On planar Beurling and Fourier transforms

合集下载

分布式协同波束成形英文

分布式协同波束成形英文

分布式协同波束成形英文Distributed Cooperative Beamforming.Beamforming, a fundamental technique in wireless communications, has evolved significantly in recent years with the advent of distributed antenna systems (DAS) and massive multiple-input multiple-output (MIMO) systems. These systems, characterized by their large number of antennas and distributed nature, offer unprecedented gains in spectral efficiency, energy efficiency, and reliability. Distributed cooperative beamforming (DCB) is a promising extension of beamforming that leverages the cooperation among multiple transmitters to form a beam with enhanced directivity and coverage.In a distributed cooperative beamforming system, multiple transmitters, each with its own set of antennas, cooperate to transmit the same signal to a common receiver. By coordinating their transmissions, these transmitters can constructively combine their signals at the receiver,resulting in a stronger received signal. This cooperation among transmitters is achieved by sharing channel state information (CSI) and adjusting the phase and amplitude of the transmitted signals.The key benefits of distributed cooperative beamforming include:1. Enhanced Signal-to-Noise Ratio (SNR): By combining the signals from multiple transmitters, DCB cansignificantly improve the SNR at the receiver, leading to improved communication performance.2. Extended Coverage: The cooperative beamforming can create a narrower and more focused beam, which can reach receivers located further away from the transmitters. This extends the coverage area of the wireless network.3. Improved Spectral Efficiency: By focusing the transmitted power in a narrower beam, DCB can increase the spectral efficiency of the system by reducing interference to other users.4. Energy Efficiency: Distributed cooperative beamforming allows for more efficient use of transmit power by concentrating the power in the desired direction, rather than wasting it in unwanted directions.To implement distributed cooperative beamforming effectively, several challenges need to be addressed:1. Channel Estimation and Feedback: Accurate CSI is crucial for cooperative beamforming. However, obtaining CSI in a distributed system can be challenging due to the need for frequent and reliable channel estimation and feedback mechanisms.2. Synchronization: Cooperative beamforming requires precise synchronization among the cooperating transmitters. This includes both timing and carrier frequency synchronization to ensure that the transmitted signalsalign correctly at the receiver.3. Signal Processing Complexity: Forming a cooperativebeam involves complex signal processing techniques, such as beamforming algorithms and optimization methods. These algorithms need to be designed efficiently to minimize computational complexity and latency.4. Interference Management: In a multi-user environment, cooperative beamforming can introduce interference between different beams. Effective interference management techniques are needed to mitigate this interference and ensure fair and efficient resource allocation.Despite these challenges, distributed cooperative beamforming has the potential to revolutionize wireless communication systems. It offers a scalable and flexible solution to address the increasing demand for high-speedand reliable wireless connectivity. Future research in this area will focus on optimizing beamforming algorithms, developing efficient channel estimation and feedback mechanisms, and addressing interference management issuesto enable the widespread deployment of distributed cooperative beamforming systems.In conclusion, distributed cooperative beamforming is a promising technology that leverages the cooperation among multiple transmitters to enhance the performance ofwireless communication systems. It offers significant gains in spectral efficiency, energy efficiency, and coveragewhile posing unique challenges in channel estimation, synchronization, signal processing complexity, and interference management. As research continues in this area, we can expect to see innovative solutions that overcome these challenges and enable the widespread adoption of distributed cooperative beamforming in future wireless networks.。

翻译 1

翻译 1

Mg-Al-Zn合金组织的晶粒尺在摩擦搅拌的依赖性弱搅拌处理的Y.N.王,a,b C.I.张,a C.J.李,a H.K.林a,c和黄祚芊a,*a材料科学与工程学院;纳米科学中心和纳米技术,国立中山大学圣大学,高雄804,台湾,中华民国b材料科学与工程学院,大连理工大学,大连116024,中国研究所c工研院南,工业技术研究院,台南县734,台湾,中华民国收到2006年4月25日;经修订的2006年5月18日;接受二零零六年六月七日可在网上二零零六年七月五日摘要在Mg-Zn-Al系合金热挤压加工通常表现出较强的粒度屈服应力的依赖。

