界面

合集下载

界面分析怎么写

界面分析怎么写

界面分析怎么写
1.半扁平化的设计
在过去的两年左右,扁平化无疑是讨论最多、最火的设计趋势。

但设计趋势往往受到媒体,技术,和实用性的影响,一般都以缓慢渐进的方式渗透在我们的设计中,周期在1-2年之间。

目前已经有很多设计师对它进行细微改进,形成了一个新的设计趋势-半扁平设计。

半扁平化设计说直白点,其实就是结合了materialdesign和flatdesign两种风格的处理手法。

使简洁的设计上多一些空间感,包括悬浮的按钮和卡片的设计。

按照Wired的话来说,那就是让像素具备海拔高度,这样子的话,系统的不同层面的元素,都是有原则、可预测的,不让用户感到无所适从。

2.更多三维呈现
在以前,UI或运营设计中常见的都是二维的处理手法。

元素以平面的方式展示给我们,但是今年会慢慢趋于更多3D的效果,使内容更加有纵深感从而也提升了设计的趣味性,尤其是运用在运营设计上会让画面显得更加丰富。

UI界面测试要点

UI界面测试要点

UI界面测试要点1.界面布局测试:测试界面的布局是否合理、美观,是否符合用户习惯和习惯。

测试要点包括测试元素的位置、大小、边界的准确性;测试元素之间的间距、对齐是否一致;测试文本的字体、大小、颜色是否合适;测试图标、按钮的样式是否清晰等。

2.界面交互测试:测试界面的各种交互操作是否正确、及时响应。

测试要点包括测试按钮的点击是否能触发正确的动作;测试输入框的输入是否能正确响应;测试菜单、下拉列表等交互方式是否能正常展开和关闭;测试鼠标移动、滚动等手势操作是否能正常响应等。

3.界面输入验证测试:测试用户在界面上输入数据时,系统是否能正确验证并给予适当的提示。

测试要点包括测试输入框是否能正确验证输入的数据类型、格式是否符合要求;测试输入框的最大、最小值是否限制了合理的范围;测试输入特殊字符、空格等是否能被正确识别等。

4.界面导航测试:测试用户在系统中的各个界面之间的导航是否流畅、合理。

测试要点包括测试菜单、导航栏等导航方式是否能正确跳转到目标界面;测试返回、前进按钮等是否能正常使用;测试界面间的链接、跳转是否能正确展示等。

5.界面多语言支持测试:测试系统是否能正确支持多语言环境下的界面显示和操作。

测试要点包括测试界面元素的文本是否能正确翻译;测试日期、货币等格式是否能正确适配不同语言环境;测试界面布局是否能适应不同语言环境下的文字长度等。

6.界面响应速度测试:测试系统在用户界面进行操作时的响应速度是否满足用户的期望。

测试要点包括测试按钮点击后是否能立即响应;测试大量数据加载时,界面是否会出现卡顿;测试界面切换时是否能流畅过渡等。

7.界面兼容性测试:测试系统在不同操作系统、不同浏览器、不同设备上的界面显示和操作是否一致。

测试要点包括测试界面在主流浏览器(如Chrome、Firefox、Safari、IE)上的显示效果;测试界面在不同分辨率、屏幕大小的设备上的适应性等。

总结来说,UI界面测试要点包括界面布局、交互、输入验证、导航、多语言支持、响应速度和兼容性等方面的测试。

人机界面百度百科

人机界面百度百科

人机界面百科名片人机界面(又称用户界面或使用者界面)是系统和用户之间进行交互和信息交换的媒介,它实现信息的内部形式与人类可以接受形式之间的转换。

凡参与人机信息交流的领域都存在着人机界面。

编辑本段人机界面概念介绍人机界面(Human–Machine Interaction,简称HMI),是人与计算机之间传递、交换信息的媒介和对话接口,是计算机系统的重要组成部分。

是指人和机器在信息交换和功能上接触或互相影响的领域或称界面所说人机结合面,信息交换,功能接触或互相影响,指人和机器的硬接触和软触,此结合面不仅包括点线面的直接接触,还包括远距离的信息传递与控制的作用空间。

人机结合面是人机系统中的中心一环节,主要由安全工程学的分支学科安全人机工程学去研究和提出解决的依据,并过安全工程设备工程学,安全管理工程学以及安全系统工程学去研究具体的解决方法手段措施安全人机学。

它实现信息的内部形式与人类可以接受形式之间的转换。

凡参与人机信息交流的领域都存在着人机界面。

现在大量运用在工业与商业上,简单的区分为“输入”(Input)与“输出”(Ouput)两种,输入指的是由人来进行机械或设备的操作,如把手、开关、门、指令(命令)的下达或保养维护等,而输出指的是由机械或设备发出来的通知,如故障、警告、操作说明提示等,好的人机接口会帮助使用者更简单、更正确、更迅速的操作机械,也能使机械发挥最大的效能并延长使用寿命,而目前市面上所指的人机接口则多界狭义的指在软件人性化的操作接口上。

特定行业的人机界面可能有特定的定义和分类,比如工业人机界面(Industrial Human-machine Interface 或简称Industrial HMI),具体解释可查看“工业人机界面”词条。

编辑本段人机交互概念介绍人机交互、人机互动(Human-Computer Interface,简写HCI,又称用户界面或使用者界面):是一门研究系统与用户之间的互动关系的学问。

