2014-2015年江苏省南京外国语学校八年级(上)期中数学试卷(解析版)

合集下载

苏教版初中数学八年级上册期中试卷(2019-2020学年江苏省南京外国语学校

苏教版初中数学八年级上册期中试卷(2019-2020学年江苏省南京外国语学校

2019-2020学年江苏省南京外国语学校八年级(上)期中数学试卷一.选择题(每题2分,共16分)1.(2分)2019年4月28日,北京世界园艺博览会正式开幕.下面分别是北京、西安、锦州、沈阳四个城市举办世园会的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2分)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处3.(2分)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°4.(2分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE =()A.1B.2C.3D.45.(2分)如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.66.(2分)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A.B.C.D.7.(2分)如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个8.(2分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.二.填空题(每题2分,共20分)9.(2分)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是.10.(2分)在△ABC和△DEF中,给出下列四组条件:①∠B=∠E,BC=EF,∠C=∠F;②AB=DE,∠B=∠E,BC=EF;③AB=DE,BC=EF,AC=DF;④AB=DE,AC=DF,∠B=∠E;其中,不能使△ABC≌△DEF的条件是.(填写序号)11.(2分)已知等腰三角形的周长是12,一边长是5,则它的另外两边的长为.12.(2分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC =21,则DE=.13.(2分)如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.14.(2分)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②△BCD 是等腰三角形;③BE=CD;④△AMD≌△BCD;⑤图中的等腰三角形有5个.其中正确的结论是.(填序号)15.(2分)如图,点E是矩形ABCD中CD边上一点,将△BCE沿BE折叠为△BFE,点F 落在边AD上,若AB=8,BC=10,则CE=.16.(2分)如图,△ABC中,DE⊥AB,垂足为点E.DF⊥AC,垂足为点F,AD平分∠BAC,则下列结论中正确的有个.①DE=DF;②AD⊥BC;③AE=AF;④∠EDA=∠FDA;⑤∠B=∠C;⑥BD=CD.17.(2分)观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:.18.(2分)如图,△ABC是等边三角形,点D、E分别为边BC、AC上的点,且CD=AE,点F是BE和AD的交点,BG⊥AD,垂足为点G,已知∠BEC=75°,FG=1,则AB2=.三.解答题(共8小题,满分64分)19.(6分)如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)结合所画图形,在直线l上画出点P,使P A+PC最小;(3)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.20.(8分)如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E,A在直线DC同侧,连接AE.求证:(1)△AEC≌△BDC;(2)AE∥BC.21.(10分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,求该图形的面积.22.(9分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:.求证:.证明:23.(8分)如图,在△ABC中,AE⊥BC,垂足为点E,点D为BC边中点,AF⊥AB交BC 边于点F,∠C=2∠B,若DE=4,CF=2,求CE的长.24.(10分)如图,在△AOB与△COD中,∠AOB=∠COD=90°,AO=BO,CO=DO,连结CA,BD.(1)求证:△AOC≌△BOD;(2)连接BC,若OC=1,AC=,BC=3①判断△CDB的形状.②求∠ACO的度数.25.(8分)如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连结CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是三角形;(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED 的度数;若不可以,请说明理由.26.(5分)如图,在边长为3的正方形ABCD中,请画出以A为一个顶点,另两个顶点在正方形ABCD边上的等腰三角形,要求此三角形其中一条边长为2.请画出所有大小不同的等腰三角形.(画出示意图,并在长为2的边上标注数字2)2019-2020学年江苏省南京外国语学校八年级(上)期中数学试卷参考答案与试题解析一.选择题(每题2分,共16分)1.(2分)2019年4月28日,北京世界园艺博览会正式开幕.下面分别是北京、西安、锦州、沈阳四个城市举办世园会的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念判断即可.【解答】解:第一个图形、第三个图形、第四个图形都不是轴对称图形,第二个图形是轴对称图形,故选:A.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处【分析】根据线段垂直平分线的性质即可得出答案.【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC 和BC的垂直平分线上,故选:B.【点评】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.3.(2分)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【分析】根据全等三角形的性质和角的和差即可得到结论.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣∠ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.4.(2分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE =()A.1B.2C.3D.4【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【解答】解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,故选:B.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质.5.(2分)如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.6【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=9﹣4=5.故选:C.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.6.(2分)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A.B.C.D.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出P A+PC=BC,故此选项错误;B、如图所示:此时P A=PC,则无法得出AP=BP,故不能得出P A+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出P A+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出P A+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.7.(2分)如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解答】解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选:D.【点评】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.8.(2分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC2+BC2=AB2,∵S1+S2=7,∴×π×()2+×π×()2+×AC×BC﹣×π×()2=7,∴AC×BC=14,AB===6,故选:A.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(每题2分,共20分)9.(2分)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是HL.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故答案为:HL【点评】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.10.(2分)在△ABC和△DEF中,给出下列四组条件:①∠B=∠E,BC=EF,∠C=∠F;②AB=DE,∠B=∠E,BC=EF;③AB=DE,BC=EF,AC=DF;④AB=DE,AC=DF,∠B=∠E;其中,不能使△ABC≌△DEF的条件是④.(填写序号)【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL结合选项进行判定.【解答】解:①∠B=∠E,BC=EF,∠C=∠F,可根据ASA判定△ABC≌△DEF;②AB=DE,∠B=∠E,BC=EF,可根据SAS判定△ABC≌△DEF;③AB=DE,BC=EF,AC=DF,可根据SSS判定△ABC≌△DEF;④AB=DE,AC=DF,∠B=∠E,不能判定△ABC≌△DEF;故答案为:④.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(2分)已知等腰三角形的周长是12,一边长是5,则它的另外两边的长为 3.5、3.5或5、2.【分析】已知给出的等腰三角形的一边长为5,但没有明确指明是底边还是腰,因此要分两种情况,分类讨论解答.【解答】解:∵等腰三角形的一边长为5,周长为12,∴当5为底时,其它两边都为3.5、3.5,5、3.5、3.5可以构成三角形;当5为腰时,其它两边为5和2,5、5、2可以构成三角形.∴另两边是3.5、3.5或5、2.故答案为:3.5、3.5或5、2.【点评】本题考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.(2分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC =21,则DE=3.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE+BC•DF=×6DE+×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.13.(2分)如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是125°.【分析】根据全等三角形的判定和性质得出△ABC与△DEA全等,进而得出∠B=∠E,利用多边形的内角和解答即可.【解答】解:∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△DEA中,,∴△ABC≌△DEA(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°.故答案为:125.【点评】此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△DEA全等.14.(2分)如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②△BCD 是等腰三角形;③BE=CD;④△AMD≌△BCD;⑤图中的等腰三角形有5个.其中正确的结论是①②③⑤.