然而,相同的摩擦搅拌处理的Mg-Zn-Al系合金的样品表现出弱得多的晶粒尺寸的依赖。

高施密特因子摩擦搅拌处理的样品在0.3左右,负责在的Hall-Petch关系的低参数。

关键词:镁合金;搅拌摩擦加工;纹理;晶粒尺寸的依赖镁合金已经吸引了运输车辆制造越来越大的兴趣,因为它们可以提供一个相当大的重量减少的结构。

然而,他们的延展性较差,由于在室温下的六边形结构可滑移系的数量有限,可能会限制其广泛应用。

另一方面,在镁合金的晶粒尺寸强化效率比以Al和其它合金高得多[1],这意味着晶粒细化镁合金是更有利。

大量的研究集中在镁合金的微结构上的修改已经进行,以提高和控制的机械性能[2-12]。

在镁合金中,存在基础和非基础滑移系之间的临界剪切应力(CROSS)有很大差异[13],这引起了严重的各向异性的机械性能。

其结果是,当变形镁合金具有强的晶体学织构在其微观结构,它们的机械性能显著由质地除了晶粒尺寸的影响[4-7,12,14]。

最近,研究搅拌摩擦加工(FSP)已经证明,有效的微观组织均匀化和细化可在镁基合金可以实现为严重的塑性变形和动态再结晶的结果。

已经发现该纹理具有强烈的不均匀分布沿着焊接工具的销柱表面基面的积累也带出,在搅拌区[8,15]。

有大量的报道[6,16-18]对晶粒尺寸和镁合金的基础上的Hall-Petch关系机械性能的关系之间的相关性。

仙人掌代替杨桃藤制取宣纸纸药的可行性研究_

仙人掌代替杨桃藤制取宣纸纸药的可行性研究_

摘要:研究了以仙人掌代替杨桃藤制取宣纸纸药的可行性,以改善杨桃藤资源紧缺的问题。

全文包含两项实验:实验一测试了不同温度下,仙人掌提取液与杨桃藤提取液的黏度值及黏度下降值;实验二测试了仙人掌提取液与杨桃藤提取液分别对纸浆进行处理后,捞制成纸后的白度及白度下降值。

统计分析实验数据后,结果表明:仙人掌提取液可用作宣纸纸药,且效果优于杨桃藤。

关键词:宣纸;纸药;仙人掌;杨桃藤Abstract: In this article was studied the feasibility on Opuntia stricta instead of Actinidiachinensis planch as paper medicine for Xuan paper. In order to improve the shortage of Actinidiachinensis planch resources, the full text is divided into two experiments:the first experiment tested on viscosity and viscosity drop of Opuntia stricta extractant and on Actinidiachinensis planch extractant at different temperatures; The second experiment tested on paper whiteness and whiteness drop after the pulp was treated with Opuntia stricta extractant and Actinidiachinensis planch extractant. After statistical analysis of experimental data, the result showed that Opuntia stricta extractant can be used as paper medicine for Xuan paper, and the effect is better than Actinidiachinensis planch .Key words: Xuan paper; paper medicine; Opuntia stricta ; Actinidiachinensis planch仙人掌代替杨桃藤制取宣纸纸药的可行性研究⊙ 童海行 刘蒙 (中国宣纸股份有限公司,安徽泾县 242511)A study on feasibility of making as paper medicine for Xuan paper withOpuntia strictainstead of Actinidiachinensis planch⊙ TONG Hai-xing, LIU Meng (China Xuan Paper Co., Ltd., Jing County 242511, Anhui, China)研究开发R & D中图分类号:TS727+.5文献标志码:A 文章编号:1007-9211(2018)02-0034-0334第39卷第2期 2018年1月宣纸起源于唐,成熟于明,兴盛于清。

英语翻译

英语翻译

文摘本文介绍了在打桩过程中一项成果,即所谓的连续波传播计算分析模型和桩土动态反应。

对于桩基结构以及桩周、桩尖处的土壤介质,开发的轴对称有限差分计算模型具有实体单元。

桩身和土壤之间的界面单元用来促进这两种介质间的滑动。

开发的模型的性能进行了两个阶段验证。

首先,一个简单的杆在杆端受到正弦波一半力的作用,杆端不同边界条件其相应的力和速度(乘以阻抗) 反应不同。

然后,该模型用于真正打入桩的信号匹配分析,对于完整土壤信息分层、动态信号测试,静载荷试验结果是可用的。

成功地进行了信号的匹配分析,并与其他几个预测和测量参数进行对比,证明了开发连续模型的合理良好性能。

2007爱思唯尔有限公司。

版权所有。

关键词:打桩;应力波分析;连续数值模型;有限差分法;信号匹配分析1、简介尽管在过去的几十年里,桩实际的设计方法有了极大的发展,然而,桩设计最基本的方面是轴向承载能力的设计,其在很大程度上依赖于由兰多夫讨论的经验相关性。

