.绝对值不等式的解法;2.绝对值三角不等式.突破点(一) 绝对值不等式的解法[基本知识](1)含绝对值的不等式|x |<a 与|x |>a 的解集不等式 a >0a =0 a <0 |x |<a {}x |-a <x <a ∅∅ |x |>a{}x |x >a 或x <-a{}x ∈R|x ≠0R(2)|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解.[基本能力]1.判断题(1)不等式|x |<a 的解集为{x |-a <x <a }.( )(2)|x -a |+|x -b |的几何意义是表示数轴上的点x 到点a ,b 的距离之和.( ) (3)不等式|2x -3|≤5的解集为{x |-1≤x ≤4}.( ) 答案:(1)× (2)√ (3)√ 2.填空题(1)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{x |1≤x ≤3},∴k =2.答案:2(2)不等式|2x -1|>3的解集为________. 解析:由|2x -1|>3得,2x -1<-3或2x -1>3,即x <-1或x >2. 答案:{x |x <-1或x >2}(3)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-53<x <13,则a =________. 解析:依题意,知a ≠0.|ax -2|<3⇔-3<ax -2<3⇔-1<ax <5,当a >0时,不等式的解集为⎝⎛⎭⎫-1a ,5a , 从而有⎩⎨⎧5a =13,-1a =-53,此方程组无解.当a <0时,不等式的解集为⎝⎛⎭⎫5a,-1a , 从而有⎩⎨⎧5a =-53,-1a =13,解得a =-3.答案:-3(4)不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{x |x ≥1}. 答案:{x |x ≥1}[全析考法]绝对值不等式的解法[典例] 解下列不等式: (1)|2x +1|-2|x -1|>0.(2)|x +3|-|2x -1|<x2+1.[解] (1)法一:原不等式可化为|2x +1|>2|x -1|,两边平方得4x 2+4x +1>4(x 2-2x +1),解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.法二:原不等式等价于⎩⎪⎨⎪⎧x <-12,-(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧-12≤x ≤1,(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧x >1,(2x +1)-2(x -1)>0.解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)+(1-2x )<x 2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.[方法技巧]绝对值不等式的常用解法(1)基本性质法对a ∈R +,|x |<a ⇔-a <x <a , |x |>a ⇔x <-a 或x >a . (2)平方法两边平方去掉绝对值符号. (3)零点分区间法含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.[全练题点]1.求不等式|x -1|-|x -5|<2的解集. 解:不等式|x -1|-|x -5|<2等价于⎩⎪⎨⎪⎧ x <1,-(x -1)+(x -5)<2或⎩⎪⎨⎪⎧1≤x ≤5,x -1+x -5<2或⎩⎪⎨⎪⎧x >5,x -1-(x -5)<2, 即⎩⎪⎨⎪⎧x <1,-4<2或⎩⎪⎨⎪⎧1≤x ≤5,2x <8或⎩⎪⎨⎪⎧x >5,4<2,故原不等式的解集为{x |x <1}∪{x |1≤x <4}∪∅={x |x <4}.2.解不等式x +|2x +3|≥2.解:原不等式可化为⎩⎪⎨⎪⎧ x <-32,-x -3≥2或⎩⎪⎨⎪⎧x ≥-32,3x +3≥2.解得x ≤-5或x ≥-13.所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |x ≤-5或x ≥-13.3.已知函数f (x )=|x -1|+|x +a |,g (x )=|x -2|+1.(1)当a =2时,解不等式f (x )≥5;(2)若对任意x 1∈R ,都存在x 2∈R ,使得g (x 2)=f (x 1)成立,求实数a 的取值范围. 解:(1)当a =2时,f (x )=|x -1|+|x +2|=⎩⎪⎨⎪⎧-2x -1,x ≤-2,3,-2<x <1,2x +1,x ≥1,∴f (x )≥5⇔⎩⎪⎨⎪⎧ x ≤-2,-2x -1≥5或⎩⎪⎨⎪⎧ -2<x <1,3≥5或⎩⎪⎨⎪⎧x ≥1,2x +1≥5.解得x ≥2或x ≤-3,∴不等式f (x )≥5的解集为(-∞,-3]∪[2,+∞).(2)∵对任意x 1∈R ,都存在x 2∈R ,使得g (x 2)=f (x 1)成立,∴{y |y =f (x )}⊆{y |y =g (x )}. ∵f (x )=|x -1|+|x +a |≥|(x -1)-(x +a )|=|a +1|(当且仅当(x -1)(x +a )≤0时等号成立),g (x )=|x -2|+1≥1,∴|a +1|≥1,∴a +1≥1或a +1≤-1,∴a ≥0或a ≤-2,∴实数a 的取值范围为(-∞,-2]∪[0,+∞). 4.(2018·湖北黄石调研)已知函数f (x )=|x -1|+|x +3|. (1)解不等式f (x )≥8;(2)若不等式f (x )<a 2-3a 的解集不是空集,求实数a 的取值范围. 解:(1)f (x )=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x <3,4,-3≤x ≤1,2x +2,x >1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x≤1时,4≥8,不成立;当x>1时,由2x+2≥8,解得x≥3.∴不等式f(x)≥8的解集为{x|x≤-5或x≥3}.(2)由(1)得f(x)min=4.又∵不等式f(x)<a2-3a的解集不是空集,∴a2-3a>4,解得a>4或a<-1,即实数a的取值范围是(-∞,-1)∪(4,+∞).突破点(二)绝对值三角不等式[基本知识]绝对值三角不等式定理定理1如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立定理2如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立[基本能力]1.判断题(1)|a+b|+|a-b|≥|2a|.()(2)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.()答案:(1)√(2)√2.填空题(1)函数y=|x-4|+|x+4|的最小值为________.解析:∵|x-4|+|x+4|≥|(x-4)-(x+4)|=8,即函数y的最小值为8.答案:8(2)设a,b为满足ab<0的实数,那么下列正确的是________.①|a+b|>|a-b|②|a+b|<|a-b|③|a-b|<||a|-|b|| ④|a-b|<|a|+|b|解析:∵ab<0,∴|a-b|=|a|+|b|>|a+b|.答案:②(3)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4][全析考法]证明绝对值不等式[例1] 已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明.绝对值不等式的恒成立问题[例2] (2018·湖南五市十校联考)设函数f (x )=|x -a |+|x -3|,a <3. (1)若不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,求a 的值;(2)若对∀x ∈R ,不等式f (x )+|x -3|≥1恒成立,求实数a 的取值范围. [解] (1)法一:由已知得f (x )=⎩⎪⎨⎪⎧-2x +a +3,x <a ,3-a ,a ≤x ≤3,2x -a -3,x >3,当x <a 时,-2x +a +3≥4,得x ≤a -12; 当x >3时,2x -a -3≥4,得x ≥7+a2.已知f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则显然a =2.法二:由已知易得f (x )=|x -a |+|x -3|的图象关于直线x =a +32对称,又f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则12+92=a +3,即a =2.(2)法一:不等式f (x )+|x -3|≥1恒成立,即|x -a |+2|x -3|≥1恒成立. 当x ≤a 时,-3x +a +5≥0恒成立,得-3a +a +5≥0,解得a ≤52;当a <x <3时,-x -a +5≥0恒成立,得-3-a +5≥0,解得a ≤2; 当x ≥3时,3x -a -7≥0恒成立,得9-a -7≥0,解得a ≤2. 综上,实数a 的取值范围为(-∞,2].法二:不等式f (x )+|x -3|≥1恒成立,即|x -a |+|x -3|≥-|x -3|+1恒成立, 由图象(图略)可知f (x )=|x -a |+|x -3|在x =3处取得最小值3-a , 而-|x -3|+1在x =3处取得最大值1,故3-a ≥1,得a ≤2. 故实数a 的取值范围为(-∞,2].[全练题点]1.[考点一]设函数f (x )=⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.解:(1)证明:由a >0,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2.当且仅当a =1时等号成立.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a , 由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.2.[考点二]已知函数f (x )=|x -m |-|x +3m |(m >0). (1)当m =1时,求不等式f (x )≥1的解集;(2)对于任意实数x ,t ,不等式f (x )<|2+t |+|t -1|恒成立,求m 的取值范围. 解:(1)f (x )=|x -m |-|x +3m | =⎩⎪⎨⎪⎧-4m ,x ≥m ,-2x -2m ,-3m <x <m ,4m ,x ≤-3m .当m =1时,由⎩⎪⎨⎪⎧-2x -2≥1,-3<x <1或x ≤-3,得x ≤-32,∴不等式f (x )≥1的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32.(2)不等式f (x )<|2+t |+|t -1|对任意的实数t ,x 恒成立,等价于对任意的实数x ,f (x )<(|2+t |+|t -1|)min 恒成立,即[f (x )]max <(|2+t |+|t -1|)min ,∵f (x )=|x -m |-|x +3m |≤|(x -m )-(x +3m )|=4m , |2+t |+|t -1|≥|(2+t )-(t -1)|=3, ∴4m <3,又m >0,∴0<m <34,即m 的取值范围是⎝⎛⎭⎫0,34. 3.[考点二]已知函数f (x )=|x -2|,g (x )=-|x +3|+m . (1)解关于x 的不等式f (x )+a -1>0(a ∈R);(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围. 解:(1)不等式f (x )+a -1>0, 即|x -2|+a -1>0.当a =1时, 原不等式化为|x -2|>0,解得x ≠2,即解集为(-∞,2)∪(2,+∞); 当a >1时,解集为全体实数R ;当a <1时,|x -2|>1-a (1-a >0),解集为(-∞,a +1)∪(3-a ,+∞). (2)f (x )的图象恒在函数g (x )图象的上方, 即|x -2|>-|x +3|+m 对任意实数x 恒成立, 即|x -2|+|x +3|>m 恒成立.又由绝对值三角不等式知,对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5, 当且仅当(x -2)(x +3)≤0时等号成立. 于是得m <5,故m 的取值范围是(-∞,5).[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. 3.(2016·全国卷Ⅲ)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).4.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).[课时达标检测] 1.已知函数f (x )=|x +m |-|5-x |(m ∈R ). (1)当m =3时,求不等式f (x )>6的解集;(2)若不等式f (x )≤10对任意实数x 恒成立,求m 的取值范围.解:(1)当m =3时,f (x )>6,即|x +3|-|5-x |>6,不等式的解集是以下三个不等式组解集的并集.⎩⎪⎨⎪⎧x ≥5,x +3-(x -5)>6,解得x ≥5;或⎩⎪⎨⎪⎧-3<x <5,x +3+(x -5)>6,解得4<x <5; 或⎩⎪⎨⎪⎧x ≤-3,-x -3+(x -5)>6,解集是∅. 故不等式f (x )>6的解集为{x |x >4}.(2)f (x )=|x +m |-|5-x |≤|(x +m )+(5-x )|=|m +5|,由题意得|m +5|≤10,则-10≤m +5≤10,解得-15≤m ≤5,故m 的取值范围为[-15,5]. 2.(2018·江西南昌模拟)已知函数f (x )=|2x -a |+|x -1|. (1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为3,求实数a 的值.解:(1)由题意f (x )≤2-|x -1|,即为⎪⎪⎪⎪x -a 2+|x -1|≤1.而由绝对值的几何意义知⎪⎪⎪⎪x -a2+|x -1|≥⎪⎪⎪⎪a 2-1,由不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪a 2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4]. (2)由2x -a =0得x =a 2,由x -1=0得x =1,由a <2知a 2<1,∴f (x )=⎩⎪⎨⎪⎧-3x +a +1⎝⎛⎭⎫x <a2,x -a +1⎝⎛⎭⎫a 2≤x ≤1,3x -a -1(x >1).函数的图象如图所示. ∴f (x )min =f ⎝⎛⎭⎫a 2=-a2+1=3, 解得a =-4.3.(2018·广东潮州模拟)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝⎛⎭⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围. 解:(1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎪⎨⎪⎧-3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4,可化为⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧-32≤x ≤1,x +4>4或⎩⎪⎨⎪⎧x >1,3x +2>4,解得x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞). (2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝⎛⎦⎤-∞,32. 4.(2018·长春模拟)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x (a >0)的最小值大于函数f (x ),试求实数a 的取值范围.解:(1)当x >2时,原不等式可化为x -2-x -1>1,解集是∅. 当-1≤x ≤2时,原不等式可化为2-x -x -1>1,即-1≤x <0; 当x <-1时,原不等式可化为2-x +x +1>1,即x <-1. 综上,原不等式的解集是{x |x <0}. (2)因为g (x )=ax +1x -1≥2a -1, 当且仅当x =aa 时等号成立, 所以g (x )min =2a -1,当x >0时,f (x )=⎩⎪⎨⎪⎧1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1),所以2a -1≥1,即a ≥1, 故实数a 的取值范围是[1,+∞). 