(填序号)【分析】先利用等腰三角形的性质和三角形内角和计算出∠ABC=∠ACB=72°,再根据线段垂直平分线的性质得到DA=DB,则∠DBA=∠A=36°,从而可对①进行判断;通过计算出∠BDC=∠BCD=72°可对②进行判断;通过计算出∠EBC=∠BCE=36°可对③进行判断;利用△AMD为直角三角形,而△BCD为锐角三角形可对④进行判断;然后利用等腰三角形的判定定理写出图中所有等腰三角形,从而可对⑤进行判断.【解答】解:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣36°)=72°,∵MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∴∠DBA=∠DBC=36°,所以①正确;∵∠BDC=∠A+∠DBA=36°+36°=72°,∴∠BDC=∠BCD,∴△BCD为等腰三角形,所以②正确;∵CE平分∠ACB,∴∠BCE=∠ACB=36°,∴∠EBC=∠BCE,∴EB=EC,所以③正确;∵△AMD为直角三角形,而△BCD为锐角三角形,∴△AMD与△BCD不全等,所以④错误;图中的等腰三角形有△ABC,△BCD,△DAB,△CED,△BCE,所以⑤正确.故答案为①②③⑤.【点评】本题考查了全等三角形的判定:灵活运用全等三角形的判定是解决此类问题的关键.也考查了线段垂直平分线的性质和等腰三角形的判定与性质.15.(2分)如图,点E是矩形ABCD中CD边上一点,将△BCE沿BE折叠为△BFE,点F 落在边AD上,若AB=8,BC=10,则CE=5.【分析】由矩形的性质可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长.【解答】解:∵四边形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵将△BCE沿BE折叠为△BFE,∴BF=BC=10,EF=CE,在Rt△ABF中,AF==6∴DF=AD﹣AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8﹣CE)2=CE2,∴CE=5故答案为:5【点评】本题考查了翻折变换,矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键.16.(2分)如图,△ABC中,DE⊥AB,垂足为点E.DF⊥AC,垂足为点F,AD平分∠BAC,则下列结论中正确的有①③④个.①DE=DF;②AD⊥BC;③AE=AF;④∠EDA=∠FDA;⑤∠B=∠C;⑥BD=CD.【分析】根据角平分线的定理可知①正确,证得Rt△AED≌Rt△AFD,可得③④正确;利用反证法来证,证得②⑤⑥不正确.【解答】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,故①正确;在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,AE=AF,故③④正确;要想证得②⑤⑥那就要求△ABC为等腰三角形,但是已知条件没有,从已知条件中也不能证得.∴只有①③④是正确的.故答案为①③④.【点评】本题考查了角平分线的性质、三角形全等的判定和性质等知识.根据相关知识对各选项进行逐个验证是正确解答本题的关键.17.(2分)观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:352+122=372.【分析】观察等式的规律,可分别观察等式的左边:第一个的底数分别为:3=22﹣1,8=32﹣1,15=42﹣1,24=52﹣1,第n个式子为(n+1)2﹣1,第二个的底数是4,6,8…连续的偶数.右边的底数是比左边的第一个数大2,根据规律即可写出下一个式子规律为:[(n+1)2﹣1]2+[2(n+1)]2=[(n+1)2+1]2.【解答】解:根据规律,下一个式子是:352+122=372.【点评】等式找规律的时候,注意分别观察等式的左边和右边以及左右两边的关系,这需要平时的努力.18.(2分)如图,△ABC是等边三角形,点D、E分别为边BC、AC上的点,且CD=AE,点F是BE和AD的交点,BG⊥AD,垂足为点G,已知∠BEC=75°,FG=1,则AB2=6.【分析】结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE=15°,进而两次利用勾股定理可求解.【解答】解:∵△ABC为等边三角形,∴∠BAE=∠C=60°,AB=AC,∵AE=CD,∴△ABE≌△CAD(SAS),∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴,∴.故答案为6.【点评】本题主要考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG为等腰直角三角形是解题的关键.三.解答题(共8小题,满分64分)19.(6分)如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)结合所画图形,在直线l上画出点P,使P A+PC最小;(3)如果每一个小正方形的边长为1,请直接写出△ABC的面积=3.【分析】(1)利用网格特点,作AD的垂直平分线即可;(2)连接CD,与直线l的交点即为所求;(3)利用割补法求解可得.【解答】解:(1)如图所示,直线l即为所求.(2)如图所示,点P即为所求;(3)△ABC的面积=2×4﹣×1×2﹣×1×4﹣×2×2=3,故答案为:3.【点评】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(8分)如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E,A在直线DC同侧,连接AE.求证:(1)△AEC≌△BDC;(2)AE∥BC.【分析】(1)根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△AEC≌△BDC;(2)根据△AEC≌△BDC推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.【解答】解:(1)∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠BCA=∠ECD=60°,∠B=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).(2)∵△AEC≌△BDC,∴∠EAC=∠B,∵∠B=60°,∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.【点评】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.21.(10分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,求该图形的面积.【分析】连接AC,在Rt△ACD中,AD=8,CD=6,根据勾股定理可求AC;在△ABC 中,由勾股定理的逆定理可证△ABC为直角三角形,利用两个直角三角形的面积差求图形的面积.【解答】解:连接AC,在Rt△ACD中,AD=8,CD=6,∴AC==10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×10×24﹣×6×8=96.【点评】本题考查了勾股定理及其逆定理的运用,三角形面积的求法,关键是得到△ABC 为直角三角形.22.(9分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:在△ABC中,AB=AC.求证:∠B=∠C.证明:【分析】根据图示,分析原命题,找出其条件与结论,然后根据AB=AC,结合全等三角形的性质,从而得出结论.【解答】解:已知:在△ABC中,AB=AC,求证:∠B=∠C,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∵∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.【点评】本题主要考查了全等三角形的判定与性质,正确得出Rt△ABD≌Rt△ACD是解题关键.23.(8分)如图,在△ABC中,AE⊥BC,垂足为点E,点D为BC边中点,AF⊥AB交BC 边于点F,∠C=2∠B,若DE=4,CF=2,求CE的长.【分析】取BF的中点G,连接AG,则BG=FG,由直角三角形斜边上的中线性质得出AG=BF=BG=FG,由等腰三角形的性质和三角形的外角性质得出∠AGC=∠C,得出AG=AC,得出GE=CE,BD=CD,设EF=x,则GE=CE=EF+CF=x+2,BD=CD =DE+EF+CF=x+6,DG=GE﹣DE=x﹣2,得出BG=FG=GE+EF=2x+2,由BD=CD 得出方程,解方程得出EF=3,即可得出结果.【解答】解:取BF的中点G,连接AG,如图所示:则BG=FG,∵AF⊥AB,∴∠BAF=90°,∴AG=BF=BG=FG,∴∠B=∠GAB,∵∠AGC=∠B+∠GAB=2∠B,∠C=2∠B,∴∠AGC=∠C,∴AG=AC,∵AE⊥BC,∴GE=CE,∵点D为BC边中点,∴BD=CD,设EF=x,则GE=CE=EF+CF=x+2,BD=CD=DE+EF+CF=x+6,DG=GE﹣DE=x ﹣2,∴BG=FG=GE+EF=2x+2,∵BD=CD,∴2x+2+x﹣2=x+6,解得:x=3,∴EF=3,∴CE=EF+CF=5.【点评】本题考查了等腰三角形的判定与性质、直角三角形斜边上的中线性质、三角形的外角性质;熟练掌握等腰三角形的判定与性质,通过作辅助线证明AG=AC是解题的关键.24.(10分)如图,在△AOB与△COD中,∠AOB=∠COD=90°,AO=BO,CO=DO,连结CA,BD.(1)求证:△AOC≌△BOD;(2)连接BC,若OC=1,AC=,BC=3①判断△CDB的形状.②求∠ACO的度数.【分析】(1)由题意可得∠AOC=∠BOD,且AO=BO,CO=DO,即可证△AOC≌△BOD;(2)①由全等三角形的性质和勾股定理的逆定理可得∠BDC=90°,即可得△CDB是直角三角形;②由全等三角形的性质可求∠ACO的度数.【解答】证明:(1)∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,且AO=BO,CO=DO,∴△AOC≌△BOD(SAS)(2)①如图,∵△AOC≌△BOD∴∠ACO=∠BDO,AC=BD=∵CO=DO=1,∠COD=90°∴CD==,∠ODC=∠OCD=45°∵CD2+BD2=9=BC2,∴∠CDB=90°∴△BCD是直角三角形②∵∠BDO=∠ODC+∠CDB∴∠BDO=135°∴∠ACO=∠BDO=135°【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理的逆定理,熟练运用全等三角形的性质是本题的关键.25.(8分)如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连结CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是直角三角形;(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED 的度数;若不可以,请说明理由.【分析】(1)由DE∥BC得到∠BCD=∠CDE=30°,再由∠ACB=120°,得到∠ACD =120°﹣30°=90°,则△ACD是直角三角形.(2)分类讨论:当∠CDE=∠ECD时,EC=DE;当∠ECD=∠CED时,CD=DE;当∠CED=∠CDE时,EC=CD;然后利用等腰三角形的性质和三角形的内角和定理进行计算.【解答】解:(1)∵△ABC中,AC=BC,∴∠A=∠B===30°,∵DE∥BC,∴∠ADE=∠B=30°,又∵∠CDE=30°,∴∠ADC=∠ADE+∠CDE=30°+30°=60°,∴∠ACD=180°﹣∠A﹣∠ADC=180°﹣30°﹣60°=90°,∴△ACD是直角三角形;(2)△ECD可以是等腰三角形.理由如下:①当∠CDE=∠ECD时,EC=DE,∴∠ECD=∠CDE=30°,∵∠AED=∠ECD+∠CDE,∴∠AED=60°,②当∠ECD=∠CED时,CD=DE,∵∠ECD+∠CED+∠CDE=180°,∴∠CED===75°,∴∠AED=180°﹣∠CED=105°,③当∠CED=∠CDE时,EC=CD,∠ACD=180°﹣∠CED﹣∠CDE=180°﹣30°﹣30°=120°,∵∠ACB=120°,∴此时,点D与点B重合,不合题意.综上,△ECD可以是等腰三角形,此时∠AED的度数为60°或105°.【点评】本题考查了三角形内角和定理:三角形内角和为180°.也考查了分类讨论思想的运用以及等腰三角形的判定与性质.26.(5分)如图,在边长为3的正方形ABCD中,请画出以A为一个顶点,另两个顶点在正方形ABCD边上的等腰三角形,要求此三角形其中一条边长为2.请画出所有大小不同的等腰三角形.(画出示意图,并在长为2的边上标注数字2)【分析】以腰为2和底边为2画等腰三角形.【解答】解:如图,△AEF为所作.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了正方形的性质.。