桩根据他们的安装方法被分成两大类,包括排土桩和灌注桩。

灌注桩在利用套管或钻井泥浆以及适当的建设条件下, 临近桩桩身以及桩尖处的初始应力状态是相对稳定的。

在另一方面排土桩中比如打入桩,桩被重锤锤击或被千斤顶顶入。

应力状态的变化如桩身或桩尖周围的压实度是很难衡量的,因此它更加难以估算桩的竖向承载力。

为开发一个适当的用来准确估计静态轴向力的动态方法已经进行了很多尝试。

动态方法的主要目标已建立在桩的锤击数和竖向承载能力关系上。

许多动态公式已经被开发出来,并仍然被一些承包商在施工过程中应用,但最重要的创新是引入史密斯的一维波动方程(WEAP)去分析桩,这样模拟大量的桩群彼此之间附加弹簧,大量的弹簧取代了土壤,滑块和线性粘滞阻尼器模拟粘性、弹—塑性土壤的响应。

然而,WEAP的模型需要估计一些关键土壤参数如地震和阻尼系数以及锤效果。

这些因素显著影响分析的结果。

命名法符号A 桩截面面积(平方米) C波在桩中的速度(米/秒) D桩直径(米) E弹性模量(N /平方米) F力(N) Kn界面法向刚度(N / m3) Ks 界面切向刚度(N / m3) L桩长度(L) v速度(米/秒) Z阻抗(EA / C) Q 质量密度(公斤/立方米)Rausche提出了信号匹配技术并开发了一个分析方法,CAPWAP,用以克服WEAP模型的缺点。

TREMEC TR-6060

TREMEC TR-6060

The TREMEC TR-6060 six-speed manual transmission is found in high-performance flagship vehicles. Along with the capability to stand up to someof the highest torque engines in the industry, the TR-6060 delivers greatoverall shift feel with short throws and smooth gear synchronization.Design features of the TR-6060 include a combination of double-cone andtriple-cone synchronizers on all gears. Anti-friction ball struts and fine-pitchsplines provide reduced friction between components. A spring loadedanti-friction roller, in combination with broached forward and reverse detentgrooves on the mainshaft provide precise control of shift detents and apositive shift feel.Gearsets Tailored to Enhance PerformanceReduced fore and aft shift travel and narrow synchronizer hubs allows greaterface width on all gears. The gears utilize a two piece design with machinedclutch teeth for more precise gear engagement.TR-6060 Features at a Glance:• Rear wheel drive, six-speed manual overdrive transmission• Close-ratio gearing• Three-piece “end load design” aluminum housing• Triple supported output shaft and countershaft• Taper bearings and cylindrical roller bearings• All speed gears supported by needle bearings• Integrated clutch housing improves case strength• Two-piece gears with laser welded clutch teeth rings• Advanced and asymmetric clutch teeth in second and third gearsimproves shifting action• Multiple shifter locations for design/installation flexibility• Hybrid and sintered bronze double and triple cone synchronizersoffer lightning quick gear changes with fluid-like engagementShift Pattern46643 Ryan Court | Novi, MI 48377 U.S.A. | Torque Transfer Solutions®Copyright © 2019 TREMEC. All Rights Reserved. F-TR6060-0519Vehicle speed-controlledreverse lockout46643 Ryan Court | Novi, MI 48170 U.S.A. | Copyright © 2019 TREMEC. All Rights Reserved. Subject to design and/or appearance modifications that are production standards at the time of shipment. F-TR6060-0519 Torque Transfer Solutions®。