用户界面设计的原则与技巧

用户界面设计的原则与技巧

用户界面设计的原则与技巧用户界面设计是指将软件或网站的功能和各种操作以可视化的方式呈现给用户,并通过设计来提高用户体验和满意度。

一个好的用户界面可以使用户快速而轻松地完成操作,减少用户的困惑和犹豫,提高系统的可用性和效率。

下面将介绍一些用户界面设计的原则与技巧。

一、可用性原则1. 易学性:用户界面应该具有较低的学习成本,用户可以快速掌握和使用系统的功能。

要尽量减少新功能的引入和界面的复杂性,提供清晰简洁的界面布局和明确的操作指引。

2. 可视化:通过图形、图标、颜色等视觉元素,使用户可以直观地理解信息和操作。

要保证界面的一致性,使用统一的图标、颜色和按钮样式。

3. 反馈性:系统应该对用户的操作作出及时而明确的反馈。

包括鼠标悬停时的提示信息、按钮点击后的状态变化、操作完成后的确认信息等。

这能让用户对自己的操作有明确的了解,避免误操作和不必要的困惑。

4. 容错性:系统应该能够预测并纠正用户的输入错误,并给出合理的提示和建议。

例如,在填写表单时,可以通过输入检查功能来提醒用户是否有遗漏或错误的信息。

5. 可控性:用户应该能够控制和自定义界面的外观和操作方式。

例如,可以提供个性化的设置选项,允许用户调整字体大小、背景颜色等。

二、布局与导航技巧1. 信息分组:将相似的功能和内容进行分组,使用户能够快速找到所需的信息或功能。

2. 明确的导航栏:提供清晰明确的导航菜单或导航栏,让用户可以方便地切换不同的功能和页面。

3. 面包屑导航:在页面上提供面包屑导航,显示用户当前所在的路径,以便用户快速返回上级页面或了解当前位置。

4. 搜索功能:对于大型网站或系统,应该提供一个搜索框,方便用户快速查找所需的内容。

5. 锚点链接:对于长页面,可以使用锚点链接,让用户一键跳转到所需的部分,提高页面的可读性。

三、交互设计技巧1. 简化操作:避免过多的操作步骤和无关的弹窗,减少用户的操作负担。

2. 一致性:保持界面的一致性,包括布局、颜色、字体等,使用户在不同的页面和功能间能够快速适应。

简述界面设计的工作流程

简述界面设计的工作流程

简述界面设计的工作流程界面设计是指对软件、网站等用户界面的设计和优化。

它是将用户需求和技术实现相结合的过程,旨在提供用户友好、易于使用和美观的界面。

界面设计的工作流程主要包括需求分析、原型设计、界面设计和用户测试。

需求分析是界面设计的第一步。

在这个阶段,设计师需要与客户或产品经理沟通,了解用户的需求和期望。

通过用户调研、竞品分析等方法,收集和整理用户需求,确定界面设计的目标和重点。

这一步骤的目的是确保设计师对用户的需求有清晰的认识,能够为他们提供满意的用户体验。

接下来,设计师需要进行原型设计。

原型是界面设计的蓝图,是一个快速、低成本的方法,用于展示和验证设计理念。

设计师可以使用软件工具或手绘草图来创建原型,包括界面布局、功能模块和交互流程等。

通过原型,设计师可以与客户或产品经理进行多次反馈和修改,以确保设计方案满足用户需求,并能够有效地实现。

在原型设计完成后,设计师可以开始进行具体的界面设计。

界面设计要注重用户体验和可用性,包括色彩搭配、字体选择、图标设计等。

设计师需要根据产品的定位和目标用户群体,选择合适的设计风格和元素,以提升用户的视觉感受和操作便利性。

同时,设计师还需要考虑不同屏幕尺寸和设备的兼容性,确保界面在不同平台上的一致性和稳定性。

设计师需要进行用户测试。

用户测试是验证设计方案的重要环节,可以帮助设计师发现和解决潜在的问题和缺陷。

设计师可以邀请一些代表性的用户进行测试,观察他们在使用界面时的行为和反馈。

通过用户的反馈和意见,设计师可以进一步优化和改进界面设计,以提供更好的用户体验。

界面设计的工作流程包括需求分析、原型设计、界面设计和用户测试。

这个过程是循序渐进的,设计师需要与客户和用户保持密切的沟通和合作,以确保最终的设计方案能够满足用户的需求和期望。

界面设计的目标是提供用户友好、易于使用和美观的界面,以提升用户体验和用户满意度。

通过合理的工作流程和有效的设计方法,设计师可以为用户创造出更好的界面体验。

什么是工程施工界面

什么是工程施工界面

什么是工程施工界面一、工程施工界面的定义工程施工界面是指工程施工中各个节点、过程、部位之间,各项工程活动、各项工程要素之间的边界和交汇点。

它包括了施工单位、监理单位、设计单位、供货商、建设单位等各个施工参与者之间的沟通、交流和协调关系。

在真实的施工现场中,各种要素之间存在着复杂的关系和作用,要想达到良好的施工效果,必须合理管理和控制这些工程施工界面。

二、工程施工界面的分类根据工程施工中各种要素之间的关系,工程施工界面可以分为内部界面、外部界面和客观界面:1. 内部界面:指同一参与者内部不同部门或不同阶段之间的联系和协调关系。