2014南师附中集团八上数学期中试卷

2014南师附中集团八上数学期中试卷

南师附中集团2014-2015学年度第一学期期中检测八年级数学试卷(试卷共6页,考试时间100分钟,满分100分)一、 选择题(本大题共6小题,每小题2分,共12分)1、 下列QQ 的“表情图”中,属于轴对称图形的是( ) A 、B 、C 、D 、2、下列长度的各组线段中,能组成直角三角形的是( ) A 、4,5,6 B 、6,8,10 C 、5,9,12 D 、3,9,133、下列实数:3.14π,0.121121112) A 、1 B 、2 C 、3 D 、44、具备下列条件的两个三角形,不能判断全等的是( ) A 、两边及其夹角分别相等的两个三角形 B 、两角及其夹边分别相等的两个三角形 C 、三边分别相等的两个三角形D 、两边且其中一条对应边的对角对应相等的两个三角形5、圆周率π=3.1415926…,用四舍五入法精确到千分位的近似数是( ) A 、3.142 B 、3.141 C 、3.14 D 、3.1416()()()()222212324224144421-1,1,1,11,n i.mm mm x i i i i i i i i i ii ii i i ++=-=-==-==-=-==-==∙===-6、我们知道,方程没有实数根,即不存在一个实数的平方等于1.若我们规定一个新数i,使其满足i (即方程x =-1有一个根为i )并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 从而对于任意正整数,我们可以得到同理可得434234*********,,1,...( )m m i i i i i i i i i +=-=++++++那么的值为A 、 0B 、1C 、-1D 、i二、填空题(本大题共10小题,每小题2分,共20分) 7、的立方根是__________;9的平方根是____________。