5.(2018·湖北四校联考)已知函数f (x )=e |x +a |-|x -b |,a ,b ∈R.(1)当a =b =1时,解不等式f (x )≥e ;(2)若f (x )≤e 2恒成立,求a +b 的取值范围. 解:(1)当a =b =1时,f (x )=e |x+1|-|x -1|,由于y =e x 在(-∞,+∞)上是增函数,所以f (x )≥e 等价于|x +1|-|x -1|≥1,①当x ≥1时,|x +1|-|x -1|=x +1-(x -1)=2,则①式恒成立; 当-1<x <1时,|x +1|-|x -1|=2x ,①式化为2x ≥1,此时12≤x <1;当x ≤-1时,|x +1|-|x -1|=-2,①式无解. 综上,不等式的解集是⎣⎡⎭⎫12,+∞. (2)f (x )≤e 2等价于|x +a |-|x -b |≤2,② 因为|x +a |-|x -b |≤|x +a -x +b |=|a +b |, 所以要使②式恒成立,只需|a +b |≤2, 可得a +b 的取值范围是[-2,2].6.(2018·湖北枣阳一中模拟)已知f (x )=|x -1|+|x +a |,g (a )=a 2-a -2. (1)当a =3时,解关于x 的不等式f (x )>g (a )+2;(2)当x ∈[-a,1)时恒有f (x )≤g (a ),求实数a 的取值范围. 解:(1)a =3时,f (x )=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x ≤-3,4,-3<x <1,2x +2,x ≥1,g (3)=4.∴f (x )>g (a )+2化为|x -1|+|x +3|>6,即⎩⎪⎨⎪⎧ -2x -2>6,x ≤-3,或⎩⎪⎨⎪⎧ 4>6,-3<x <1,或⎩⎪⎨⎪⎧2x +2>6,x ≥1,解得x <-4或x >2.∴所求不等式解集为(-∞,-4)∪(2,+∞). (2)∵x ∈[-a,1).∴f (x )=1+a .∴f (x )≤g (a )即为1+a ≤a 2-a -2,可化为a 2-2a -3≥0,解得a ≥3或a ≤-1. 又∵-a <1,∴a >-1.综上,实数a 的取值范围为[3,+∞).7.(2018·安徽蚌埠模拟)已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2. (1)解不等式|g (x )|<5;(2)若对任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解:(1)由||x -1|+2|<5,得-5<|x -1|+2<5,∴-7<|x -1|<3,解得-2<x <4,∴原不等式的解集为{x |-2<x <4}.(2)∵对任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立, ∴{y |y =f (x )}⊆{y |y =g (x )}.又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|, g (x )=|x -1|+2≥2,∴|a +3|≥2,解得a ≥-1或a ≤-5, ∴实数a 的取值范围是(-∞,-5]∪[-1,+∞). 8.已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围. 解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-54<x <12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103.第二节 不等式的证明本节重点突破1个知识点:不等式的证明.突破点 不等式的证明[基本知识]1.基本不等式 定理1如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立定理2如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均定理3如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1. 3.综合法与分析法 综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立分析法从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立[基本能力]1.判断题(1)已知x 为正实数,则1+x +1x ≥3.( )(2)若a >2,b >2,则a +b >ab .( ) (3)设x =a +2b ,S =a +b 2+1则S ≥x .( ) 答案:(1)√ (2)× (3)√ 2.填空题(1)已知a ,b ∈R +,a +b =2,则1a +1b 的最小值为________. 解析:∵a ,b ∈R +,且a +b =2,∴(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2 b a ·a b =4,∴1a +1b≥4a +b=2,即1a +1b 的最小值为2(当且仅当a =b =1时,“=”成立). 答案:2(2)已知正实数a ,b 满足2ab =a +b +12,则ab 的最小值是________.解析:由2ab =a +b +12,得2ab ≥2ab +12,当且仅当a =b 时等号成立.化简得(ab -3)(ab +2)≥0,解得ab ≥9,所以ab 的最小值是9.答案:9(3)已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________.解析:把a +b +c =1代入1a +1b +1c ,得a +b +c a +a +b +c b +a +b +cc=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9(4)设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 应满足的条件为________________.解析:若x >y ,则x -y =a 2b 2+5-(2ab -a 2-4a ) =a 2b 2-2ab +a 2+4a +5 =(ab -1)2+(a +2)2>0, ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2[全析考法]比较法证明不等式[例1] 求证:(1)当x ∈R 时,1+2x 4≥2x 3+x 2; (2)当a ,b ∈(0,+∞)时,a a b b ≥(ab )a +b2.[证明] (1)法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1)=(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.(2)a a b b(ab )a +b2=a a -b 2b b -a 2=⎝⎛⎭⎫a b a -b 2,∴当a =b 时,⎝⎛⎭⎫a b a -b2=1, 当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b a -b2>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b a -b 2>1,∴a a b b≥(ab )a +b 2. [方法技巧]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.综合法证明不等式[例2] 已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c . [证明] 因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c = 1bc+ 1ac+ 1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .[方法技巧]综合法证明时常用的不等式(1)a 2≥0;|a |≥0. (2)a 2+b 2≥2ab .(3)a +b 2≥ab ,它的变形形式有:a +1a ≥2(a >0);a b +b a ≥2(ab >0);a b +b a ≤-2(ab <0).分析法证明不等式[例3] (2018·福建毕业班质量检测)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). [解] (1)由题意,|x +1|<|2x +1|-1,①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 解得x <-1,此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以,要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M , 所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立. [方法技巧]分析法的应用当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[全练题点]1.[考点三]设x ≥1,y ≥1,求证x +y +1xy ≤1x +1y +xy .证明:由于x ≥1,y ≥1, 要证x +y +1xy ≤1x +1y +xy , 只需证xy (x +y )+1≤y +x +(xy )2. 因为[y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1),因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.2.[考点一]设不等式|2x -1|<1的解集为M . (1)求集合M .(2)若a ,b ∈M ,试比较ab +1与a +b 的大小. 解:(1)由|2x -1|<1得-1<2x -1<1, 解得0<x <1.所以M ={x |0<x <1}. (2)由(1)和a ,b ∈M 可知0<a <1,0<b <1, 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .3.[考点二]已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围.解:(1)证明:由a +d >b +c ,且a ,b ,c ,d 均为正数,得(a +d )2>(b +c )2,又ad =bc , 所以(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2,所以t ·a 2+b 2c 2+d 2=t (ac +bd ).由于a 4+c 4≥2ac ,b 4+d 4≥2bd ,又已知t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4,则t (ac +bd )≥2(ac +bd ),故t ≥2,当且仅当a =c ,b =d 时取等号.[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤12;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1,所以12≤x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.[课时达标检测]1.(2018·武汉调研)若正实数a ,b 满足a +b =12,求证:a +b ≤1. 证明:要证 a +b ≤1,只需证a +b +2ab ≤1,即证2ab ≤12,即证ab ≤14. 而a +b =12≥2ab ,∴ab ≤14成立, ∴原不等式成立.2.已知函数f (x )=|x +3|+|x -1|,其最小值为t .(1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94. 解:(1)因为|x +3|+|x -1|=|x +3|+|1-x |≥|x +3+1-x |=4,所以f (x )min =4,即t =4.(2)证明:由(1)得a +b =4,故a 4+b 4=1,1a +4b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a 4+b 4=14+1+b 4a +a b ≥54+2b 4a ×a b =54+1=94,当且仅当b =2a ,即a =43,b =83时取等号,故1a +4b ≥94. 3.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0. 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.4.(2018·广州模拟)已知x ,y ,z ∈(0,+∞),x +y +z =3.(1)求1x +1y +1z的最小值; (2)证明:3≤x 2+y 2+z 2<9.解:(1)因为x +y +z ≥33xyz >0,1x +1y +1z ≥33xyz>0, 所以(x +y +z )⎝⎛⎭⎫1x +1y +1z ≥9,即1x +1y +1z ≥3,当且仅当x =y =z =1时,1x +1y +1z 取得最小值3.(2)证明:x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3, 当且仅当x =y =z =1时等号成立.又因为x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy +yz +zx )<0,所以3≤x 2+y 2+z 2<9.5.(2018·安徽百所重点高中模拟)已知a >0,b >0,函数f (x )=|2x +a |+2⎪⎪⎪⎪x -b 2+1的最小值为2.(1)求a +b 的值;(2)求证:a +log 3⎝⎛⎭⎫1a +4b ≥3-b .解:(1)因为f (x )=|2x +a |+|2x -b |+1≥|2x +a -(2x -b )|+1=|a +b |+1,当且仅当(2x +a )(2x -b )≤0时,等号成立,又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +1=2,所以a +b =1.(2)由(1)知,a +b =1,所以1a +4b =(a +b )⎝⎛⎭⎫1a +4b =1+4+b a +4a b≥5+2 b a ·4a b =9,当且仅当b a =4a b 且a +b =1,即a =13,b =23时取等号. 所以log 3⎝⎛⎭⎫1a +4b ≥log 39=2,所以a +b +log 3⎝⎛⎭⎫1a +4b ≥1+2=3,即a +log 3⎝⎛⎭⎫1a +4b ≥3-b .6.(2018·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.证明:(1)|cos(α+β)|=|cos αcos β-sin αsin β|≤|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+|cos αsin β|≤|cos α|+|cos β|.(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|,而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥cos 0=1.7.(2018·安徽安师大附中、马鞍山二中阶段测试)已知函数f (x )=|x -2|.(1)解不等式:f (x )+f (x +1)≤2;(2)若a <0,求证:f (ax )-af (x )≥f (2a ).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|.因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1; 当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2;当x >2时,原不等式等价于2x -3≤2,即2<x ≤52. 综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立.8.(2018·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12; (2)a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 当且仅当a =b 时等号成立,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a ,当且仅当a =b =c =13时等号成立. 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2,当且仅当a =b =c =13时等号成立.。