比如设计部门和施工部门之间的界面、质量部门和安全部门之间的界面等。

2. 外部界面:指不同参与者之间的联系和协调关系。

比如施工单位和监理单位之间的界面、建设单位和设计单位之间的界面等。

3. 客观界面:指工程施工中涉及到的外部环境和自然界面之间的关系。

比如施工现场周围环境与实际工程中的施工活动之间的关系等。

三、工程施工界面的管理和控制合理的管理和控制工程施工界面对于保证施工质量和进度至关重要。

以下是一些有效的管理和控制措施:1. 制定详细的施工计划:在确定施工方法和工程实施过程中,要制定详细的施工计划,明确各个参与者的职责和任务,有效协调工程施工过程中各个要素之间的关系。

2. 建立健全的沟通协调机制:要建立起施工单位、监理单位、设计单位之间的沟通协调机制,及时沟通工程进度、质量、安全等方面的信息,协调解决施工界面问题。

3. 加强现场管理和监督:通过加强现场管理和监督,保证施工现场秩序良好,防止各种工程施工要素之间的冲突和错位,确保施工界面的质量和进度。

4. 健全的验收和验收机制:在工程施工结束后,要对工程施工界面进行全面的验收和评估,发现和解决问题,完善工程施工界面。

在工程施工界面的管理和控制方面,需要不断总结经验,完善管理机制,确保各个施工要素之间的协调和合作,实现工程施工的高效、高质和高速。

简述人机界面的设计原则

简述人机界面的设计原则

简述人机界面的设计原则
人机界面设计是指通过设计和实现用户与计算机系统之间的交互界面,以便用户能够方便、高效地与计算机系统进行交互。

以下是一些人机界面设计的原则:
1. 以用户为中心:人机界面的设计应该以用户的需求和期望为中心,考虑用户的使用习惯、认知能力和心理特征,使用户能够方便、快捷地完成任务。

2. 简洁明了:人机界面的设计应该简洁明了,避免过多的信息和复杂的操作,使用户能够快速理解和使用系统。

3. 一致性:人机界面的设计应该保持一致性,使用相同的操作方式、界面布局和颜色等,以便用户能够快速适应和熟悉系统。

4. 反馈及时:人机界面的设计应该及时反馈用户的操作结果,使用户能够了解自己的操作是否成功,以及系统的状态和响应。

5. 容错性:人机界面的设计应该具有容错性,考虑到用户可能会出现的错误操作,并提供相应的错误提示和纠正措施。

6. 可定制性:人机界面的设计应该具有可定制性,允许用户根据自己的需求和偏好进行个性化设置,以提高用户的使用体验。

7. 易用性:人机界面的设计应该易于使用,不需要用户进行过多的学习和培训,即可上手使用系统。

8. 美观性:人机界面的设计应该具有美观性,使用户在使用系统的过程中感到舒适和愉悦。

总之,人机界面的设计应该以用户为中心,考虑用户的需求和期望,遵循简洁明了、一致性、反馈及时、容错性、可定制性、易用性和美观性等原则,以提高用户的使用体验和工作效率。

材料表界面知识点汇总

材料表界面知识点汇总

材料表界面知识点汇总1.表,界面是指一个相到另一个相的过渡区域。

2.表界面可以分为一下五类:固-气,液-气,固-液,液—液,固—固。

3.把凝聚相和气相之间(固-气,液-气)的分界面称为表面;把凝聚相之间(固—液,液-液,,固-固)的分界面称为界面.4.理想表面的定义:指除了假设确定的一套边界条件外,系统不发生任何变化的表面。

特点:表面的原子位置和电子密度都和在体内一样,且在实际生活中理想表面是不可能存在的。

5.清洁表面的定义:指不存在任何污染的化学纯表面,即不存在吸附,催化反应或杂质扩散等一系列物理,化学效应的表面.特点:可以发生多种与体内不同的结构和成分变化.6.吸附表面的定义:吸附有外来原子的表面称之为吸附表面.特点:吸附原子可以形成无序的或有序的覆盖层。

7.材料表面的分类:机械作用界面,化学作用界面,固态结合界面,液相或气相沉积界面,凝固共生界面,粉末冶金界面,粘接界面,熔焊界面.8.表面张力的定义:在液体表面膜中,存在着使液体表面积缩小的张力,这种张力称为表面张力.9.吸附是组分在热力学体系的各相中偏离热力学平衡组成的非均匀分布现象。