8、已知一个三角形的三边长分别为6,8,10,则此三角形的面积是__________。

2014-2015学年苏科版八年级上期中考试数学试题及答案

2014-2015学年苏科版八年级上期中考试数学试题及答案

(第7题)A. B. C. D.A A 1A AA(说明:本试卷满分120分,考试时间:100分钟)一、选择题(本大题共有10小题,每小题3分,满分30分)1.9的平方根是……………………………………………………………………( )A .3B .-3C .±3D .32.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ………………( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是……………………………………………………………( )A .3-9=-3 B .(-3)2=9 C . ±9=±3 D .(-2)2=-2 4.下面的图形都是常见的安全标记,其中是轴对称图形的是……………………( )5.如果等腰三角形的一个角是80°,则它的顶角度数是………………………( ) A .80° B .80°或20° C .80°或50° D .20°6.有下列说法: ①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边长是13;③近似数 1.5万精确到十分位;④无理数是无限小数.其中错误..说法的个数有………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个7. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有……………( )A .1个B .2个C .3个D .4个8.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE 的度数为………………( )A .30°B .40°C .50°D .60°9.如图,在△ABC 中,AB =AC ,AD =AE ,∠BAD =30°,∠EDC 的度数是……………( ) A .10° B .15° C .20° D .25°10.如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2015-θ2014的值为……………………( )A .180°+α22014B .180°-α22014C .180°+α22015 D .180°-α22015(第16题) (第18题)(第17题) DBQPEA CO乙甲ACE 1BD 1EDCBANM BDCA二、填空题(本大题共有8小题,每空2分,满分22分) 11.16的算术平方根是 ,-8的立方根是 .12.地球七大洲的总面积约为149480000km 2,若要把这个数据精确到百万位,用科学记数法可表示为km 2.13.若x 与2x -6是同一个正数m 的两个不同的平方根,则x = , m = . 14. (25)2 ,32 53(用“>、=、<”号连结). 15.若实数x 、y 满足x -2+(y +3)2=0,则y x = .16.如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s.17.如图,在等边△ABC 中,AB =6,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD18. 把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =18,CD =21,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为________.三、解答题:(本大题共9小题,满分68分) 19.计算题.(每题4分,共8分)(1)计算:25-(12)-2+(5-1)0; (2)3-8+(-5)2 + ||3-11.20.求出下列x 的值.(每小题4分,共8分))(1)4x 2-49=0 ; (2) 27 (x +1)3=-6421.(本题满分6分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分不可能全部地写出来,但可以用2-1来表示2的小数部分.理由:因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答,已知:3+6=x+y,其中x是整数,且0<y<1,求x-y的值.EBCA23.(本题满分5分)已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点,求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)(1)求DE 的长;(2)若AC =6,BC =8,求△ADB 的面积.25.(本题满分5分)小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?如果同意,请你给出证明,如果不同意,请说明理由.OF EA B C DD C B A图① 图 26.(本题满分12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 为△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,请判断ME 、BD 的数量关系,并给出证明.27.(本题满分12分)数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、 “AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B 是直角时,如图①,根据______定理,可得△ABC ≌△DEF .(2)第二种情况:当∠B 是钝角时,△ABC ≌△DEF 仍成立.请你完成证明.已知:如图②,△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .证明:EA ①FEB CA②FBEDCA③BCA(3)第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?(请直接写出结论.)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若∠B _________,则△ABC ≌△DEF .二、选择题(本大题共有10小题,每小题3分,满分30分)1. C 2. B 3. C 4. A 5. B 6. B 7. C 8. B 9. B 10.D 二、填空题(本大题共有8小题,每空2分,满分22分)11.4,-2 12.1.49×108 13. 2,4 14.= ,> 15. 1816.1或4 (少一个答案扣一分) 17. 3 3 (27也算对) 18.15三、解答题:(本大题共9小题,满分68分)20.求出下列x 的值.(每小题4分,共8分)) (1)4x 2-49=0x 2=494…………………………………………………………2分x =±72…………………………………………………………4分(2) 27 (x +1)3=﹣64(x +1)3 =﹣6427………………………………………………1分(x +1)=﹣43 …………………………………………………3分x =﹣73………………………………………………………4分21.(本题满分6分)由题知:x =5, ……………………………1分y =6—2, ……………………………………………………3分x -y =5-(6-2) ………………………………………5分 x -y =7-6… ………………………………………………6分 22.(本题满分6分)由题知:a —3≥0且3—a ≥0,…………………………………1分 解得a ≥3且a ≤3,所以,a =3,………………………………………………………2分所以,b=5,………………………………………………………3分①当腰为3,底为5时,周长3+3+5=11;…………………4分②当腰为5,底为3时,周长为5+5+3=13.…………………5分∴这个等腰三角形的周长为11或13……………………………6分23.(本题满分5分)(1)以D为顶点,DC为边作一个角等于∠ABC(也可画∠ABC的内错角)……………………………………………………………………2分(2)作出BD中垂线………………………………………………4分(3)标出点E ………………………………………………………5分∴点E为所求作的点.25.(本题满分5分)答:同意………………………………………………………1分理由:由第一次折叠得∠BAD=∠CAD………………………2分由第二次折叠得EF⊥AD ……………………………3分由ASA证得三角形△AEO≌△AFO…………………4分得AE=AF………………………………………………5分(此参考答案为简要思路,方法不唯一,请酌情给分)26.(本题12分)(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°……………………………………1分又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°……………………………………2分∴∠BDE=30°+30°=60°………………………………3分又易证得△ADC≌△BDC ………………………………4分得∠ACD=∠BCD=45°由外角得∠CDE=60°………………………………………5分得∠CDE=∠BDE=60°所以DE平分∠BDC ………………………………………6分(此小题证明方法不唯一,请参照给分)(2)答:ME=BD …………………………………………7分证明:连结MC ………………………………………8分证得△MCD为等边三角形……………………………9分证得△BDC≌△EMC…………………………………11分得ME=BD ……………………………………………12分27.(本题12分)3.【逐步探究】(1)HL ………………………………………………………2分(2)证明:分别作CG⊥AB,FH⊥DE ……………………3分由∠ABC=∠DEF得∠CBG=∠FEH…………………………………………4分证明△ACG≌△DFH(AAS)……………………………6分得CG=FH得Rt△ACG≌Rt△DFH(HL)…………………………7分得△ABC≌△DEF(AAS)…………………………………8分(3)如图,……………………………10分4.【深入思考】∠B≥∠A.……………………………………12分。