2018-2019年高考理科数学一轮二轮专题复习:选修4—5 不等式选讲

2018-2019年高考理科数学一轮二轮专题复习:选修4—5 不等式选讲
选修4—5
不等式选讲
-2知识梳理 双基自测
1
2
3
4
5
1.绝对值三角不等式 (1)定理1:若a,b是实数,则|a+b|≤ |a|+|b| ,当且仅当 ab≥0 时,等号成立; (2)性质:|a|-|b|≤|a±b|≤|a|+|b|; (3)定理2:若a,b,c是实数,则|a-c|≤ |a-b|+|b-c| ,当且仅当 (a-b)(b-c)≥0 时,等号成立.
解析 答案
-12知识梳理 双基自测
1
2
3
4
5
5.已知x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围 为 .
关闭
|������| + |������-1| ≥ 1, 由 |������| + |������-1| ≥ 1, 可知|x|+|y|+|x-1|+|y-1|≥2. 又已知|x|+|y|+|x-1|+|y-1|≤2, |������| + |������-1| = 1, 所以|x|+|y|+|x-1|+|y-1|=2,即 |������| + |������-1| = 1. 0 ≤ ������ ≤ 1, 所以 即 0≤x+y≤2. 0 ≤ ������ ≤ 1 , [0,2]
关闭
(1)√ (2)√ (3)√ (4)× (5)√
答案
-9知识梳理 双基自测
1
2
3
4
5
2.若不等式 ������ + ������ >|a-2|+1 对于一切非零实数 x 均成立,则实数 a 的取值范围是(

2018届高考数学一轮复习选修4-5.2

2018届高考数学一轮复习选修4-5.2
第二节 证明不等式的基本方法
选修4-5
第二节
证明不等式的基本方法
主干知识回顾 名师考点精讲
-2-
考纲概述
考查热点
考查频次 ★★★
备考指导
通过一些简单问题了解 不等式的综合法证明 证明不等式的基本方法: 比较法、综合法、分析 不等式的分析法证明 法

熟悉不等式的各种证明方法以及解 题步骤,同时要注意根据不等式的特 征确定证明方法
选修4-5
考点一 考点二 考点三
第二节
证明不等式的基本方法
主干知识回顾 名师考点精讲
-10-
(2)设a,b∈(0,+∞),求证:a2ab2b≥(ab)a+b. 【解题思路】利用作商比较法证明.
【参考答案】作商得 ������+������ (������������) 又由指数函数的性质知 ������ ������−������ 当a=b时, =1;
理、性质等),从而得出要证的命题成立
证明不等式的基本方法
主干知识回顾 名师考点精讲
-5-
3.反证法与放缩法 (1)反证法: 证明命题时,先假设要证的命题 不成立 ,以此为出发点,结合已知条件,应用 公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的 定理、性质、明显成立的事实) 矛盾 的结论,以说明假设不正确,从而证明 原命题成立. (2)放缩法: 证明不等式时,通过把不等式中的某些部分的值 放大 或 缩小 ,简化不 等式,从而达到证明的目的.
当b>a>0时,0< <1,a-b<0,
������
������
>1,
故a2ab2b≥(ab)a+b.

2019年高考数学一轮复习(文理通用) 选修4-5 不等式选讲 选修4-5 第1讲

2019年高考数学一轮复习(文理通用) 选修4-5  不等式选讲 选修4-5 第1讲

• [解析] 解法一:y=|x-4|+|x-6|=|4-x|+|x-6|≥|(4- x)+(x-6)|=2. • 解法二:|x-4|+|x-6|表示在数轴上,x对应的点到4与6 对应点的距离之和,随着x在数轴上的移动易看出|x-4|+ |x-6|≥2,故选A.
5.(2015· 山东)不等式|x-1|-|x-5|<2 的解集是 导学号 58533684 ( A ) A.(-∞,4) C.(1,4) B.(-∞,1) D.(1,5)
选考内容
选修4-5 不等式选讲
第一讲 绝对值不等式
• 五年新课标全国卷试题分析
高考考点分布示例图
命题特点 1.本章在高考中只考查一个大题,以解答题的形式出现, 占10分. 2.高考主要考查绝对值不等式的解法,求含绝对值的函数 的值域及求含参数的绝对值不等式中参数的取值范围 , 不等式的证明等,结合集合的运算、函数的图象和性质、 恒成立问题及基本不等式、绝对值不等式的应用成为命 题的热点,主要考查学生的基本运算能力与推理论证能 力以及数形结合思想、分类讨论思想. 3.从命题趋势来看,估计2019年高考,绝对值不等式问题 仍然是考查的热点问题,不等式的证明更是不可缺少,
1.下列结论正确的个数为 导学号 58533680 ( D ) (1)对|a+b|≥|a|-|b|当且仅当 a>b>0 时等号成立. (2)对|a-b|≤|a|+|b|当且仅当 ab≤0 时等号成立. (3)|ax+b|≤c 的解等价于-c≤ax+b≤c. (4)若|x|>c 的解集为 R,则 c≤0. (5)不等式|x-1|+|x+2|<2 的解集为∅. A.0 C.2 B.1 D.3
[ 解析]
(1)原不等式等价于
1<x-2≤3 或-3≤x-2<-1, 解得 3<x≤5 或-1≤x<1. 所以原不等式的解集是{x|-1≤x<1 或 3<x≤5}. (2)方法一:原不等式可化为|2x+1|>2|x-1|, 两边平方得 4x2+4x+1>4(x2-2x+1), 1 解得 x>4, 1 所以原不等式的解集为{x|x>4}.

全国版高考数学一轮复习选修4-5不等式选讲课件理

全国版高考数学一轮复习选修4-5不等式选讲课件理
式,求出解集;
④取各个不等式解集的并集即可得到原不等式的解集.
考点1 绝对值不等式
几何法(利
用|x-a|的
几何意义)
由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到与
a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-
b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何
高考对这部分内容的考查一直比较稳定,预计2022年高考还
会延续此前的命题特点.
考点1 绝对值不等式
考点帮·必备知识通关
考点2 不等式的证明
考点3 柯西不等式
考点1 绝对值不等式
1.绝对值不等式的解法
(1)含绝对值的不等式|x|<a与|x|>a的解集:
不等式
a>0
a=0
a<0
|x|<a
{-a<x<a}
干个不等式解集的并集,而不是交集.
考点1 绝对值不等式
(4)|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法:
①|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x);
②|f(x)|<g(x)⇔-g(x)<f(x)<g(x).
2.绝对值三角不等式
定理1
如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
意义求解更直观.
数形结合 通过构造函数,利用函数的图象求解,体现函数与方程的思想,正

确求出函数的零点并画出函数图象是解题的关键.