通常将被吸附的分子成为吸附质,固体则称为吸附剂.10.吸附类型分为物理吸附和化学吸附。

11.表面张力计算公式:12.表面张力产生的根本原因是分子间相互作用力的不平衡引起的。

13.表面张力本质上是由分子间相互作用力,即范德瓦尔斯力,单位为:J/m2place方程:附加压力的方向总是指向曲率中心一边,且与曲率大小有关。

place方程:球面: 与曲率半径成反比任意曲面:;对于平液面,两个曲率半径都为无限大,p=0,表示跨过平液面不存在压差。

16.当毛细管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形。

反之,若液体不能浸润管壁,则液面下降呈凸液面。

17.Kelvin公式:po为T温度下,平液面的蒸汽压;P为T温度下,弯液面的蒸汽压;V为液体摩尔体积;r为弯液面的曲率半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A lattice Boltzmann method for incompressibletwo-phase flows with large density differencesT.Inamuro *,T.Ogata,S.Tajima,N.KonishiDepartment of Chemical Engineering,Graduate School of Engineering,Kyoto University,Katsura Campus,Kyoto 615-8510,JapanReceived 13June 2003;received in revised form 20December 2003;accepted 12January 2004Available online 21February 2004AbstractA lattice Boltzmann method for two-phase immiscible fluids with large density differences is proposed.The difficulty in the treatment of large density difference is resolved by using the projection method.The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000.To show the validity of the method,we apply the method to the simulations of capillary waves,binary droplet collisions,and bubble flows.In capillary waves,the an-gular frequencies of the oscillation of an ellipsoidal droplet are obtained in good agreement with theoretical ones.In the simulations of binary droplet collisions,coalescence collision and two different types of separating collisions,namely reflexive and stretching separations,can be simulated,and the boundaries of the three types of collisions are in good agreement with an available theoretical prediction.In the bubble flows,the effect of mobility on the coalescence of two rising bubbles is investigated.The behavior of many bubbles in a square duct is also simulated.Ó2004Elsevier Inc.All rights reserved.AMS:65M99;76T10Keywords:Lattice Boltzmann method;Two-phase flow;Capillary wave;Binary droplet collision;Bubble flow1.IntroductionRecently,the lattice Boltzmann method (LBM)has been developed into an alternative and promising numerical scheme for simulating multicomponent fluid flows.Gunstensen et al.[1]developed a multi-component LBM based on the two-component lattice gas model.Shan and Chen [2]proposed an LBM model with mean-field interactions for multiphase and multicomponent fluid flows.Swift et al.[3]devel-oped an LBM model for multiphase and multicomponent fluid flows using the free-energy approach.He et al.[4]proposed a new lattice Boltzmann multiphase model using the idea of level-set for multiphase flow.*Corresponding author.Tel.:+81-75-753-5791;fax:+81-75-761-4947.E-mail address:inamuro@cheme.kyoto-u.ac.jp (T.Inamuro)/locate/jcpJournal of Computational Physics 198(2004)628–6440021-9991/$-see front matter Ó2004Elsevier Inc.All rights reserved.doi:10.1016/j.jcp.2004.01.019T.Inamuro et al./Journal of Computational Physics198(2004)628–644629 Inamuro et al.[5,6]also proposed an LBM for multicomponent immisciblefluids with the same density. Ginzburg and Steiner[7]have proposed a generalized LBM model to simulate free-surfaceflows by modifying the above model by Gunstensen et al.T€o lke et al.[8]also have proposed an LBM for immiscible binaryfluids with variable viscosities and density ratios based on the model by Gunstensen et al.and applied the method to the simulation of binaryflows through porous media.Sankaranarayanan and Sundaresan[9]and Sankaranarayanan et al.[10,11]have developed an implicit LBM for multicomponent flows based on the above Shan and Chen model and used the method for the analysis of drag,lift,and virtual mass forces in bubbly suspensions.The above LBM models have great advantages over conven-tional methods for multiphaseflows.They do not track interfaces,but can maintain sharp interfaces without any artificial treatments.Also,the LBM is accurate for the mass conservation of each component fluid.While most of the above LBM models for multiphase and multicomponentfluidflows are based on heuristic ideas with no direct connection to kinetic theory,Luo[12,13]and Luo and Girimaji[14,15]have rigorously derived the LBM models for multiphasefluids from the Enskog equation and for multicom-ponentfluids from the corresponding kinetic equations and provided a unified framework to treat the LBM models for multiphase and multicomponentfluids.On the other hand,diffuse-interface methods are used for many applications to interfacial phenomena [16–19].Each of the above LBM models may be regarded as one of the diffuse-interface methods.In the LBM models,the pressure tensor is introduced through the collision term.Since the LBM is classified as a mesoscopic approach to the simulation offluid dynamics,the combination of LBM and diffuse-interface methods is suitable for the simulation of two-phasefluidflows.Although the LBM is a promising method for multicomponentfluidflows,one of disadvantages is that all above schemes are limited to small density ratios less than10due to the numerical instability in the interface with large density ually the density ratio of liquid–gas systems is larger than100, e.g.,the density ratio of water to air is about1000:1.Thus,the development of an LBM for two-phase fluids with large density ratios is required.Teng et al.