2014-2015年江苏省南京外国语学校八年级上学期期中数学试卷和答案

2014-2015年江苏省南京外国语学校八年级上学期期中数学试卷和答案

2014-2015学年江苏省南京外国语学校八年级(上)期中数学试卷一、选择题(每小题2分,共2分)1.(2分)下列“QQ表情”中属于轴对称图形的是()A.B.C. D.2.(2分)在﹣,,,0.3030030003,﹣,3.14中,有理数有几个()A.2个 B.3个 C.4个 D.5个3.(2分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组为()A.3,4,5 B.5,12,13 C.12,15,25 D.0.7,2.4,2.54.(2分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个5.(2分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.46.(2分)有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m7.(2分)如图,△ABC中,BI,CI平分∠ABC,∠ACF,过点I作ID∥BC分别交AC,AB于点E,D.若BD=9cm,CE=4cm,则DE等于()A.2cm B.3cm C.4cm D.5cm8.(2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.(2分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF10.(2分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE 交于一点H,已知EH=EB=9,AE=12,则CH的长是()A.1 B.2 C.3 D.4二、填空题11.(3分)7的平方根是,﹣216的立方根是,(﹣4)2的算术平方根是,对于四舍五入得到的近似数3.12×104,精确到位.12.(3分)比较大小:2,﹣﹣.13.(3分)如图,如果AD是BC边上的高,又是∠BAC的平分线,那么△ABD ≌△ACD,其根据是;如果AD是BC边上的高,又是BC边上的中线,那么△ABD≌△ACD,其根据是.14.(3分)一艘轮船以12海里/小时的速度离开A港向北偏西30°方向航行,另一艘轮船以16海里/小时的速度离开A港北偏东60°方向航行,经过1.5小时后他们相距海里.15.(3分)若直角三角形斜边上的高和中线长分别是3cm,4cm,则它的面积是cm2.16.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.17.(3分)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.(3分)如图,已知点O是等边三角形ABC的∠BAC、∠ACB的平分线的交点,以O为顶点作∠DOE=120°,其两边分别交AB、BC于D、E,则四边形DBEO 的面积与三角形ABC的面积之比是.19.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.20.(3分)如图,∠MON=90°,在△ABC中,AC=8,BC=6,AB=10,若△ABC的顶点A,B分别在OM,ON上,当A点从O点出发沿OM向右运动时,同时点B 在ON上运动,连结OC,则OC的长度最大值是.三、解答题21.(5分)计算:+﹣|3﹣|22.(6分)求下列各式中x的值.(1)4x2﹣289=0(2)27(x﹣1)3=64.23.(5分)已知:D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:BC=AE.24.(7分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.25.(5分)在数轴上作出长的点(尺规作图,不写作法,保留作图痕迹).26.(6分)在△ABC中,AB,BC,AC三边长分别为,求这个三角形的面积.小华同学在解答这题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)若△DEF三边的长分别为、、,请在正方形网格中画出相应的△DEF,并利用构图法求出它的面积为(直接写结果);(2)如图3,一个六边形的花坛被分成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为25cm2,13cm2,36cm2,利用备用图进行构围,计算求出六边形花坛ABCDEF的面积.27.(8分)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=寸,宽=寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)28.(8分)如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.2014-2015学年江苏省南京外国语学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共2分)1.(2分)下列“QQ表情”中属于轴对称图形的是()A.B.C. D.【解答】解:根据轴对称图形的定义可得B是轴对称图形,故选:B.2.(2分)在﹣,,,0.3030030003,﹣,3.14中,有理数有几个()A.2个 B.3个 C.4个 D.5个【解答】解:,0.3030030003,﹣,3.14是有理数.故选:C.3.(2分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组为()A.3,4,5 B.5,12,13 C.12,15,25 D.0.7,2.4,2.5【解答】解:A、∵32+42=52,∴此三角形是直角三角形,不合题意;B、52+122=132,∴此三角形是直角三角形,不合题意;C、122+152≠252,∴此三角形不是直角三角形,符合题意;D、0.72+2.42=2.52,∴此三角形是直角三角形,不合题意.故选:C.4.(2分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.5.(2分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.4【解答】解:∵将△ABC沿BD翻折后,点A恰好与点C重合,∴△ABD≌△CBD,∴∠ADB=∠CDB=90°,在Rt△BCD中,BD===4.故选:D.6.(2分)有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m.故选:B.7.(2分)如图,△ABC中,BI,CI平分∠ABC,∠ACF,过点I作ID∥BC分别交AC,AB于点E,D.若BD=9cm,CE=4cm,则DE等于()A.2cm B.3cm C.4cm D.5cm【解答】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=9cm,EI=CE=4cm,∴DE=DI﹣EI=5(cm).故选:D.8.(2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【解答】解:观察原图,对称变换后又进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选:B.9.(2分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选:B.10.(2分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE 交于一点H,已知EH=EB=9,AE=12,则CH的长是()A.1 B.2 C.3 D.4【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=9,AE=12,∴CH=CE﹣EH=AE﹣EH=12﹣9=3,故选:C.二、填空题11.(3分)7的平方根是±,﹣216的立方根是﹣6,(﹣4)2的算术平方根是4,对于四舍五入得到的近似数3.12×104,精确到百位.【解答】解:7的平方根是:±,﹣216的立方根是:﹣6,(﹣4)2=16,则16算术平方根是:4,对于四舍五入得到的近似数3.12×104=31200,故此数精确到百位.故答案为:±,﹣6,4,百.12.(3分)比较大小:2<,﹣>﹣.【解答】解:2<,﹣>﹣.故答案为:<,>.13.(3分)如图,如果AD是BC边上的高,又是∠BAC的平分线,那么△ABD ≌△ACD,其根据是ASA;如果AD是BC边上的高,又是BC边上的中线,那么△ABD≌△ACD,其根据是SAS.【解答】解:∵AD是BC边上的高,又是∠BAC的平分线,∴∠ADB=∠ADC=90°,∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(ASA),∵AD是BC边上的高,又是BC边上的中线,∴∠ADB=∠ADC=90°,BD=DC,在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故答案为:ASA,SAS.14.(3分)一艘轮船以12海里/小时的速度离开A港向北偏西30°方向航行,另一艘轮船以16海里/小时的速度离开A港北偏东60°方向航行,经过1.5小时后他们相距30海里.【解答】解:如图:∵∠BAD=30°,∠DAC=60°,∴∠BAC=90°,∵设AB=12×1.5=18海里,AC=16×1.5=24海里,根据勾股定理得,BC==30海里.故答案为:30.15.(3分)若直角三角形斜边上的高和中线长分别是3cm,4cm,则它的面积是12cm2.【解答】解:∵直角三角形斜边上的中线长是4cm,∴斜边=2×4=8cm,∵斜边上的高为3cm,∴它的面积是=×8×3=12cm2.故答案为:12.16.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.17.(3分)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【解答】解:如图,可以作出这样的三角形4个.18.(3分)如图,已知点O是等边三角形ABC的∠BAC、∠ACB的平分线的交点,以O为顶点作∠DOE=120°,其两边分别交AB、BC于D、E,则四边形DBEO 的面积与三角形ABC的面积之比是1:3.【解答】解:延长CO交AB于点M,延长AO交BC于点N,如下图所示:∵△ABC为等边三角形,O是∠BAC、∠ACB的平分线的交点,∴O点为△ABC的中心,∴OM⊥AB,ON⊥BC,OM=ON,∠MON=120°,又∠DOE=120°,∴∠DOM=∠EON,∴△DOM≌△EON(ASA),=S四边形MBNO=S△ABC.∴S四边形DBEO故答案为:1:3.19.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.20.(3分)如图,∠MON=90°,在△ABC中,AC=8,BC=6,AB=10,若△ABC的顶点A,B分别在OM,ON上,当A点从O点出发沿OM向右运动时,同时点B 在ON上运动,连结OC,则OC的长度最大值是10.【解答】解:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,∵AC=8,BC=6,AB=10,∴AC2+BC2=AB2,∴CE=AB,∵OE+CE≥OC,∴OC的最大值为OE+CE,即OC的最大值=AB=10,故答案为10.三、解答题21.(5分)计算:+﹣|3﹣|【解答】解:原式=3﹣1﹣5﹣+3=﹣.22.(6分)求下列各式中x的值.(1)4x2﹣289=0(2)27(x﹣1)3=64.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:(x﹣1)3=,开立方得:x﹣1=,解得:x=.23.(5分)已知:D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:BC=AE.【解答】证明:∵DE∥AB,∴∠EDA=∠BAC,在△ABC与△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.(7分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.25.(5分)在数轴上作出长的点(尺规作图,不写作法,保留作图痕迹).【解答】解:由勾股定理得:OB==,OC==,OD==,以O为圆心,OD长为半径画弧,交数轴的正半轴于点P,点P即为所求.26.(6分)在△ABC中,AB,BC,AC三边长分别为,求这个三角形的面积.小华同学在解答这题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)若△DEF三边的长分别为、、,请在正方形网格中画出相应的△DEF,并利用构图法求出它的面积为3(直接写结果);(2)如图3,一个六边形的花坛被分成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为25cm2,13cm2,36cm2,利用备用图进行构围,计算求出六边形花坛ABCDEF的面积.【解答】解:(1)△DEF如图1所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(2)构图如图2所示:∵正方形PRBA、正方形QPFE的面积分别为25cm2,36cm2,∴正方形PRBA、正方形QPFE的边长分别为5cm、6cm,则△APF的面积=×6×3=9(cm2),△DEQ的面积=×6×3=9(cm2),△PQR的面积=×6×3=9(cm2),△BCR的面积=6×4﹣×4×3﹣×2×3﹣×6×2=9(cm2),∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110(cm2).27.(8分)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=16寸,宽=12寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)【解答】解:(1)①∵电视机屏幕的长宽比为4:3,∴设长为4x,则宽为3x,∵电视机屏幕为20寸,∴(4x)2+(3x)2=202,解得x=4,∴4x=16,3x=12,∴该屏幕的长为16寸,宽为12寸;故答案为:16;12.②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).∵=,解得a=.∴黑色带子的宽的和=12﹣=.∴屏幕浪费比==;(2)由题意:=,=,得:PQ=BC,FG=EF.∵S=S矩形MNPQ,矩形EFGH∴BC•BC=EF•EF.∴=,∴=≈1.8.答:这种屏幕的长宽比约为1.8.28.(8分)如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.【解答】解:(1)由折叠的性质知:B′C=BC,在Rt△B′FC中,∵FC是斜边B′C的一半,∴∠FB′C=30°,∴∠BCB′=60°即∠BCB′=60°;(2)图⑥中的△CGC'是正三角形 理由如下: ∵GC 平分∠BCB′,∴∠GCB=∠GCC′=∠BCB′=30°, ∴∠GCC′=∠BCD ﹣∠BCG=60°,由折叠的性质知:GH 是线段CC′的对称轴, ∴GC′=GC ,∴△GCC′是正三角形.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