2018-2019学年高考数学(文科)一轮复习通用版:选修4-5 不等式选讲

2018-2019学年高考数学(文科)一轮复习通用版:选修4-5  不等式选讲

选修4-5 不等式选讲第1课绝对值不等式[过双基]1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解;③构造函数,利用函数的图象求解. [小题速通]1.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1, 所以不等式的解集为{}x |x ≥1. 答案:{x |x ≥1}2.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.答案:[-2,4]x|1≤x≤3,则实数k=________.3.若不等式|kx-4|≤2的解集为{}解析:由|kx-4|≤2⇔2≤kx≤6.x|1≤x≤3,∵不等式的解集为{}∴k=2.答案:24.设不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为____________.解析:∵||x+1|-|x-2||≤3,∴-3≤|x+1|-|x-2|≤3,∴k<(|x+1|-|x-2|)的最小值,即k<-3.答案:(-∞,-3)[清易错]1.对形如|f(x)|>a或|f(x)|<a型的不等式求其解集时,易忽视a的符号直接等价转化造成失误.2.绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|中易忽视等号成立的条件.如|a-b|≤|a|+|b|,当且仅当ab≤0时等号成立,其他类似推导.1.设a,b为满足ab<0的实数,那么()A.|a+b|>|a-b|B.|a+b|<|a-b|C.|a-b|<||a|-|b||D.|a-b|<|a|+|b|解析:选B∵ab<0,∴|a-b|=|a|+|b|>|a+b|.2.若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.解析:|x-2y+1|=|(x-1)-2(y-2)-2|≤|x-1|+2|y-2|+2≤5.答案:5绝对值不等式的解法[典例] 设函数(x )=|x +1|-|x -1|+a (a ∈R). (1)当a =1时,求不等式f (x )>0的解集;(2)若方程f (x )=x 只有一个实数根,求实数a 的取值范围. [解] (1)依题意,原不等式等价于: |x +1|-|x -1|+1>0,当x <-1时,-(x +1)+(x -1)+1>0, 即-1>0,此时解集为∅;当-1≤x ≤1时,x +1+(x -1)+1>0, 即x >-12,此时-12<x ≤1;当x >1时,x +1-(x -1)+1>0, 即3>0,此时x >1.综上所述,不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫xx >-12.(2)依题意,方程f (x )=x 等价于a =|x -1|-|x +1|+x , 令g (x )=|x -1|-|x +1|+x . ∴g (x )=⎩⎪⎨⎪⎧x +2,x <-1,-x ,-1≤x ≤1,x -2,x >1..画出函数g (x )的图象如图所示,∴要使原方程只有一个实数根,只需a >1或a <-1. ∴实数a 的取值范围是(-∞,-1)∪(1,+∞). [方法技巧](1)求解绝对值不等式的两个注意点:①要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点、分区间、分段讨论.②对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程. (2)求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.[即时演练]1.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6⇒-12≤x ≤12;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:原不等式可化为⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.2.解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2, 即-4<2,显然成立,所以此时不等式的解集为(-∞,1); 当1≤x ≤5时,不等式可化为x -1-(5-x )<2, 即2x -6<2,解得x <4,所以此时不等式的解集为[1,4); 当x >5时,不等式可化为(x -1)-(x -5)<2, 即4<2,显然不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).绝对值不等式的证明[典例] 已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]绝对值不等式证明的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明. [即时演练]已知f (x )=|x +2|-|2x -1|,M 为不等式f (x )>0的解集. (1)求M ;(2)求证:当x ,y ∈M 时,|x +y +xy |<15.解:(1)f (x )=⎩⎨⎧x -3,x <-2,3x +1,-2≤x ≤12,-x +3,x >12,当x <-2时,由x -3>0,得x >3,舍去; 当-2≤x ≤12时,由3x +1>0,得x >-13,即-13<x ≤12;当x >12时,由-x +3>0,得x <3,即12<x <3,综上,M =⎝⎛⎭⎫-13,3. (2)证明:∵x ,y ∈M ,∴|x |<3,|y |<3,∴|x +y +xy |≤|x +y |+|xy |≤|x |+|y |+|xy |=|x |+|y |+|x |·|y |<3+3+3×3=15.绝对值不等式的综合应用[典例] (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. [解] (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. [方法技巧](1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a . [即时演练]已知函数f (x )=|x -a |-|2x -1|. (1)当a =2时,求f (x )+3≥0的解集;(2)当x ∈[1,3]时,f (x )≤3恒成立,求a 的取值范围. 解:(1)当a =2时,由f (x )+3≥0, 可得|x -2|-|2x -1|≥-3,①⎩⎪⎨⎪⎧ x <12,2-x +2x -1≥-3或②⎩⎪⎨⎪⎧12≤x <2,2-x -2x +1≥-3或 ③⎩⎪⎨⎪⎧x ≥2,x -2-2x +1≥-3. 解①得-4≤x <12;解②得12≤x <2;解③得x =2.综上所述,不等式的解集为{x |-4≤x ≤2}. (2)当x ∈[1,3]时,f (x )≤3恒成立, 即|x -a |≤3+|2x -1|=2x +2. 故-2x -2≤x -a ≤2x +2, 即-3x -2≤-a ≤x +2,∴-x -2≤a ≤3x +2对x ∈[1,3]恒成立. ∴a ∈[-3,5].1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).3.(2016·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.(2013·全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎨⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}. (2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43.1.(2018·唐山模拟)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)因为f (x )=|2x -1|+|x +1|=⎩⎨⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪1+a 2, 当且仅当(x +1)⎝⎛⎭⎫x -a 2≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2=1, 解得a =-4或0.2.已知函数f (x )=|2x +1|,g (x )=|x -1|+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若对任意x ∈R ,f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x -1|, 两边平方整理得x 2+2x ≥0,解得x ≥0或x ≤-2. 所以原不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )≥g (x ),得a ≤|2x +1|-|x -1|. 令h (x )=|2x +1|-|x -1|,则h (x )=⎩⎨⎧-x -2,x ≤-12,3x ,-12<x <1,x +2,x ≥1.故h (x )min =h ⎝⎛⎭⎫-12=-32. 故所求实数a 的取值范围为⎝⎛⎦⎤-∞,-32. 3.已知函数f (x )=|2x -a |+|2x -1|,a ∈R. (1)当a =3时,求关于x 的不等式f (x )≤6的解集; (2)当x ∈R 时,f (x )≥a 2-a -13,求实数a 的取值范围. 解:(1)当a =3时,不等式f (x )≤6可化为|2x -3|+|2x -1|≤6.当x <12时,不等式可化为-(2x -3)-(2x -1)=-4x +4≤6,解得-12≤x <12;当12≤x ≤32时,不等式可化为-(2x -3)+(2x -1)=2≤6,解得12≤x ≤32; 当x >32时,不等式可化为(2x -3)+(2x -1)=4x -4≤6,解得32<x ≤52.综上所述,关于x 的不等式f (x )≤6的解集为 ⎩⎨⎧⎭⎬⎫x -12≤x ≤52.(2)当x ∈R 时,f (x )=|2x -a |+|2x -1|≥|2x -a +1-2x |=|1-a |, 所以当x ∈R 时,f (x )≥a 2-a -13等价于|1-a |≥a 2-a -13. 当a ≤1时,等价于1-a ≥a 2-a -13,解得-14≤a ≤1; 当a >1时,等价于a -1≥a 2-a -13,解得1<a ≤1+13, 所以a 的取值范围为[-14,1+13]. 4.已知函数f (x )=|x -a |+|2x +1|. (1)当a =1时,解不等式f (x )≤3;(2)若f (x )≤2a +x 在[a ,+∞)上有解,求a 的取值范围. 解:(1)当a =1时,f (x )≤3化为|x -1|+|2x +1|≤3, 则⎩⎪⎨⎪⎧ x <-12,1-x -1-2x ≤3或⎩⎪⎨⎪⎧-12≤x ≤1,1-x +2x +1≤3或⎩⎪⎨⎪⎧x >1,x -1+2x +1≤3,解得-1≤x <-12或-12≤x ≤1或∅.所以原不等式解集为{x |-1≤x ≤1}.(2)因为x ∈[a ,+∞),所以f (x )=|x -a |+|2x +1|=x -a +|2x +1|≤2a +x , 即|2x +1|≤3a 有解,所以a ≥0, 所以不等式化为2x +1≤3a 有解, 即2a +1≤3a ,解得a ≥1, 所以a 的取值范围为[1,+∞). 5.设函数f (x )=|2x -a |+2a .(1)若不等式f (x )≤6的解集为{x |-6≤x ≤4},求实数a 的值;(2)在(1)的条件下,若不等式f (x )≤(k 2-1)x -5的解集非空,求实数k 的取值范围. 解:(1)∵|2x -a |+2a ≤6,∴|2x -a |≤6-2a,2a -6≤2x -a ≤6-2a , ∴32a -3≤x ≤3-a 2. 而f (x )≤6的解集为{x |-6≤x ≤4},故有⎩⎨⎧32a -3=-6,3-12a =4,解得a =-2.(2)由(1)得f (x )=|2x +2|-4, ∴不等式|2x +2|-4≤(k 2-1)x -5, 化简得|2x +2|+1≤(k 2-1)x ,令g (x )=|2x +2|+1=⎩⎪⎨⎪⎧2x +3,x ≥-1,-2x -1,x <-1.画出函数y =g (x )的图象如图所示.要使不等f (x )≤(k 2-1)x -5的解集非空,只需k 2-1>2或k 2-1≤-1, 解得k >3或k <-3或k =0,∴实数k 的取值范围为(-∞,-3)∪{0}∪(3,+∞). 6.设函数f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a , 则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a,-1a ,则-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎫-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,故实数m 的取值范围是⎝⎛⎦⎤-∞,72. 7.(2018·九江模拟)已知函数f (x )=|x -3|-|x -a |. (1)当a =2时,解不等式f (x )≤-12;(2)若存在实数a ,使得不等式f (x )≥a 成立,求实数a 的取值范围. 解:(1)∵a =2,∴f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,∴f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧ 2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,∴不等式的解集为⎣⎡⎭⎫114,+∞.(2)由不等式性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, ∴若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,∴实数a 的取值范围是⎝⎛⎦⎤-∞,32. 8.已知函数f (x )=|2x +1|-|x |+a , (1)若a =-1,求不等式f (x )≥0的解集;(2)若方程f (x )=2x 有三个不同的解,求a 的取值范围. 解:(1)当a =-1时,不等式f (x )≥0可化为 |2x +1|-|x |-1≥0, ∴⎩⎪⎨⎪⎧ x <-12,-(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧-12≤x <0,(2x +1)-(-x )-1≥0或⎩⎪⎨⎪⎧x ≥0,(2x +1)-x -1≥0,解得x ≤-2或x ≥0,∴不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )=2x ,得a =2x +|x |-|2x +1|, 令g (x )=2x +|x |-|2x +1|,则g (x )=⎩⎨⎧3x +1,x <-12,-x -1,-12≤x <0,x -1,x ≥0,作出函数y =g (x )的图象如图所示,易知A ⎝⎛⎭⎫-12,-12,B (0,-1), 结合图象知:当-1<a <-12时,函数y =a 与y =g (x )的图象有三个不同交点,即方程f (x )=2x 有三个不同的解,∴a 的取值范围为⎝⎛⎭⎫-1,-12.第2课不等式证明[过双基]1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)比差法:依据是a -b >0⇔a >b ;步骤是“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.4.柯西不等式(1)设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则⎝ ⎛⎭⎪⎪⎫∑i =1n a 2i ⎝ ⎛⎭⎪⎪⎫∑i =1n b 2i ≥⎝ ⎛⎭⎪⎪⎫∑i =1n a i b i 2,当且仅当b 1a 1=b 2a 2=…=b na n (当a i =0时,约定b i =0,i =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α,β共线时等号成立.[小题速通]1.若m =a +2b ,n =a +b 2+1,则m 与n 的大小关系为________. 解析:∵n -m =a +b 2+1-a -2b =b 2-2b +1=(b -1)2≥0,∴n ≥m .答案:n ≥m2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9[清易错]1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.1.已知a >0,b >0,则a a b b ________(ab )a +b2(填大小关系).解析:∵a a b b (ab )a +b 2=⎝⎛⎭⎫a b a -b 2,∴当a =b 时,⎝⎛⎭⎫a b a -b2=1,当a >b >0时,a b >1,a -b 2>0,∴⎝⎛⎭⎫a b a -b 2>1, 当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b a -b 2>1,∴a a b b≥(ab )a +b2.答案:≥2.设x >y >z >0,求证:x -z +8(x -y )(y -z )≥6.证明:x -z +8(x -y )(y -z )=(x -y )+(y -z )+8(x -y )(y -z )≥33(x -y )(y -z )8(x -y )(y -z )=6.当且仅当x -y =y -z =8(x -y )(y -z )时取等号,所以x -z +8(x -y )(y -z )≥6.[典例] (2018·a +b ). [证明] (a 2+b 2)-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =(a 12-b 12)(a 32-b 32).因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0, 所以a 2+b 2≥ab (a +b ). [方法技巧]比较法证明不等式的方法和步骤(1)求差比较法:由a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为求差比较法.(2)求商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为求商比较法.(3)用比较法证明不等式的一般步骤是:作差(商)—变形—判断—结论,而变形的方法一般有配方、通分和因式分解.[即时演练]求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.综合法证明不等式[典例] 已知a ,(1)(ax +by )2≤ax 2+by 2; (2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252.[证明] (1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy , 因为a +b =1,所以a -1=-b ,b -1=-a ,又a ,b 均为正数, 所以a (a -1)x 2+b (b -1)y 2+2abxy =-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立. 