[20]used the total variation diminishing with artificial compression(TVD/AC)scheme to the lattice Boltzmann multiphase model in order to stabilize the computation for large density ratios up to100,but the method has been applied only to the problems with infinitesimalflows such as phase separation.The numerical instability in the interface with large density ratios is mainly caused by spurious velocities near the interface which become larger as the density ratio increases and do not satisfy the continuity equation.In the simulation offlows with large density differences,a key to the problem is to assure the continuity equation near the interface at each time step.The aim of the present paper is to propose a heuristic LBM for two-phasefluids with large density differences.The difficulty in the treatment of large density differences is resolved by using the projection method[21].In the projection method the continuity equation in the interfacial region is satisfied at every time step.Two particle velocity distribution functions are used.One is used for the calculation of an order parameter which distinguishes two phases,and the other is used for the calculation of a predicted velocity of the two-phasefluid without a pressure gradient.The current velocity satisfying the continuity equation can be obtained by using the relation between the velocity and the pressure correction which is determined by solving the Poisson equation.In order to show the validity of the method,we apply the method to the simulations of capillary waves,binary droplet collisions,and bubbleflows.The paper is organized as follows.In Section2we propose an LBM for two-phasefluids with large density differences and derive governing equations for macroscopic variables by using the asymptotic theory.In Section3we present numerical examples,capillary waves,binary droplet collisions,and bubble flows.In capillary waves,the oscillation of an ellipsoidal droplet is calculated.In the simulations of binary droplet collisions,coalescence collision and two different types of separating collisions,namely reflexive and stretching separations,are simulated.In the bubbleflows,the effect of mobility on the coalescence of two bubbles is investigated.Concluding remarks are given in Section4.2.Numerical method2.1.Two-phase lattice Boltzmann methodNon-dimensional variables defined in Appendix A are used as in[23].In the LBM,a modeledfluid, composed of identical particles whose velocities are restricted to afinite set of N vectors c i(i¼1;2;...;N), is considered.Thefifteen-velocity model(N¼15)is used in the present paper.The velocity vectors of this model are given byc1;c2;c3;c4;c5;c6;c7;c8;c9;c10;c11;c12;c13;c14;c15½¼0100À1001À111À11À1À100100À1011À11À1À11À1000100À1111À1À1À1À11264375:ð1ÞIn the present paper we describe an athermal model for two-phasefluid.Two particle velocity distribution functions,f i and g i,are used.The function f i is used for the calculation of an order parameter which distinguishes two phases,and the function g i is used for the calculation of a predicted velocity of the two-phasefluid without a pressure gradient.Although we can use any of LBM multiphase models,we use the model by Swift et al.[3]in the present work.The evolution of the particle distribution functions f iðx;tÞand g iðx;tÞwith velocity c i at the point x and at time t is computed by the following equations:f iðxþc i D x;tþD tÞ¼f iðx;tÞÀ1f ½f iðx;tÞÀf ciðx;tÞ ;ð2Þg iðxþc i D x;tþD tÞ¼g iðx;tÞÀ1s gg iðx;tÞÂÀg ciðx;tÞÃþ3E i c i a1qoo x blo u bo x a&þo u ao x b'!D x;ð3Þwhere f ci and g ciare functions of Chapman–Enskog type in which the variables x and t enter only throughmacroscopic variables and/or their derivatives[22],s f and s g are dimensionless single relaxation times,D x is a spacing of the cubic lattice,D t is a time step during which the particles travel the lattice spacing,and the other variables,q,l,and u,and constants E i are defined below.The last term in the right-hand side of Eq.(3)represents the viscous stress tensor divided by the density of the two-phasefluid.In Eqs.(2)and(3),thefunction f ci and g ciare determined so as macroscopic variables satisfy desired equations as shown below.Inthis sense,the present method is a heuristic LBM for two-phasefluids.The order parameter/distinguishing two phases and the predicted velocity uÃof the multicomponent fluids are defined in terms of the two particle velocity distribution functions as follows: /¼X15i¼1f i;ð4ÞuüX15i¼1c i g i:ð5ÞThe functions f ci and g ciin Eqs.(2)and(3)are given byf c i ¼H i/þF i p0"Àj f/o2/o x2aÀj f6o/o x a2#þ3E i/c i a u aþE i j f G abð/Þc i a c i b;ð6Þ630T.Inamuro et al./Journal of Computational Physics198(2004)628–644g c i ¼E i1þ3c i a u aÀ32u a u aþ92c i a c i b u a u bþ32s gÀ12D xo u bo x aþo u ao x bc i a c i b!þE ij gqG abðqÞc i a c i bÀ23F ij gqo qo x a2;ð7ÞwhereE1¼2=9;E2¼E3¼E4¼ÁÁÁ¼E7¼1=9;E8¼E9¼E10¼ÁÁÁ¼E15¼1=72;H1¼1;H2¼H3¼H4¼ÁÁÁ¼H15¼0;F1¼À7=3;F i¼3E iði¼2;3;4; (15)ð8ÞandG abð/Þ¼92o/o x ao/o x bÀ32o/o x co/o x cd ab;ð9Þwith a;b;c¼x;y;z(subscripts a;b,and c represent Cartesian coordinates and the summation convention is used).In the above equations,j f is a constant parameter determining the width of the interface,j g is a constant parameter determining the strength of the surface tension,and d ab is the Kronecker delta.In Eq.