中学附属初级中学2014-2015八年级数学上学期期中试题 苏科版

中学附属初级中学2014-2015八年级数学上学期期中试题 苏科版

江苏省泰州中学附属初级中学2014-2015学年八年级数学上学期期中试题注意:请把所有答案书写到答题卡上!请不要错位、越界答题!在本试题上答题无效。

一、选择题(共6小题,每小题3分,满分18分)1.下列四个图案中是轴对称图形的有---------------------------------------------------(▲)A .1个B .2个C .3个D .4个 2.在实数12, -3,-3.14,0,π,2.161 161 161…,316中,无理数有------------(▲) A . 1 个 B .2个 C . 3个 D .4个3.实数a 、b 在数轴上的位置如图所示,则化简代数式()b b a --2的结果是----------------(▲)A .b a 2-B .b a 2--C .a -D .b2-4.下列四组线段中,可以构成直角三角形的是(▲)A .4,5,6B .1.5,2, 2.5C .2,3,4D .1,2, 35.如图,在下列条件中,不能..证明△ABD ≌△ACD 的条件是----------------------------------(▲) A .∠B=∠C ,BD=DCB .∠ADB=∠ADC ,BD=DCC .∠B=∠C ,∠BAD=∠CAD D .BD=DC ,AB=AC6.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为2cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为-----------------------------------------------------(▲)A .32B .3C .23D .2二、填空题(共10小题,每小题3分,满分30分) 7.36的算术平方根是 ▲ .8.若式子3-x 有意义,则x 的取值范围是 ▲ . 9.近似数4.30万精确到 ▲ 位.10.已知直角三角形斜边长为12㎝,周长为30㎝,则此三角形的面积为 ▲ . 11.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC= ▲ .12.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为 ▲ .第5题图第6题图 A EC (F ) DB图(1)EAG BC D图(2)第14题 第15题13.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是12cm ,当一段葛藤绕树干盘旋1圈升高为9cm 时,那么这段葛藤的长是 ▲ .14.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8 cm ,PB=3 cm ,则△POA 的面积等于 ▲ .15.如图,等腰三角形ABC 中,已知AB =AC ,∠A =30°,AB 的垂直平分线交AC 于D ,则∠CBD 的度数为 ▲ .16.如图在四边形ABCD 中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD 的长为 ▲ .三、解答题(共10小题,满分102分)17.(本题满分10分)⑴求式中x 的值:09)1(42=--x⑵计算:()()3214.331275-+-+---π18.(本题满分10分)已知2-x 的平方根是2±,72++y x 的立方根是3,求22y x +的平方根.19.(本题满分8分)在如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两个格点,若C 也是图中的格点,且使得△ABC 为等腰三角形,在网格中画出所有符合条件的点C .20.(本题满分10分)如图,在△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作一直线交AB 、AC 于E 、F ,且BE=EO.设△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,求△OBC 的面积.21.(本题满分10分)如图所示,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点,若AB=17,BD=12,⑴求证:△BCD ≌△ACE ;⑵求DE的长度.第16题22.(本题满分10分)如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.23.(本题满分10分)已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.⑴请问:AB、BD、DC有何数量关系?并说明理由.⑵如果∠B=60°,证明:CD=3BD.24.(本题满分10分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题小溪边长着两棵棕榈树,恰好隔岸相望,一棵树高是15肘尺(肘尺是古代的长度单位),另外一棵高15肘尺;两棵棕榈树的树梢间的距离是25肘尺,每棵树的树梢上都停着一只鸟,忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们以相同的速度立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?(请画出示意图解答)25.(本题满分12分)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C 落在点D处(如图1).⑴若折叠后点D恰为AB的中点(如图2),求θ的度数;⑵若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,①点B落在点四边形OABC的边AB上的E处(如图3),求a的值;②若点E落在四边形OABC的外部,直接写出a的取值范围.26.(本题满分12分)问题解决如图⑴,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当12CECD时,求AMBN的值.A DFl图1DC BO θAθl图2DC BAOl图EDC BAO类比归纳在图⑴中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n=(n 为整数),则AM BN 的值等于 .(用含n 的式子表示) 联系拓广如图⑵,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导:为了求得AMBN 的值,可先求BN 、AM 的长. 2=AB 2=AB AB图(2)N ABCD EFM。

2016年南外八年级上学期期中考试数学试题(解析版)

2016年南外八年级上学期期中考试数学试题(解析版)
2 ∵ a2 b2 9 , ∴ (a b)2 a2 b2 2ab 9 2 4 17 .
17.如图,在 △ABC 中, AB 13 , AC 5 , BC 12 .点 O 为 ABC 与 CAB 的平分 线的 交点,则 点 O 到边 AB 的距离 OP 为__________.
14.如图所示,一根长 am 的 ( AB) ,斜靠在与地面 (OM ) 垂直 (ON ) 上.设木棍的中点为 P ,若木棍 A 端沿墙下滑,且 B 端沿地面向右滑行.请判断木棍滑动的过程中,点 P 到点 O 的距离__________ (填“发生”或“不发生”)变化:理由是:__________.
∴ △ACQ ≌△PCB(SAS) ,
∴ QAC BPC , AQC PBC ,
在 △AEC 和△PFC 中,
EAC FPC
PC AC