所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2=4+a 2+b 2+⎝⎛⎭⎫1a 2+1b 2 =4+a 2+b 2+(a +b )2a 2+(a +b )2b 2=4+a 2+b 2+1+2b a +b 2a 2+a 2b 2+2a b +1=4+(a 2+b 2)+2+⎝⎛⎭⎫2b a +2a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥6+(a +b )22+4+2=252, 当且仅当a =b =12时,等号成立,所以⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. [方法技巧]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22. (4)a +b 2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0). [即时演练]设a ,b ,c 均为正数,且a +b +c =1,求证: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.分析法证明不等式[典例] 设a ,b 求证:(1)a +b +c ≥ 3. (2)a bc +b ac +cab ≥3(a +b +c ).[证明] (1)要证a +b +c ≥3, 由于a ,b ,c >0, 因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)abc+ b ac+ c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c , 即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca . 而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.所以a bc +b ac +c ab ≤ab +bc +ca 当且仅当a =b =c =33时等号成立. 所以原不等式成立. [方法技巧]1.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真. 2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab ,即证-c 2-ab <a -c <c 2-ab ,即证|a -c |<c 2-ab ,即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.3.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d . (2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d .②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 4.(2014·全国卷Ⅰ)若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3. 由于43>6,从而不存在a ,b , 使得2a +3b =6.1.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1) =a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1).∵a +b =2≥2ab ,∴ab ≤1. ∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 2.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明:由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3. 3.(2018·云南统一检测)已知a 是常数,对任意实数x ,不等式|x +1|-|2-x |≤a ≤|x +1|+|2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=|x +1|-|2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,|x +1|-|2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |,则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,|x +1|+|2-x |≥a 都成立,即h (x )≥a , ∴a ≤3. ∴a =3.(2)证明:由(1)知a =3. ∵2m +1m 2-2mn +n 2-2n =(m -n )+(m -n )+1(m -n )2,且m >n >0,∴(m -n )+(m -n )+1(m -n )2≥33(m -n )(m -n )1(m -n )2=3.∴2m +1m 2-2mn +n 2≥2n +a .4.已知x ,y ,z 是正实数,且满足x +2y +3z =1. (1)求1x +1y +1z 的最小值;(2)求证:x 2+y 2+z 2≥114. 解:(1)∵x ,y ,z 是正实数,且满足x +2y +3z =1, ∴1x +1y +1z =⎝⎛⎭⎫1x +1y +1z (x +2y +3z )=6+2y x +3z x +x y +3z y +x z +2yz ≥6+22+23+26, 当且仅当2y x =x y 且3z x =x z 且3z y =2yz 时取等号. (2)由柯西不等式可得1=(x +2y +3z )2≤(x 2+y 2+z 2)(12+22+32) =14(x 2+y 2+z 2),∴x 2+y 2+z 2≥114, 当且仅当x =y 2=z 3,即x =114,y =17,z =314时取等号.故x 2+y 2+z 2≥114.5.(2018·石家庄模拟)已知函数f (x )=|x |+|x -1|. (1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab . 解:(1)由绝对值不等式的性质知 f (x )=|x |+|x -1|≥|x -x +1|=1, ∴f (x )min =1, ∴只需|m -1|≤1, 即-1≤m -1≤1, ∴0≤m ≤2,∴实数m 的最大值M =2.(2)证明:∵a 2+b 2≥2ab ,且a 2+b 2=2, ∴ab ≤1,∴ab ≤1,当且仅当a =b 时取等号.① 又ab ≤a +b 2,∴ab a +b ≤12,∴ab a +b ≤ab2,当且仅当a =b 时取等号.②由①②得,ab a +b ≤12,∴a +b ≥2ab . 6.(2018·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4.①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号. 7.已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)若t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围. 解:(1)证明:由a +d >b +c ,且a ,b ,c ,d 均为正数, 得(a +d )2>(b +c )2,又ad =bc , 所以(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2, 所以t ·a 2+b 2·c 2+d 2=t (ac +bd ). 由于a 4+c 4≥ 2ac,b 4+d 4≥ 2bd ,又已知t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,则t (ac +bd )≥ 2(ac +bd ),故t ≥ 2,当且仅当a =c ,b =d 时取等号. 所以实数t 的取值范围为[2,+∞). 8.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎨⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝⎛⎦⎤-∞,-103∪[2,+∞). (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |. 因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.阶段滚动检测(六)全程仿真验收(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A },则集合B 中的元素个数为( ) A .9 B .6 C .4D .3解析:选D 集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A }={(2,3),(3,2),(3,3)},则集合B 中的元素个数为3.2.若复数2a +2i1+i (a ∈R)是纯虚数,则复数2a +2i 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B2a +2i 1+i =(2a +2i )(1-i )(1+i )(1-i )=2a +2+(2-2a )i2,由题意可知2a +2=0且2-2a ≠0,所以a =-1,则复数2a +2i 在复平面内对应的点(-2,2)在第二象限.3.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 因为x ∈(-∞,0)时,2x 3x =⎝⎛⎭⎫23x>1,所以2x >3x ,故命题p 是假命题;命题q :∀x ∈⎝⎛⎭⎫0,π2,cos x <1,是真命题,则綈p 是真命题,綈q 是假命题,故(綈p )∧q 是真命题.4.某几何体的三视图如图所示,则该几何体的体积为( )A .1+2πB .1+4π3C .1+π2D .1+π6解析:选D 由三视图可知,该几何体是一个组合体,上面是一个半径为12的球,下面是一个棱长为1的正方体,所以该几何体的体积V =4π3·⎝⎛⎭⎫123+1=1+π6.5.函数y =x 22x -2-x的图象可能是( )解析:选C 因为f (-x )=x 22-x -2x =-f (x ),即函数y =x 22x -2-x是奇函数,故排除B 、D ;当x >0,且x →+∞时,y →0,故排除A ,因此选C.6.执行如图所示的程序框图,如果输入的m ,n 分别为1 848,936,则输出的m 的值为( )A .168B .72C .36D .24解析:选D 根据题意,运行程序:m =1 848,n =936;r =912,m =936,n =912;r =24,m =912,n =24;r =0,m =24,n =0,此时满足条件,循环结束,输出m =24,故选D.7.如图,Rt △ABC 中,AB =AC ,BC =4,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则BP ―→·AD ―→的最小值为( )A .2+ 5 B. 5 C .2D .2- 5解析:选D 建立如图所示的平面直角坐标系,则B (-2,0),A (0,2),D (1,0),设P (x ,y ),故BP ―→=(x +2,y ),AD ―→=(1,-2),所以BP ―→·AD ―→=x -2y +2.令x -2y +2=t ,根据直线的几何意义可知,当直线x -2y +2=t 与半圆相切时,t 取得最小值,由点到直线的距离公式可得|2-t |5=1,t =2-5,即BP ―→·AD ―→的最小值是2- 5.8.将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,若所得图象与原图象重合,则f ⎝⎛⎭⎫π24不可能等于( )A .0B .1 C.22D.32解析:选D 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,得函数y =cos ⎝⎛⎭⎫ωx -ωπ3,由题意可得ωπ3=2k π,k ∈Z ,因为ω>0,所以ω=6k >0,k ∈Z ,则f ⎝⎛⎭⎫π24=cos ωπ24=cos k π4,k ∈Z ,显然,f ⎝⎛⎭⎫π24不可能等于32,故选D. 9.(2017·郑州二模)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:选C作出不等式组⎩⎨⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域如图中阴影部分所示,其中A (2,4),B (1,5),C (1,3),∴x ∈[1,2],y ∈[3,5].∴z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,∴z min =-2×2+4+4=4,故选C.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =π4,b 2-a 2=12c 2,则tanC =( )A .2B .-2 C.12D .-12解析:选A 因为b 2-a 2=12c 2且b 2+c 2-a 2=2bc cos A =2bc ,所以b =3c 22,a =5c 22,由余弦定理可得cos C =58c 2+98c 2-c 22×5c 22×3c 22=15,则角C 是锐角,sin C =25,则tan C =sin C cos C =2.11.已知点P 在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右支上,F 1,F 2分别为双曲线的左、右焦点,若|PF 1―→ |2-|PF 2―→|2=12a 2,则该双曲线的离心率的取值范围是( )A .[3,+∞)B .(2,4]C .(2,3]D .(1,3]解析:选D 根据题意,因为|PF 1―→|2-|PF 2―→|2=12a 2,且|PF 1|-|PF 2|=2a ,所以|PF 1|+|PF 2|=6a ≥|F 1F 2|=2c ,所以e ≤3.又因为e >1,所以该双曲线的离心率的取值范围是(1,3].12.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,若g (x )=f (x )-12x 2+x ,则方程g ⎝⎛⎭⎫x2a -x -x =0有且仅有一个根时,实数a 的取值范围是( ) A .(-∞,0)∪{1} B .(-∞,1] C .(0,1]D .[1,+∞)解析:选A 由函数的解析式可得f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,f ′(1)=1-f (0)+f ′(1),所以f ′(1)=e ,f (0)=1,所以f (x )=12x 2-x +e x ,g (x )=f (x )-12x 2+x =e x ,则e x 2a -x -x =0有且仅有一个根,即x 2a =x +ln x 有且仅有一个根,分别作出y =x 2a 和y=x +ln x 的图象,由图象知a <0或a =1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.(m +x )(1+x )3的展开式中x 的奇数次幂项的系数之和为16,则⎠⎛-11x m d x =________.解析:(m +x)(1+x)3=(m +x)(C 03x 3+C 13x 2+C 23x +C 33),所以x 的奇数次幂项的系数之和为m C 03+m C 23+C 13+C 33=16,解得m =3,所以⎠⎛-11x md x =⎠⎛-11x 3d x =14x 4⎪⎪⎪1-1=0.答案:014.在△ABC 中,AB ⊥AC ,AB =1t,AC =t ,P 是△ABC 所在平面内一点,若AP ―→=4AB―→|AB ―→|+AC ―→|AC ―→|,则△PBC 面积的最小值为________. 解析:由于AB ⊥AC ,故以AB ,AC 所在直线分别为x 轴,y 轴,建立平面直角坐标系(图略),则B ⎝⎛⎭⎫1t ,0,C(0,t),因为AP ―→=4AB ―→|AB ―→|+AC ―→|AC ―→|,所以点P 坐标为(4,1),直线BC 的方程为t 2x +y -t =0,所以点P 到直线BC 的距离为d =|4t 2+1-t|t 4+1,BC =t 4+1t,所以△PBC 的面积为12×|4t 2+1-t|t 4+1×t 4+1t =12⎪⎪⎪⎪4t +1t -1≥32,当且仅当t =12时取等号. 答案:3215.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________. 解析:令x =0,得y =33-m ;令y =0,得x =3m +2.所以12·|x|·|y|=12·⎪⎪⎪⎪⎪⎪3m +2·⎪⎪⎪⎪⎪⎪33-m <98,因为m ∈(0,3),所以解得0<m<2,由几何概型概率公式可得,所求事件的概率为23.答案:2316.已知M(x 0,y 0)是椭圆E :x 2a 2+y 2b 2=1(a>b>0)上一点,A ,B 是其左、右顶点,若AM―→2AM ―→·BM ―→=x 20-a 2,则离心率e =________.解析:由题意知A(-a,0),B(a,0),∴AM ―→=(x 0+a ,y 0),BM ―→=(x 0-a ,y 0),∵2AM ―→·BM―→=x 20-a 2,∴2(x 20-a 2+y 20)=x 20-a 2,∴x 20=a 2-2y 20. 又x 20a 2+y 20b 2=1,∴a 2-2y 20a 2+y 20b2=1, ∴-2a 2+1b2=0,∴a 2=2b 2,∴c 2a 2=a 2-b 2a 2=1-b 2a 2=1-12=12,∴e =22. 答案:22三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=2,且满足a n +1=S n +2n +1(n∈N *).(1)证明数列⎩⎨⎧⎭⎬⎫S n 2n 为等差数列;(2)求S 1+S 2+…+S n .解:(1)证明:由条件可知,S n +1-S n =S n +2n +1, 即S n +1-2S n =2n +1,整理得S n +12n +1-S n2n =1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 是以1为首项,1为公差的等差数列.(2)由(1)可知,S n2n =1+n -1=n ,即S n =n ·2n ,令T n =S 1+S 2+…+S n ,则T n =1×2+2×22+…+n ×2n ①2T n =1×22+2×23+…+n ×2n +1,②①-②,得-T n =2+22+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2,所以T n =2+(n -1)·2n +1.18.(本小题满分12分)如图所示的是某母婴用品专卖店根据以往销售奶粉的销售记录绘制的日销售量的频率分布直方图.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)估计日销售量的平均值;(2)求未来连续三天里,有两天日销售量不低于100袋且另一天销售量低于50袋的概率; (3)记X 为未来三天里日销售量不低于150袋的天数,求X 的分布列和均值(数学期望). 解:(1)估计日销售量的平均值为25×0.003×50+75×0.005×50+125×0.006×50+175×0.004×50+225×0.002×50=117.5.(2)不低于100袋的概率为0.6,低于50袋的概率为0.15,设事件A 表示有两天日销售量不低于100袋且另一天销售量低于50袋,则P (A )=C 23(0.6)2×0.15=0.162.(3)不低于150袋的概率为0.3,由题意知,X ~B (3,0.3),P (X =0)=C 03(0.7)3=0.343, P (X =1)=C 13(0.7)2×0.3=0.441, P (X =2)=C 23×0.7×0.32=0.189, P (X =3)=C 33×0.33=0.027.所以X 的分布列为则X 的均值为E (X 19.(本小题满分12分)如图①,等腰直角三角形ABC 的底边AB =4,点D 在线段AC。