(6),p0is given byp0¼/o wo/Àw¼/T11Àb/Àa/2ð10Þwithwð/;TÞ¼/T ln/1Àb/Àa/2;ð11Þwhere w is the bulk free-energy density,and a,b,and T are free parameters determining the maximumand minimum values of the order parameter/.It is noted that f ci is the same as that of the model bySwift et al.[3]except that Eq.(6)includes no quadratic term of theflow velocity u a.The last two terms of Eq.(7)represent the effect of interface tension as described below.The term including s g represents the negative counterpart of the viscous stress tensor appearing in the original LBM,and this term is needed in order to vanish the original viscous stress tensor.The followingfinite-difference approxi-mations are used to calculate thefirst and second derivatives(o/=o x a,o u b=o x a,o q=o x a,and o2/=o x2a )inEqs.(6),(7)and(9):o k o x a %110D xX15i¼2c i a kðxþc i D xÞ;ð12Þo2k o x2a %15D xX15i¼2kðx"þc i D xÞÀ14kðxÞ#:ð13ÞThe density in the interface is obtained by using the cut-offvalues of the order parameter,/ÃL and/ÃG,forthe liquid and gas phases with the following relation:T.Inamuro et al./Journal of Computational Physics198(2004)628–644631q ¼q G ;/</ÃG ;D q2sin /À/ÃD /Ãp þ1h i þq G ;/ÃG 6/6/ÃL ;q L ;/>/ÃL ;8>><>>:ð14Þwhere q G and q L are the density of gas and liquid phases,respectively,D q ¼q L Àq G ,D /ü/ÃL À/ÃG ,and üð/ÃL þ/ÃG Þ=2.It is essential to introduce the cut-offvalues of the order parameter in the present method.The maximum and minimum values of /are changed a little during calculations,and then the change of the density of each phase is magnified in proportion to the density ratio of the two-phase fluid.In order to keep the density of each phase constant,we introduce the cut-offvalues in the definition of the density of the two-phase fluid.The viscosity l in the interface is obtained byl ¼q Àq G q L Àq G ðl L Àl G Þþl G ;ð15Þwhere l G and l L are the viscosity of gas and liquid phases,respectively.The interfacial tension r is obtained byr ¼j g Z 1À1o q o n 2d n ð16Þwith n being the coordinate normal to the interface [16,26].It is noted that the flux J a of the order parameter /is given byJ a ¼Àh M /o l c o x a ¼Àh M o P ab o x b ;ð17Þwhere h M is the mobility obtained below,and l c and P ab are the chemical potential and the pressure tensor of the fluid used for the calculation of the order parameter /which are given byl c ¼o w o /Àj f o 2/o x 2a;ð18ÞandP ab ¼p 0"Àj f /o 2/o x 2c Àj f 2o /o x c 2#d ab þj f o /o x a o /o x b :ð19Þ2.2.Pressure correctionSince u Ãis not divergence free (r Áu ü0),the correction of u Ãis required.The current velocity u which satisfies the continuity equation (r Áu ¼0)can be obtained by using the following equations:Sh u Àu ÃD t¼Àr p q ;ð20Þr Ár pq ¼Sh r Áu ÃD t ;ð21Þ632T.Inamuro et al./Journal of Computational Physics 198(2004)628–644where Sh ¼U =c is the Strouhal number and p is the pressure of the two-phase fluid.It is noted that D t ¼Sh D x .The Poisson equation (21)can be solved by various methods.In the present paper,we solve Eq.(21)in the framework of ly,the following evolution equation of the velocity distribution function h i is used for the calculation of the pressure p :h n þ1i ðx þc i D x Þ¼h n i ðx ÞÀ1s h ½h n i ðx ÞÀE i p n ðx Þ À13E i o u Ãa o x a D x ;ð22Þwhere n is the number of iterations and the relaxation time s h is given bys h ¼1q þ12:ð23ÞThe pressure is obtained byp ¼X15i ¼1h i :ð24Þ2.3.Algorithm of computationWe now summarize the algorithm of computation.Step ing Eqs.(2)and (3),compute f i ðx ;t þD t Þand g i ðx ;t þD t Þ,and then compute /ðx ;t þD t Þandu Ãðx ;t þD t Þwith Eqs.(4)and (5).Also,q ðx ;t þD t Þis calculated with Eq.(14).Step ing Eq.(22)with Eqs.(23)and (24),compute p ðx ;t þD t Þ.The iteration is repeated untilj p n þ1Àp n j =q <e is satisfied in the whole domain.Step pute u ðx ;t þD t Þusing Eq.(20).Step 4.Advance one time step and return to Step 1.It is found in preliminary calculations that using the present method we can simulate multiphase flows with the density ratio up to 1000.erning equations for macroscopic variablesApplying the asymptotic theory [23–25]to Eqs.(2),(3)and (22),we find that the asymptotic expansions of the macroscopic variables with respect to a small parameter k ¼O ðD x Þ,/0¼/ð0Þþk /ð1Þ,q 0¼q ð0Þþk q ð1Þ,u 0a ¼ku ð1Þa þk 2u ð2Þa ,p 0¼k 2p ð2Þþk 3p ð3Þ,and P 0ab ¼P ð0Þab þkP ð1Þab satisfy Sh o /0o t þu 0a o /0o x a ¼h M o 2P 0ab o x a o x b ;ð25Þo u 0a o x a¼0;ð26ÞSh o u 0ao t þu 0b o u 0a o x b ¼À1s g q 0o p 0o x a þ1q 0o o x b l o u 0b o x a "þo u 0a o x b !#þo o x b j g q 0o q 0o x a o q 0o x b Ào q 0o x c o q 0o x c d ab !;ð27Þwhere h M is the mobility given byh M ¼s f À12 D x :ð28ÞT.Inamuro et al./Journal of Computational Physics 198(2004)628–644633Eq.(25)is the phase-field advection–diffusion equation (the Cahn–Hilliard equation plus advection)for /.Eqs.(26)and (27)are the continuity equation and the Navier–Stokes equations for incompressible two-phase fluid with an interfacial tension,if we choose s g ¼1.The last term of the right-hand side in Eq.(27)represents the interfacial tension given by Eq.(15).It is pointed out that large mobilities overly damp flows [19].The mobility given by Eq.(28)is of O ðD x Þ,unless s f is close to 1=2,but as s f approaches 1=2,Eq.