豆角苗移栽注意事项英语

豆角苗移栽注意事项英语

豆角苗移栽注意事项英语Precautions for Transplanting Bean Seedlings.1. Seedling selection.Strong and disease-free seedlings should be selectedfor transplanting. The seedlings should have 3-4 true leaves, and the roots should be white and fibrous. Seedlings that are too young or too old, or that have diseases or insect pests, should not be used.2. Soil preparation.The soil for transplanting should be well-drained and fertile. It should be loosened to a depth of 20-30 cm, and organic matter such as compost or manure should be added. The soil should be watered thoroughly before transplanting.3. Transplanting time.The best time for transplanting bean seedlings is in the evening or on a cloudy day. This will help to reduce the stress on the seedlings.4. Transplanting method.1. Dig a hole in the soil that is large enough to accommodate the roots of the seedling.2. Place the seedling in the hole and gently firm the soil around the roots.3. Water the seedling thoroughly.5. Spacing.The spacing between bean seedlings will vary depending on the variety of bean. However, a general rule of thumb is to space the seedlings 10-15 cm apart.6. Watering.Bean seedlings need to be watered regularly, especially during hot weather. The soil should be kept moist but not waterlogged.7. Fertilizing.Bean seedlings can benefit from fertilizing with a balanced fertilizer. The fertilizer should be applied according to the manufacturer's instructions.8. Pest and disease control.Bean seedlings are susceptible to a number of pests and diseases. These include aphids, spider mites, whiteflies, and powdery mildew. It is important to monitor the seedlings regularly for pests and diseases, and to take appropriate action if necessary.9. Mulching.Mulching around the bean seedlings can help to retain moisture, suppress weeds, and regulate soil temperature. Alayer of mulch, such as straw or compost, should be applied around the seedlings after transplanting.10. Support.Some varieties of bean plants can grow quite tall and may require support. Trellises or stakes can be used to support the plants and prevent them from falling over.Additional tips.Harden off the seedlings before transplanting by gradually exposing them to outdoor conditions for a few days. This will help to reduce the stress on the seedlings and improve their chances of survival.Water the seedlings deeply before transplanting to help them establish a good root system.Protect the seedlings from frost by covering them with a cloche or row cover.Be patient when transplanting bean seedlings. It may take a few weeks for the seedlings to establish themselves and begin to grow vigorously.。

翻译14

翻译14

对在南Cowden Unit所用CO2泡沫中的表面活性剂进行室内评估摘要:在南Cowden Unit岩心处进行了几项CO2泡沫实验以选择可适用的添加剂。

对四种添加剂(顶压液CD-1045、顶压液CD-1050、发泡剂NES-25和Rhodapex CD-128)的发泡能力进行了评估。

初步筛选后选择出的顶压液CD-1045和Rhodapex以待更进一步测试。

用共注法和表面活性剂与气体交替注入法(SAG)对这些表面活性剂在不同前缘速度条件下进行了测试;合成泡沫不但表明其选择性流动度降低(高渗透区的高阻力系数),而且还展现出了其剪切稀释泥浆的特性。

当共注顶压液CD-1050时,在测试岩心上各四段岩心所产生的泡沫平均阻力系数高于使用Rhodapex。

后者中表面活性剂的特性试验结果表明,其特性优于使用SAG过程中所表现出的各种特性、并且因使用了它,Baker白云岩心还展现出了较低的吸附特性。

当在Rhodapex范围内仅靠试验数据难以选择顶压液CD-1045时,利用经济学和计算法可在诸多的表面活性剂中筛选出某一种可适用的产品。

使用含有250ppm作为牺牲剂的羟乙基纤维素的顶压液CD-1045所进行的二次吸附性测试表明,该种表面活性剂的吸附力未降低。

关键词:泡沫;表面活性剂;岩心;发泡实验;泥浆一、前言该项研究仅是S20MM项目中的一小部分。

该项目所需研究经费由美国南Cowden Unit能源部和所有者工作利益部提供。

为实施该类DOE项目方案,钻探了几口使用CO2水驱工艺驱油的几口油井。

但由于为提高CO2扫油效率而耗用的这项额外花费太高,促使这项研究必须筛选出四种表面活性剂以鉴别挑选出在使用CO2泡沫时所需用的最佳活性剂。

它们将用于对南Cowden Unit使用CO2水驱工艺时几口水平井的流动度控制。

四种表面活性剂,顶压液CD - 1045 、CD-1050(由Chaser International提供)、Rhodapex CD-128(由Rhone-Poulenc公司提供)和发泡剂NES-25(由Henkel公司提供)分别逐一被评估。