2018版高考数学(文理通用,新课标)一轮复习教师用书:选修4-5不等式选讲含解析

2018版高考数学(文理通用,新课标)一轮复习教师用书:选修4-5不等式选讲含解析

选修4-5错误!不等式选讲第一节绝对值不等式突破点(一) 绝对值不等式的解法 基础联通 抓主干知识的“源”与“流”(1)含绝对值的不等式|x |<a 与|x |〉a 的解集 不等式a 〉0 a =0 a 〈0|x |<a错误! ∅ ∅|x |〉a错误! 错误! R(2)|ax +b |≤c ,|ax +b |≥c (c 〉0)型不等式的解法:①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .本节主要包括2个知识点:1。

绝对值不等式的解法;2。

绝对值三角不等式.(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c 〉0)型不等式的解法:①利用绝对值不等式的几何意义求解.②利用零点分段法求解.③构造函数,利用函数的图象求解. 考点贯通 抓高考命题的“形”与“神”绝对值不等式的解法典例](1)|2x +1|-2|x -1|〉0.(2)|x +3|-|2x -1|<错误!+1。

解] (1)法一:原不等式可化为|2x +1|〉2|x -1|,两边平方得4x 2+4x +1〉4(x 2-2x +1),解得x 〉错误!,所以原不等式的解集为错误!.法二:原不等式等价于错误!或错误!或错误!解得x >14,所以原不等式的解集为错误!。

(2)①当x <-3时,原不等式化为-(x+3)-(1-2x)〈错误!+1,解得x<10,∴x<-3.②当-3≤x<错误!时,原不等式化为(x+3)-(1-2x)〈x2+1,解得x<-错误!,∴-3≤x〈-错误!。