(2)becomes unstable due to numerical instability.An idea of decreasing the mobility is to add the term of E i C ðo P ab =o x b Þc i a D x to the function f c i given by Eq.(6),where C is a constant.The mobility h M in this case is given byh M ¼s f À12À13C D x :ð29ÞBy choosing a proper value of C ,we can decrease the mobility even with s f ¼1.3.Numerical examplesTo show the validity of the present method,we apply the method to the simulations of capillary waves,binary droplet collisions,and bubble flows.3.1.Capillary waveThe oscillation of a spherical liquid droplet in a gas phase under the action of capillary force is con-sidered.Initially,an ellipsoidal droplet is placed at the center of a cubic domain.The surface of the droplet is given by r ¼R þ0:1R cos 2h ,where r is the distance from the center,R is the radius of the droplet,and h is the polar angle.The deviation corresponds to the second mode of oscillations.The density ratio of the liquid to the gas is q L =q G ¼50(q L ¼50,q G ¼1).The viscosities of the droplet and the gas are l L ¼8Â10À3D x and l G ¼1:6Â10À4D x ,respectively.The periodic boundary condition is used on all the sides of the domain.The quarter of the domain is calculated using the symmetry with x and y axes.The quarter domain is divided into a 40Â40Â80cubic lattice.The parameters in Eq.(10)are freely chosen,and for this example their values are a ¼1,b ¼6:7,and T ¼3:5Â10À2;it follows that the maximum and minimum values of the order parameter are /max ¼9:714Â10À2and /min ¼1:134Â10À2.The cut-offvalues of the order parameter are /ÃL ¼9:2Â10À2and /ÃG ¼1:5Â10À2.The other parameters are fixed atj f ¼0:5ðD x Þ2,s f ¼1,s g ¼1,C ¼0,and e ¼10À5.We change the radius of the droplet R and the interfacial tension r given by Eq.(16).Table 1Comparison of calculated angular frequencies x D x of the oscillation of the droplet with theoretical ones Rr r Theory Present Error (%)15D x14:43D x 0:2038D x 3.294Â10À3 3.162Â10À3)4.020D x19:25D x 0:05107D x 1.070Â10À3 1.034Â10À3)3.420D x19:25D x 0:2012D x 2.124Â10À3 2.068Â10À3)2.620D x19:25D x 0:7797D x 4.182Â10À3 3.957Â10À3)5.425D x 24:06D x 0:1980D x 1.508Â10À3 1.513Â10À3+0.3The theoretical angular frequencies are obtained by x D x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8r =q L r 3p ,where r is the averaged radius ofthe initial ellipsoidal droplet [27].634T.Inamuro et al./Journal of Computational Physics 198(2004)628–644The angular frequency x of the oscillation of the droplet is obtained from the time variation of the radius of the droplet.The calculated angular frequencies x for various R and r are shown in Table 1in comparison with the theoretical ones [27].It is seen from Table 1that the calculated angular frequencies are in good agreement with the theoretical ones within the errors of 6%.As for spurious velocities induced in the interface,the maximum velocity in the gas phase is 2.1Â10À2for a stationary spherical droplet with R ¼20D x and r ¼0:2012D x [j g ¼2:5Â10À4ðD x Þ2].Since the width of the interface is thin ($3D x )and the interfacial tension is large in this case,the spurious velocities are relatively large.But they do not affect the behavior of the oscillation of the droplet,because the inertia of the gas phase is very small and the oscillation of the droplet is determined only through the ratio between the inertia of the droplet and the interfacial tension.Also,we find that the spurious velocity becomes smaller as the interfacial tension r decreases and as the lattice points in the interface increase.In numerical examples of bubble flows below,spurious velocities are much smaller than the above case (themaximumputational domain and binary dropletcollision.Fig.2.Time evolution of droplet shape for We ¼20:2and B ¼0(t ütV =D ).T.Inamuro et al./Journal of Computational Physics 198(2004)628–644635spurious velocity <5Â10À4),since much smaller interfacial tensions are used and slightly more lattice points are distributed in the interface.3.2.Droplet collisionTwo liquid droplets with the same diameter D are placed 2D apart in a gas phase,and they collide with the relative velocity V (see Fig.1).The density ratio of the liquid to the gas is q L =q G ¼50(q L ¼50,q G ¼1).The viscosities of the droplet and the gas are l L ¼8Â10À2D x and l G ¼1:6Â10À3D x ,respectively.The dimensionless parameters for binary droplet collisions are the Weber number We ¼q L DV 2=r ,the Reynolds number Re ¼q L DV =l L ,and the impact parameter B ¼X =D ,where X is the distance from the center of one droplet to the relative velocity vector placed on the center of the other droplet (see Fig.1).The periodic boundary condition is used on all the sides of the domain.The half of the domain is calculated using the symmetry with y ¼L y =2.The half domain is divided into a 192(or 128)Â48Â96cubic lattice.The pa-rameters in Eq.