PCF ACE
∴ △AEC ≌△PFC(ASA) ,
同理可证 △QEC ≌ △BFC .
综上:图中 △ACQ ≌△PCB 、△AEC ≌ △PFC , △QEC ≌ △BFC .
∴ CD 12 2 24 ,
5
5
∵ D 为 AB 中点,
在 Rt△ACB 中, CD 1 AB , 2
∴ AB 2CD 2 24 48 . 55
三、解答题(共 62 分) 19.( 6 分)按下列要求作图.
(1)尺规作图:如图1,已知直线 l ,及其两侧两点 A 、 B ,在直线 l 上求一点 P ,使 A 、 B 到 P 距离相等.
【答案】 2
【解析】∵点 O 为 ABC 与 CAB 的平分线的交点,
∴点 O 在 ACB 的角平分线上,

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析

2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。

8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。

2014——2015学年度第一学期八年级数学期中考试卷(含答案)

2014——2015学年度第一学期八年级数学期中考试卷(含答案)

2014——2015学年度第一学期 八年级数学期中考试卷(含答案)(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确1、4的算术平方根是A . 2B . 2-C . 2±D . 2±2、与数轴上的点成一一对应关系的数是A . 有理数B . 无理数C . 实数D . 整数 3、下列从左边到右边的变形,属于因式分解的是A . 1)1)(1(2-=-+x x x B . 1)2(122+-=+-x x x xC . )4)(4(422y x y x y x -+=-D . 22)3(96-=+-x x x4、下列命题中是真命题的是A .三角形的内角和为180°B .同位角相等C .三角形的外角和为180°D .内错角相等 5、使式子32+x 有意义的实数x 的取值范围是A .32>x B . 23>x C . 23-≥x D . 32-≥x6、在实数73,1+π,4,3.14,38,8,0, 11.21211211中,无理数有A . 2个B . 3个C . 4个D . 5个7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 A . 6cm B . 5cm C . 8cm D . 7cm8、计算:()20132013125.08-⨯等于A . 1-B . 1C . 2013D . 2013- 9、下列条件中,不能证明△ABC ≌△'''C B A 的是 A .''''C A AC B B A A =∠=∠∠=∠,,学校:班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分 B'C BB .''''B A AB B B A A =∠=∠∠=∠,,C .'''''C A AC A A B A AB =∠=∠=,,D .'''''C B BC B A AB A A ==∠=∠,, 10、下列算式计算正确的是A .523a a a =+B .623a a a =⋅C .923)(a a =D . a a a =÷2311、估计15的大小在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间12、若(x+a)(x-5)展开式中不含有x 的一次项,则a 的值为A . 5-B . 5C . 0D . 5± 13、如右图,△ABC ≌△EDF ,DF =BC ,AB=ED ,AF =20,EC =10,则AE 等于 A . 5 B . 8 C .10 D . 15 14、如果则的值分别是A . 2 和 3B . 2和-3C . 2和D .二、填空题:(每小题4分,共16分) 15、计算:=⨯-2016201020132________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江苏省南京外国语学校八年级(上)期中数学试卷一、选择题(每小题2分,共2分)1.(2分)下列“QQ表情”中属于轴对称图形的是()A.B.C. D.2.(2分)在﹣,,,0.3030030003,﹣,3.14中,有理数有几个()A.2个 B.3个 C.4个 D.5个3.(2分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组为()A.3,4,5 B.5,12,13 C.12,15,25 D.0.7,2.4,2.54.(2分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个5.(2分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.46.(2分)有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m7.(2分)如图,△ABC中,BI,CI平分∠ABC,∠ACF,过点I作ID∥BC分别交AC,AB于点E,D.若BD=9cm,CE=4cm,则DE等于()A.2cm B.3cm C.4cm D.5cm8.(2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行9.(2分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF10.(2分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE 交于一点H,已知EH=EB=9,AE=12,则CH的长是()A.1 B.2 C.3 D.4二、填空题11.(3分)7的平方根是,﹣216的立方根是,(﹣4)2的算术平方根是,对于四舍五入得到的近似数3.12×104,精确到位.12.(3分)比较大小:2,﹣﹣.13.(3分)如图,如果AD是BC边上的高,又是∠BAC的平分线,那么△ABD ≌△ACD,其根据是;如果AD是BC边上的高,又是BC边上的中线,那么△ABD≌△ACD,其根据是.14.(3分)一艘轮船以12海里/小时的速度离开A港向北偏西30°方向航行,另一艘轮船以16海里/小时的速度离开A港北偏东60°方向航行,经过1.5小时后他们相距海里.15.(3分)若直角三角形斜边上的高和中线长分别是3cm,4cm,则它的面积是cm2.16.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.17.(3分)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.(3分)如图,已知点O是等边三角形ABC的∠BAC、∠ACB的平分线的交点,以O为顶点作∠DOE=120°,其两边分别交AB、BC于D、E,则四边形DBEO 的面积与三角形ABC的面积之比是.19.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.20.(3分)如图,∠MON=90°,在△ABC中,AC=8,BC=6,AB=10,若△ABC的顶点A,B分别在OM,ON上,当A点从O点出发沿OM向右运动时,同时点B 在ON上运动,连结OC,则OC的长度最大值是.三、解答题21.(5分)计算:+﹣|3﹣|22.(6分)求下列各式中x的值.(1)4x2﹣289=0(2)27(x﹣1)3=64.23.(5分)已知:D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:BC=AE.24.(7分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.25.(5分)在数轴上作出长的点(尺规作图,不写作法,保留作图痕迹).26.(6分)在△ABC中,AB,BC,AC三边长分别为,求这个三角形的面积.小华同学在解答这题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)若△DEF三边的长分别为、、,请在正方形网格中画出相应的△DEF,并利用构图法求出它的面积为(直接写结果);(2)如图3,一个六边形的花坛被分成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为25cm2,13cm2,36cm2,利用备用图进行构围,计算求出六边形花坛ABCDEF的面积.27.(8分)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=寸,宽=寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)28.(8分)如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.2014-2015学年江苏省南京外国语学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共2分)1.(2分)下列“QQ表情”中属于轴对称图形的是()A.B.C. D.【解答】解:根据轴对称图形的定义可得B是轴对称图形,故选:B.2.(2分)在﹣,,,0.3030030003,﹣,3.14中,有理数有几个()A.2个 B.3个 C.4个 D.5个【解答】解:,0.3030030003,﹣,3.14是有理数.故选:C.3.(2分)如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组为()A.3,4,5 B.5,12,13 C.12,15,25 D.0.7,2.4,2.5【解答】解:A、∵32+42=52,∴此三角形是直角三角形,不合题意;B、52+122=132,∴此三角形是直角三角形,不合题意;C、122+152≠252,∴此三角形不是直角三角形,符合题意;D、0.72+2.42=2.52,∴此三角形是直角三角形,不合题意.故选:C.4.