③当x≥错误!时,原不等式化为(x+3)+(1-2x)<错误!+1,解得x〉2,∴x〉2。

综上可知,原不等式的解集为错误!。

绝对值不等式的常用解法方法技巧](1)基本性质法:对a∈R+,|x|<a⇔-a<x〈a,|x|〉a⇔x<-a或x>a.(2)平方法:两边平方去掉绝对值符号.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.1.求不等式|x-1|-|x-5|<2的解集.解:不等式|x-1|-|x-5|〈2等价于错误!或错误!或错误!即错误!或错误!或错误!故原不等式的解集为{x|x〈1}∪{x|1≤x<4}∪∅={x|x〈4}.2.解不等式x+|2x+3|≥2.解:原不等式可化为错误!或错误!解得x≤-5或x≥-错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5⎪⎪⎪不等式选讲第一节 绝对值不等式本节主要包括2个知识点: 1.绝对值不等式的解法;绝对值三角不等式.突破点(一) 绝对值不等式的解法[基本知识](1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法 ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解.[基本能力]1.判断题(1)不等式|x |<a 的解集为{x |-a <x <a }.( )(2)|x -a |+|x -b |的几何意义是表示数轴上的点x 到点a ,b 的距离之和.( ) (3)不等式|2x -3|≤5的解集为{x |-1≤x ≤4}.( ) 答案:(1)× (2)√ (3)√ 2.填空题(1)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 解析:由|kx -4|≤2⇔2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2. 答案:2(2)不等式|2x -1|>3的解集为________. 解析:由|2x -1|>3得,2x -1<-3或2x -1>3,即x <-1或x >2. 答案:{x |x <-1或x >2}(3)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-53<x <13,则a =________. 解析:依题意,知a ≠0.|ax -2|<3⇔-3<ax -2<3⇔-1<ax <5,当a >0时,不等式的解集为⎝⎛⎭⎫-1a ,5a , 从而有⎩⎨⎧5a =13,-1a =-53,此方程组无解.当a <0时,不等式的解集为⎝⎛⎭⎫5a,-1a , 从而有⎩⎨⎧5a =-53,-1a =13,解得a =-3.答案:-3(4)不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{x |x ≥1}. 答案:{x |x ≥1}[全析考法]绝对值不等式的解法[典例] 解下列不等式: (1)|2x +1|-2|x -1|>0. (2)|x +3|-|2x -1|<x2+1.[解] (1)法一:原不等式可化为|2x +1|>2|x -1|,两边平方得4x 2+4x +1>4(x 2-2x +1),解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.法二:原不等式等价于⎩⎪⎨⎪⎧x <-12,-(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧-12≤x ≤1,(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧x >1,(2x +1)-2(x -1)>0.解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)+(1-2x )<x 2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.[方法技巧]绝对值不等式的常用解法(1)基本性质法对a ∈R +,|x |<a ⇔-a <x <a , |x |>a ⇔x <-a 或x >a . (2)平方法两边平方去掉绝对值符号. (3)零点分区间法含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.[全练题点]1.求不等式|x -1|-|x -5|<2的解集. 解:不等式|x -1|-|x -5|<2等价于⎩⎪⎨⎪⎧ x <1,-(x -1)+(x -5)<2或⎩⎪⎨⎪⎧1≤x ≤5,x -1+x -5<2 或⎩⎪⎨⎪⎧x >5,x -1-(x -5)<2,即⎩⎪⎨⎪⎧x <1,-4<2或⎩⎨⎧1≤x ≤5,2x <8或⎩⎪⎨⎪⎧x >5,4<2,故原不等式的解集为{x |x <1}∪{x |1≤x <4}∪∅={x |x <4}.2.解不等式x +|2x +3|≥2.解:原不等式可化为⎩⎪⎨⎪⎧ x <-32,-x -3≥2或⎩⎪⎨⎪⎧x ≥-32,3x +3≥2.解得x ≤-5或x ≥-13.所以原不等式的解集是⎩⎨⎧⎭⎬⎫x |x ≤-5或x ≥-13.3.已知函数f (x )=|x -1|+|x +a |,g (x )=|x -2|+1.(1)当a =2时,解不等式f (x )≥5;(2)若对任意x 1∈R ,都存在x 2∈R ,使得g (x 2)=f (x 1)成立,求实数a 的取值范围.解:(1)当a =2时,f (x )=|x -1|+|x +2|=⎩⎪⎨⎪⎧-2x -1,x ≤-2,3,-2<x <1,2x +1,x ≥1,∴f (x )≥5⇔⎩⎪⎨⎪⎧x ≤-2,-2x -1≥5或⎩⎨⎧-2<x <1,3≥5或⎩⎪⎨⎪⎧x ≥1,2x +1≥5.解得x ≥2或x ≤-3,∴不等式f (x )≥5的解集为(-∞,-3]∪[2,+∞).(2)∵对任意x 1∈R ,都存在x 2∈R ,使得g (x 2)=f (x 1)成立,∴{y |y =f (x )}⊆{y |y =g (x )}. ∵f (x )=|x -1|+|x +a |≥|(x -1)-(x +a )|=|a +1|(当且仅当(x -1)(x +a )≤0时等号成立),g (x )=|x -2|+1≥1,∴|a +1|≥1,∴a +1≥1或a +1≤-1,∴a ≥0或a ≤-2,∴实数a 的取值范围为(-∞,-2]∪[0,+∞). 4.(2018·湖北黄石调研)已知函数f (x )=|x -1|+|x +3|. (1)解不等式f (x )≥8;(2)若不等式f (x )<a 2-3a 的解集不是空集,求实数a 的取值范围. 解:(1)f (x )=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x <3,4,-3≤x ≤1,2x +2,x >1.当x <-3时,由-2x -2≥8,解得x ≤-5; 当-3≤x ≤1时,4≥8,不成立; 当x >1时,由2x +2≥8,解得x ≥3.∴不等式f (x )≥8的解集为{x |x ≤-5或x ≥3}.(2)由(1)得f (x )min =4.又∵不等式f (x )<a 2-3a 的解集不是空集,∴a 2-3a >4,解得a >4或a <-1,即实数a 的取值范围是(-∞,-1)∪(4,+∞).突破点(二) 绝对值三角不等式[基本知识]绝对值三角不等式定理[基本能力]1.判断题(1)|a+b|+|a-b|≥|2a|.()(2)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.()答案:(1)√(2)√2.填空题(1)函数y=|x-4|+|x+4|的最小值为________.解析:∵|x-4|+|x+4|≥|(x-4)-(x+4)|=8,即函数y的最小值为8.答案:8(2)设a,b为满足ab<0的实数,那么下列正确的是________.①|a+b|>|a-b|②|a+b|<|a-b|③|a-b|<||a|-|b|| ④|a-b|<|a|+|b|解析:∵ab<0,∴|a-b|=|a|+|b|>|a+b|.答案:②(3)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.答案:[-2,4][全析考法][例1]已知x,y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.[证明]∵|x+5y|=|3(x+y)-2(x-y)|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明.绝对值不等式的恒成立问题[例2] (2018·湖南五市十校联考)设函数f (x )=|x -a |+|x -3|,a <3. (1)若不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,求a 的值;(2)若对∀x ∈R ,不等式f (x )+|x -3|≥1恒成立,求实数a 的取值范围.[解](1)法一:由已知得f (x )=⎩⎪⎨⎪⎧-2x +a +3,x <a ,3-a ,a ≤x ≤3,2x -a -3,x >3,当x <a 时,-2x +a +3≥4,得x ≤a -12; 当x >3时,2x -a -3≥4,得x ≥7+a2.已知f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则显然a =2.法二:由已知易得f (x )=|x -a |+|x -3|的图象关于直线x =a +32对称,又f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则12+92=a +3,即a =2.(2)法一:不等式f (x )+|x -3|≥1恒成立,即|x -a |+2|x -3|≥1恒成立. 当x ≤a 时,-3x +a +5≥0恒成立,得-3a +a +5≥0,解得a ≤52;当a <x <3时,-x -a +5≥0恒成立,得-3-a +5≥0,解得a ≤2;当x ≥3时,3x -a -7≥0恒成立,得9-a -7≥0,解得a ≤2. 综上,实数a 的取值范围为(-∞,2].法二:不等式f (x )+|x -3|≥1恒成立,即|x -a |+|x -3|≥-|x -3|+1恒成立, 由图象(图略)可知f (x )=|x -a |+|x -3|在x =3处取得最小值3-a , 而-|x -3|+1在x =3处取得最大值1,故3-a ≥1,得a ≤2. 故实数a 的取值范围为(-∞,2].[全练题点]1.[考点一]设函数f (x )=⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.解:(1)证明:由a >0,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2.当且仅当a =1时等号成立.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a , 由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.2.[考点二]已知函数f (x )=|x -m |-|x +3m |(m >0). (1)当m =1时,求不等式f (x )≥1的解集;(2)对于任意实数x ,t ,不等式f (x )<|2+t |+|t -1|恒成立,求m 的取值范围. 解:(1)f (x )=|x -m |-|x +3m |=⎩⎪⎨⎪⎧-4m ,x ≥m ,-2x -2m ,-3m <x <m ,4m ,x ≤-3m .当m =1时,由⎩⎪⎨⎪⎧-2x -2≥1,-3<x <1或x ≤-3,得x ≤-32,∴不等式f (x )≥1的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32.(2)不等式f (x )<|2+t |+|t -1|对任意的实数t ,x 恒成立,等价于对任意的实数x ,f (x )<(|2+t |+|t -1|)min 恒成立,即[f (x )]max <(|2+t |+|t -1|)min ,∵f (x )=|x -m |-|x +3m |≤|(x -m )-(x +3m )|=4m , |2+t |+|t -1|≥|(2+t )-(t -1)|=3, ∴4m <3,又m >0,∴0<m <34,即m 的取值范围是⎝⎛⎭⎫0,34. 3.[考点二]已知函数f (x )=|x -2|,g (x )=-|x +3|+m . (1)解关于x 的不等式f (x )+a -1>0(a ∈R);(2)若函数f (x )的图象恒在函数g (x )图象的上方,求m 的取值范围. 解:(1)不等式f (x )+a -1>0, 即|x -2|+a -1>0.当a =1时, 原不等式化为|x -2|>0,解得x ≠2,即解集为(-∞,2)∪(2,+∞); 当a >1时,解集为全体实数R ;当a <1时,|x -2|>1-a (1-a >0),解集为(-∞,a +1)∪(3-a ,+∞). (2)f (x )的图象恒在函数g (x )图象的上方, 即|x -2|>-|x +3|+m 对任意实数x 恒成立, 即|x -2|+|x +3|>m 恒成立.又由绝对值三角不等式知,对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5, 当且仅当(x -2)(x +3)≤0时等号成立.于是得m <5,故m 的取值范围是(-∞,5).[全国卷5年真题集中演练——明规律] 1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. 3.(2016·全国卷Ⅲ)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).4.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).[课时达标检测] 1.已知函数f (x )=|x +m |-|5-x |(m ∈R ). (1)当m =3时,求不等式f (x )>6的解集;(2)若不等式f (x )≤10对任意实数x 恒成立,求m 的取值范围.解:(1)当m =3时,f (x )>6,即|x +3|-|5-x |>6,不等式的解集是以下三个不等式组解集的并集.⎩⎪⎨⎪⎧x ≥5,x +3-(x -5)>6,解得x ≥5;或⎩⎪⎨⎪⎧-3<x <5,x +3+(x -5)>6,解得4<x <5; 或⎩⎪⎨⎪⎧x ≤-3,-x -3+(x -5)>6,解集是∅. 故不等式f (x )>6的解集为{x |x >4}.(2)f (x )=|x +m |-|5-x |≤|(x +m )+(5-x )|=|m +5|,由题意得|m +5|≤10,则-10≤m +5≤10,解得-15≤m ≤5,故m 的取值范围为[-15,5].2.(2018·江西南昌模拟)已知函数f (x )=|2x -a |+|x -1|. (1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为3,求实数a 的值.解:(1)由题意f (x )≤2-|x -1|,即为⎪⎪⎪⎪x -a 2+|x -1|≤1.而由绝对值的几何意义知⎪⎪⎪⎪x -a2+|x -1|≥⎪⎪⎪⎪a 2-1,由不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪a 2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4]. (2)由2x -a =0得x =a 2,由x -1=0得x =1,由a <2知a 2<1,∴f (x )=⎩⎨⎧-3x +a +1⎝⎛⎭⎫x <a2,x -a +1⎝⎛⎭⎫a 2≤x ≤1,3x -a -1(x >1).函数的图象如图所示. ∴f (x )min =f ⎝⎛⎭⎫a 2=-a2+1=3, 解得a =-4.3.(2018·广东潮州模拟)设函数f (x )=|2x +3|+|x -1|. (1)解不等式f (x )>4;(2)若∀x ∈⎝⎛⎭⎫-∞,-32,不等式a +1<f (x )恒成立,求实数a 的取值范围. 解:(1)∵f (x )=|2x +3|+|x -1|,∴f (x )=⎩⎨⎧-3x -2,x <-32,x +4,-32≤x ≤1,3x +2,x >1,f (x )>4,可化为⎩⎪⎨⎪⎧ x <-32,-3x -2>4或⎩⎪⎨⎪⎧-32≤x ≤1,x +4>4或⎩⎪⎨⎪⎧x >1,3x +2>4,解得x <-2或0<x ≤1或x >1.∴不等式f (x )>4的解集为(-∞,-2)∪(0,+∞). (2)由(1)知,当x <-32时,f (x )=-3x -2,∵当x <-32时,f (x )=-3x -2>52,∴a +1≤52,即a ≤32.∴实数a 的取值范围为⎝⎛⎦⎤-∞,32. 4.(2018·长春模拟)已知函数f (x )=|x -2|-|x +1|. (1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x (a >0)的最小值大于函数f (x ),试求实数a 的取值范围.解:(1)当x >2时,原不等式可化为x -2-x -1>1,解集是∅. 