(10)are freely chosen,and for this example their values are a ¼1,b ¼6:7,and T ¼3:5Â10À2;it follows that the maximum and minimum values of the order parameter are /max ¼9:714Â10À2and /min ¼1:134Â10À2.The cut-offvalues of the order parameter are /ÃL ¼9:2Â10À2and /ÃG ¼1:5Â10À2.The other parameters are fixed at V ¼0:1,j f ¼0:5ðD x Þ2,s f ¼1,s g ¼1,C ¼0,e ¼10À5and D ¼32D x ,and j g is changed in the range of 20<We <80.The Reynolds number is fixed at Re ¼2000.Fig.3.Time evolution of droplet shape for We ¼20:2and B ¼0(t ütV =D ).636T.Inamuro et al./Journal of Computational Physics 198(2004)628–644Fig.4.Time evolution of droplet shape for We ¼39:7and B ¼0(t ütV =D).Fig.5.Time evolution of droplet shape for We ¼79:7and B ¼0:813(t ütV =D ).T.Inamuro et al./Journal of Computational Physics 198(2004)628–644637Fig.2shows the calculated results of time evolution of droplet shape for We ¼20:2and B ¼0.After two droplets collide head-on,they form a disk-like droplet.Owing to the large curvature at the cir-cumference of the disk-like droplet,there is a pressure difference between its inner and outer regions caused by surface tension.Thus,the disk contracts radially inward and pushes the liquid outward from its center forming a long cylinder with rounded ends.Then the cylinder oscillates until a spherical droplet is formed.This type of collision is called ‘‘coalescence collision’’.The fluid velocity fields at y ¼L y =2are shown in Fig.3.The complicated gas flows as well as liquid flows inside the droplets are clearly found.Fig.4shows the calculated results for We ¼39:7and B ¼0.The time evolution of droplet shape is similar to the previous case up to the formation of a long cylinder with rounded ends.In this case,however,the cylinder breaks into two droplets and a smaller satellite droplet in the middle.This type of collision is called ‘‘reflexive separation collision’’.Fig.5shows the calculated resultsforFig.6.Calculated results classified into three types of collisions.The solid and broken curves represent the theoretical prediction of the boundaries between three types of collisions[28].putational domain of two rising bubbles.We ¼79:7and B ¼0:813.Since the two droplets collide at the high impact parameter,only a portion of them contacts directly,and the remaining portions of the droplets tend to move in the direction of their initial velocities and consequently stretch the region of the interaction.Finally,the droplet breaks into two primary droplets and small satellite droplets.This type of collision is called ‘‘stretching separation collision’’.The computation time for the case of Fig.5required about 47h on an AMD AthlonXP 1800+PC machine.The number of iterations in Step 2of the algorithm of computation is large in a very early stage of calculation due to initial large acceleration (e.g.,over 50iterations were required for t Ã<1in the calcu-lation of Fig.5),but becomes smaller than 10after that time.As a result,51%of the total computation time was spent for Step 2in this case.We have calculated the binary droplet collisions for various Weber numbers and impact parameters,and classified the results into the above-mentioned three types of collision in the We –B plane as shown in Fig.6.It is seen that the reflexive separation collisions appear in the region of low impact parameters and high Weber numbers over a critical value,and the stretching separation collisions occur at high impact pa-rameters.The coalescence collisions occur between the two regions.In the figure the theoretical predictions of the boundaries of the three types of collisions [28]are also plotted,and the present calculated results are in good agreement with the theoreticalpredictions.Fig.8.Time evolution of bubble shapes (left)and velocity vectors and density contours on y ¼L y =2(right)for M ¼1Â10À5,E ¼10,q L =q G ¼50;and h M ¼0:5D x (t ütV =D ,where V is the averaged velocity of gas phase in the lower right result).3.3.Bubble flowFirst,we calculate the coalescence of two rising bubbles.In the calculation of bubble flows,the gravi-tational force is considered by adding the term À3E i c iz ð1Àðq L =q ÞÞg D x ,where g is the gravitational ac-celeration to the right-hand side of Eq.(3).Two bubbles with the same diameter D are placed ð4=3ÞD apart in a liquid inside a rectangular domain (see Fig.7)and is released at time t ¼0.The density ratio of the liquid to the gas is q L =q G ¼50(q L ¼50,q G ¼1).The dimensionless parameters for this phenomenon arethe Morton number M ¼g l 4L ðq L Àq G Þ=q 2L r 3and the E €otv €o s number E ¼g ðq L Àq G ÞD 2=r .The periodic boundary condition is used on all the sides of the domain.The domain is divided into an 80Â80Â160cubic lattice.The parameters in Eq.(10)for this example are a ¼1,b ¼1,and T ¼2:93Â10À1;it follows that the maximum and minimum values of the order parameter are /max ¼4:031Â10À1and/min ¼2:638Â10À1.The cut-offvalues of the order parameter are /ÃL ¼3:80Â10À1and /ÃG ¼2:75Â10À1.The other parameters are fixed at s f ¼1,s g ¼1,e ¼10À6,D ¼30D x ,l L =l G ¼50,j f ¼0:05ðD x Þ2and j g ¼1Â10À5ðD x Þ2.The Morton number and the E €otv €o s number are M ¼1Â10À5and E ¼10,respec-tively.The mobilities of h M ¼0:5D x and 0:01D x are used.Figs.8and 9show the calculated results for h M ¼0:5D x and 0:01D x ,respectively.It is seen that as the time passes,the lower bubble catches up with the upper bubble.However,if we look at the results carefully,it is seen that the shapes of the lower bubbles for the two cases are different.It is noted that twobubblesFig.9.Time evolution of bubble shapes (left)and velocity vectors and density contours on y ¼L y =2(right)for M ¼1Â10À5,E ¼10,q L =q G ¼50,and h M ¼0:01D x (t ütV =D ,where V is the averaged velocity of gas phase in the lower right result of Fig.8).。

相关文档
最新文档