(2分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有()A.4个 B.3个 C.2个 D.1个【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.5.(2分)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1 B.2 C.3 D.4【解答】解:∵将△ABC沿BD翻折后,点A恰好与点C重合,∴△ABD≌△CBD,∴∠ADB=∠CDB=90°,在Rt△BCD中,BD===4.故选:D.6.(2分)有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m.故选:B.7.(2分)如图,△ABC中,BI,CI平分∠ABC,∠ACF,过点I作ID∥BC分别交AC,AB于点E,D.若BD=9cm,CE=4cm,则DE等于()A.2cm B.3cm C.4cm D.5cm【解答】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=9cm,EI=CE=4cm,∴DE=DI﹣EI=5(cm).故选:D.8.(2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【解答】解:观察原图,对称变换后又进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选:B.9.(2分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选:B.10.(2分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE 交于一点H,已知EH=EB=9,AE=12,则CH的长是()A.1 B.2 C.3 D.4【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=9,AE=12,∴CH=CE﹣EH=AE﹣EH=12﹣9=3,故选:C.二、填空题11.(3分)7的平方根是±,﹣216的立方根是﹣6,(﹣4)2的算术平方根是4,对于四舍五入得到的近似数3.12×104,精确到百位.【解答】解:7的平方根是:±,﹣216的立方根是:﹣6,(﹣4)2=16,则16算术平方根是:4,对于四舍五入得到的近似数3.12×104=31200,故此数精确到百位.故答案为:±,﹣6,4,百.12.(3分)比较大小:2<,﹣>﹣.【解答】解:2<,﹣>﹣.故答案为:<,>.13.(3分)如图,如果AD是BC边上的高,又是∠BAC的平分线,那么△ABD ≌△ACD,其根据是ASA;如果AD是BC边上的高,又是BC边上的中线,那么△ABD≌△ACD,其根据是SAS.【解答】解:∵AD是BC边上的高,又是∠BAC的平分线,∴∠ADB=∠ADC=90°,∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(ASA),∵AD是BC边上的高,又是BC边上的中线,∴∠ADB=∠ADC=90°,BD=DC,在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故答案为:ASA,SAS.14.(3分)一艘轮船以12海里/小时的速度离开A港向北偏西30°方向航行,另一艘轮船以16海里/小时的速度离开A港北偏东60°方向航行,经过1.5小时后他们相距30海里.【解答】解:如图:∵∠BAD=30°,∠DAC=60°,∴∠BAC=90°,∵设AB=12×1.5=18海里,AC=16×1.5=24海里,根据勾股定理得,BC==30海里.故答案为:30.15.(3分)若直角三角形斜边上的高和中线长分别是3cm,4cm,则它的面积是12cm2.【解答】解:∵直角三角形斜边上的中线长是4cm,∴斜边=2×4=8cm,∵斜边上的高为3cm,∴它的面积是=×8×3=12cm2.故答案为:12.16.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.17.(3分)如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【解答】解:如图,可以作出这样的三角形4个.18.(3分)如图,已知点O是等边三角形ABC的∠BAC、∠ACB的平分线的交点,以O为顶点作∠DOE=120°,其两边分别交AB、BC于D、E,则四边形DBEO 的面积与三角形ABC的面积之比是1:3.【解答】解:延长CO交AB于点M,延长AO交BC于点N,如下图所示:∵△ABC为等边三角形,O是∠BAC、∠ACB的平分线的交点,∴O点为△ABC的中心,∴OM⊥AB,ON⊥BC,OM=ON,∠MON=120°,又∠DOE=120°,∴∠DOM=∠EON,∴△DOM≌△EON(ASA),∴S=S四边形MBNO=S△ABC.四边形DBEO故答案为:1:3.19.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.20.(3分)如图,∠MON=90°,在△ABC中,AC=8,BC=6,AB=10,若△ABC的顶点A,B分别在OM,ON上,当A点从O点出发沿OM向右运动时,同时点B 在ON上运动,连结OC,则OC的长度最大值是10.【解答】解:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,∵AC=8,BC=6,AB=10,∴AC2+BC2=AB2,∴CE=AB,∵OE+CE≥OC,∴OC的最大值为OE+CE,即OC的最大值=AB=10,故答案为10.三、解答题21.(5分)计算:+﹣|3﹣|【解答】解:原式=3﹣1﹣5﹣+3=﹣.22.(6分)求下列各式中x的值.(1)4x2﹣289=0(2)27(x﹣1)3=64.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:(x﹣1)3=,开立方得:x﹣1=,解得:x=.23.(5分)已知:D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE,求证:BC=AE.【解答】证明:∵DE∥AB,∴∠EDA=∠BAC,在△ABC与△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.(7分)如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.25.(5分)在数轴上作出长的点(尺规作图,不写作法,保留作图痕迹).【解答】解:由勾股定理得:OB==,OC==,OD==,以O为圆心,OD长为半径画弧,交数轴的正半轴于点P,点P即为所求.26.(6分)在△ABC中,AB,BC,AC三边长分别为,求这个三角形的面积.小华同学在解答这题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)若△DEF三边的长分别为、、,请在正方形网格中画出相应的△DEF,并利用构图法求出它的面积为3(直接写结果);(2)如图3,一个六边形的花坛被分成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为25cm2,13cm2,36cm2,利用备用图进行构围,计算求出六边形花坛ABCDEF的面积.【解答】解:(1)△DEF如图1所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(2)构图如图2所示:∵正方形PRBA、正方形QPFE的面积分别为25cm2,36cm2,∴正方形PRBA、正方形QPFE的边长分别为5cm、6cm,则△APF的面积=×6×3=9(cm2),△DEQ的面积=×6×3=9(cm2),△PQR的面积=×6×3=9(cm2),△BCR的面积=6×4﹣×4×3﹣×2×3﹣×6×2=9(cm2),∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110(cm2).27.(8分)如图①,老旧电视机屏幕的长宽比为4:3,但是多数电影图象的长宽比为2.4:1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):①该屏幕的长=16寸,宽=12寸;②已知“屏幕浪费比=”,求该电视机屏幕的浪费比.(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4:3的屏幕(矩形EFGH)与2.4:1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据:≈2.2,结果精确到0.1)【解答】解:(1)①∵电视机屏幕的长宽比为4:3,∴设长为4x,则宽为3x,∵电视机屏幕为20寸,∴(4x)2+(3x)2=202,解得x=4,∴4x=16,3x=12,∴该屏幕的长为16寸,宽为12寸;故答案为:16;12.②设在该屏幕上播放长宽比为2.4:1的视频时,视频的宽为a寸(长为16寸).∵=,解得a=.∴黑色带子的宽的和=12﹣=.∴屏幕浪费比==;(2)由题意:=,=,得:PQ=BC,FG=EF.=S矩形MNPQ,∵S矩形EFGH∴BC•BC=EF•EF.∴=,∴=≈1.8.答:这种屏幕的长宽比约为1.8.28.(8分)如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);沿CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.【解答】解:(1)由折叠的性质知:B′C=BC,在Rt△B′FC中,∵FC是斜边B′C的一半,∴∠FB′C=30°,∴∠BCB′=60°即∠BCB′=60°;(2)图⑥中的△CGC'是正三角形理由如下:∵GC平分∠BCB′,∴∠GCB=∠GCC′=∠BCB′=30°,∴∠GCC′=∠BCD﹣∠BCG=60°,由折叠的性质知:GH是线段CC′的对称轴,∴GC′=GC,∴△GCC′是正三角形.。

相关文档
最新文档