当-1≤x ≤2时,原不等式可化为2-x -x -1>1,即-1≤x <0; 当x <-1时,原不等式可化为2-x +x +1>1,即x <-1. 综上,原不等式的解集是{x |x <0}. (2)因为g (x )=ax +1x -1≥2a -1, 当且仅当x =aa 时等号成立, 所以g (x )min =2a -1,当x >0时,f (x )=⎩⎪⎨⎪⎧1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1),所以2a -1≥1,即a ≥1, 故实数a 的取值范围是[1,+∞). 5.(2018·湖北四校联考)已知函数f (x )=e |x +a |-|x -b |,a ,b ∈R.(1)当a =b =1时,解不等式f (x )≥e ; (2)若f (x )≤e 2恒成立,求a +b 的取值范围.解:(1)当a =b =1时,f (x )=e |x +1|-|x -1|,由于y =e x 在(-∞,+∞)上是增函数,所以f (x )≥e 等价于|x +1|-|x -1|≥1,①当x ≥1时,|x +1|-|x -1|=x +1-(x -1)=2,则①式恒成立; 当-1<x <1时,|x +1|-|x -1|=2x ,①式化为2x ≥1,此时12≤x <1;当x ≤-1时,|x +1|-|x -1|=-2,①式无解. 综上,不等式的解集是⎣⎡⎭⎫12,+∞. (2)f (x )≤e 2等价于|x +a |-|x -b |≤2,② 因为|x +a |-|x -b |≤|x +a -x +b |=|a +b |, 所以要使②式恒成立,只需|a +b |≤2, 可得a +b 的取值范围是[-2,2].6.(2018·湖北枣阳一中模拟)已知f (x )=|x -1|+|x +a |,g (a )=a 2-a -2. (1)当a =3时,解关于x 的不等式f (x )>g (a )+2;(2)当x ∈[-a,1)时恒有f (x )≤g (a ),求实数a 的取值范围. 解:(1)a =3时,f (x )=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x ≤-3,4,-3<x <1,2x +2,x ≥1,g (3)=4.∴f (x )>g (a )+2化为|x -1|+|x +3|>6,即⎩⎪⎨⎪⎧ -2x -2>6,x ≤-3,或⎩⎪⎨⎪⎧ 4>6,-3<x <1,或⎩⎪⎨⎪⎧2x +2>6,x ≥1,解得x <-4或x >2.∴所求不等式解集为(-∞,-4)∪(2,+∞). (2)∵x ∈[-a,1).∴f (x )=1+a .∴f (x )≤g (a )即为1+a ≤a 2-a -2,可化为a 2-2a -3≥0,解得a ≥3或a ≤-1. 又∵-a <1,∴a >-1.综上,实数a 的取值范围为[3,+∞).7.(2018·安徽蚌埠模拟)已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2. (1)解不等式|g (x )|<5;(2)若对任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围.解:(1)由||x -1|+2|<5,得-5<|x -1|+2<5,∴-7<|x -1|<3,解得-2<x <4,∴原不等式的解集为{x |-2<x <4}.(2)∵对任意x 1∈R ,都有x 2∈R ,使得f (x 1)=g (x 2)成立, ∴{y |y =f (x )}⊆{y |y =g (x )}.又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|, g (x )=|x -1|+2≥2,∴|a +3|≥2,解得a ≥-1或a ≤-5, ∴实数a 的取值范围是(-∞,-5]∪[-1,+∞). 8.已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-54<x <12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103.第二节 不等式的证明本节重点突破1个知识点:不等式的证明.突破点 不等式的证明[基本知识]1.基本不等式(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1. 3.综合法与分析法 [基本能力]1.判断题(1)已知x 为正实数,则1+x +1x ≥3.( ) (2)若a >2,b >2,则a +b >ab .( ) (3)设x =a +2b ,S =a +b 2+1则S ≥x .( )答案:(1)√ (2)× (3)√ 2.填空题(1)已知a ,b ∈R +,a +b =2,则1a +1b 的最小值为________.解析:∵a ,b ∈R +,且a +b =2,∴(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2 b a ·a b =4,∴1a +1b ≥4a +b=2,即1a +1b的最小值为2(当且仅当a =b =1时,“=”成立).答案:2(2)已知正实数a ,b 满足2ab =a +b +12,则ab 的最小值是________.解析:由2ab =a +b +12,得2ab ≥2ab +12,当且仅当a =b 时等号成立.化简得(ab -3)(ab +2)≥0,解得ab ≥9,所以ab 的最小值是9.答案:9(3)已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c , 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9(4)设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 应满足的条件为________________.解析:若x >y ,则x -y =a 2b 2+5-(2ab -a 2-4a ) =a 2b 2-2ab +a 2+4a +5 =(ab -1)2+(a +2)2>0, ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2[全析考法][例1] 求证:(1)当x ∈R 时,1+2x 4≥2x 3+x 2; (2)当a ,b ∈(0,+∞)时,a a b b ≥(ab )a +b2.[证明] (1)法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.(2)a a b b(ab )a +b2=a a -b 2b b -a 2=⎝⎛⎭⎫a b a -b2, ∴当a =b 时,⎝⎛⎭⎫a b a -b2=1, 当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b a -b 2>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b a -b 2>1,∴a a b b ≥(ab )a +b 2.[方法技巧]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.综合法证明不等式[例2] 已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .[证明] 因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c = 1bc+ 1ac+ 1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .[方法技巧]综合法证明时常用的不等式(1)a 2≥0;|a |≥0. (2)a 2+b 2≥2ab .(3)a +b 2≥ab ,它的变形形式有:a +1a ≥2(a >0);a b +b a ≥2(ab >0);a b +b a ≤-2(ab <0).分析法证明不等式[例3] (2018·福建毕业班质量检测)已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). [解] (1)由题意,|x +1|<|2x +1|-1,①当x ≤-1时,不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时, 不等式可化为x +1<-2x -2,解得x <-1,此时不等式无解;③当x ≥-12时, 不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |,所以,要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |,即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[方法技巧]分析法的应用当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝ ⎛⎭⎪⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[全练题点]1.[考点三]设x≥1,y≥1,求证x+y+1xy≤1x+1y+xy.证明:由于x≥1,y≥1,要证x+y+1xy≤1x+1y+xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1),因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.2.[考点一]设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.3.[考点二]已知a,b,c,d均为正数,且ad=bc.(1)证明:若a+d>b+c,则|a-d|>|b-c|;(2)t·a2+b2c2+d2=a4+c4+b4+d4,求实数t的取值范围.解:(1)证明:由a+d>b+c,且a,b,c,d均为正数,得(a+d)2>(b+c)2,又ad=bc,所以(a-d)2>(b-c)2,即|a-d|>|b-c|.(2)因为(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+2abcd+b2d2=(ac+bd)2,所以t·a2+b2c2+d2=t(ac+bd).由于a 4+c 4≥2ac ,b 4+d 4≥2bd ,又已知t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4, 则t (ac +bd )≥2(ac +bd ),故t ≥2,当且仅当a =c ,b =d 时取等号.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12. 当x ≤-12时,由f (x )<2得-2x <2,解得x >-1, 所以-1<x ≤12; 当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1, 所以12≤x <1.所以f (x )<2的解集M ={x |-1<x <1}. (2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.[课时达标检测]1.(2018·武汉调研)若正实数a ,b 满足a +b =12,求证:a +b ≤1. 证明:要证 a +b ≤1,只需证a +b +2ab ≤1,即证2ab ≤12,即证ab ≤14. 而a +b =12≥2ab ,∴ab ≤14成立, ∴原不等式成立.2.已知函数f (x )=|x +3|+|x -1|,其最小值为t .(1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94. 解:(1)因为|x +3|+|x -1|=|x +3|+|1-x |≥|x +3+1-x |=4,所以f (x )min =4,即t =4.(2)证明:由(1)得a +b =4,故a 4+b 4=1,1a +4b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a 4+b 4=14+1+b 4a +a b ≥54+2b 4a ×a b =54+1=94,当且仅当b =2a ,即a =43,b =83时取等号,故1a +4b ≥94. 3.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0解得-12<x <12,则M =⎝⎛⎭⎫-12,12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0. 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.4.(2018·广州模拟)已知x ,y ,z ∈(0,+∞),x +y +z =3.(1)求1x +1y +1z 的最小值;(2)证明:3≤x 2+y 2+z 2<9.解:(1)因为x +y +z ≥33xyz >0,1x +1y +1z ≥33xyz>0, 所以(x +y +z )⎝⎛⎭⎫1x +1y +1z ≥9,即1x +1y +1z ≥3,当且仅当x =y =z =1时,1x +1y +1z 取得最小值3.(2)证明:x 2+y 2+z 2=x 2+y 2+z 2+(x 2+y 2)+(y 2+z 2)+(z 2+x 2)3≥x 2+y 2+z 2+2(xy +yz +zx )3=(x +y +z )23=3, 当且仅当x =y =z =1时等号成立.又因为x 2+y 2+z 2-9=x 2+y 2+z 2-(x +y +z )2=-2(xy +yz +zx )<0,所以3≤x 2+y 2+z 2<9.5.(2018·安徽百所重点高中模拟)已知a >0,b >0,函数f (x )=|2x +a |+2⎪⎪⎪⎪x -b 2+1的最小值为2.(1)求a +b 的值;(2)求证:a +log 3⎝⎛⎭⎫1a +4b ≥3-b .解:(1)因为f (x )=|2x +a |+|2x -b |+1≥|2x +a -(2x -b )|+1=|a +b |+1, 当且仅当(2x +a )(2x -b )≤0时,等号成立,又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +1=2,所以a +b =1.(2)由(1)知,a +b =1,所以1a +4b =(a +b )⎝⎛⎭⎫1a +4b =1+4+b a +4a b≥5+2 b a ·4a b =9, 当且仅当b a =4a b 且a +b =1,即a =13,b =23时取等号. 所以log 3⎝⎛⎭⎫1a +4b ≥log 39=2,所以a +b +log 3⎝⎛⎭⎫1a +4b ≥1+2=3,即a +log 3⎝⎛⎭⎫1a +4b ≥3-b .6.(2018·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.证明:(1)|cos(α+β)|=|cos αcos β-sin αsin β|≤|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+|cos αsin β|≤|cos α|+|cos β|.(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+|cos γ|, 而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥cos 0=1.7.(2018·安徽安师大附中、马鞍山二中阶段测试)已知函数f (x )=|x -2|.(1)解不等式:f (x )+f (x +1)≤2;(2)若a <0,求证:f (ax )-af (x )≥f (2a ).解:(1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|.因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1;当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2;当x >2时,原不等式等价于2x -3≤2,即2<x ≤52. 综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤52. (2)证明:由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立.8.(2018·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12; (2)a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 当且仅当a =b 时等号成立,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a ,当且仅当a =b =c =13时等号成立. 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2,当且仅当a =b =c =13时等号成立.。

相关文档
最新文档