211151566_8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果

211151566_8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果

functional traits worldwide[J].Aust J Bot,2003,51:335-380.[14]Reich P B,Wright I J,Cavender-Bares J,et al.The e-volution of plant functional variation:traits,spectra,and strate-gies[J].Int J Plant Sci,2003,164(S3):143-164. [15]丁曼,温仲明,郑颖.黄土丘陵区植物功能性状的尺度变化与依赖[J].生态学报,2014,34(9):2308-2315. [16]林恬,郑选梅,郑怀舟.成年马尾松针叶水势和形态对隔离降雨的响应[J].西部林业科学,2021,50(1):50-55,63.[17]Scoffoni C,Vuong C,Diep S,et al.,Leaf shrinkage with dehydration:coordination with hydraulic vulnerability and drought tolerance[J].Plant Physiol,2014,164:1772-1788.[18]张军红.不同固定程度沙地油蒿叶水势的日动态及其环境影响因子的研究[J].西部林业科学,2014,43(1): 17-22.[19]蒋涛,郑文革,余新晓,等.北京山区干旱胁迫下侧柏叶片水分吸收策略[J].生态学报,2022,42(4):1429-1440.[20]徐婷,赵成章,韩玲,等.张掖湿地旱柳叶水势与中脉性状的关联性[J].生态学报,2017,37(10):3335-3343. [21]陈图强,徐贵青,刘深思,等.干旱胁迫下新疆杨树冠不同高度叶片水分状况与非结构性碳动态[J].西北植物学报,2022,42(3):462-472.[22]杨柳,孙慧珍.兴安落叶松水分利用对策[J].林业科学,2016,52(6):149-156.[23]秦洁,司建华,贾冰,等.巴丹吉林沙漠典型植物水势与导水率的时空变化[J].生态学杂志,2021,40(6):1629 -1638.[24]李鹭辰,桂子洋,秦树高,等.毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应[J].北京林业大学学报,2021,43(2):72-80.[25]赵楠,朱高峰,张扬,等.干旱绿洲区葡萄冠层上下方叶片气孔导度特征[J].兰州大学学报(自然科学版), 2021,57(4):510-517.[26]何宇翔,武胜利,韩炜,等.不同灌水量对胡杨幼龄林叶水势与土水势的影响[J].新疆农业科学,2022,59(5): 1110-1118.[27]刘小芬,吴建本,黄亚勇,等.福建平潭砂质海岸植物资源与研究进展[J].林业调查规划,2017,42(5):30-36.[28]王文卿,陈洋芳,李芊芊,等.南方滨海沙生植物资源及沙地植被修复[M].厦门:厦门大学出版社,2017:240-339.[29]管诗敏,郑心炫,吴雅华,等.平潭岛海岸自然植被物种和功能多样性特征[J].西南林业大学学报(自然科学),2021,41(6):71-78.[30]郑俊鸣,张嘉灵,郑建忠,等.中国海岛植被修复的适生植物[J].世界林业研究,2017,30(3):86-90.[31]Su H,Li Y G,Lan Z J,et al.Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hun-shandake Sandland,North China[J].Journal of plant research, 2009,122:611-622.[32]娜木金,斯琴巴特尔.蒙古扁桃叶水势及其影响因子分析[J].时珍国医国药,2012,23(8):1911-1913. [33]尹立河,黄金廷,王晓勇,等.毛乌素沙地4种植物叶水势变化及其影响因素分析[J].植物资源与环境学报, 2016,25(1):17-23.[34]史智欣,武胜利,管文轲,等.不同树龄对胡杨叶片水势与光合特征的影响[J].新疆农业科学,2022,59(5): 1119-1127.[35]Lee J H,Seong R C.Response of leaf water potential and growth characteristics to irrigation treatment in soybean [J].Korean Journal of Crop Science,2003,48(2):81-88.[36]Moshelion M,Halperin O,Wallach R,et al.Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants:Crop wateruse efficiency,growth and yield [J].Plant,Cell&Environment,2015,38:1785-1793. [37]Klein T,Niu S.The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours[J].Functional E-cology,2014,28:1313-1320.[38]魏晓霞,呼和牧仁,周梅,等.不同年龄华北落叶松叶水势及其影响因素的研究[J].干旱区资源与环境,2010, 24(7):144-148.[39]吴俊文,白晶晶,何茜,等.华南地区5种苗木叶水势与土壤含水量的关系[J].福建林业科技,2014,41(3):16-21.[40]Schulta H R.Differences in hydraulic architecture ac-count for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L.cultivars during drought[J].Plant Cell& Environment,2003,26:1393-1405.[41]周洁,杨晓东,王雅芸,等.梭梭和骆驼刺对干旱的适应策略差异[J].植物生态学报,2022,46(9):1064-1076.[42]隆彦昕.艾比湖流域荒漠林5种优势木本植物的水分调节策略[D].乌鲁木齐:新疆大学,2021. [43]Aasamaa K,Sber A.Hydraulic conductance and stom-atal sensitivity to changes of leaf water status in six deciduous tree species[J].Biologia Plantarum,2001,44(1):65-73. [44]刘冰,刘瑞香,靳凯.荒漠植物红砂水势与土壤水分的关系研究[J].草原与草业,2016,28(2):57-62. [45]冯秋红,史作民,董莉莉,等.南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J].植物生态学报,2010,34,619-627.[46]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-100.(责任编辑:刘永刚)86西㊀部㊀林㊀业㊀科㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年㊀doi︰10.16473/ki.xblykx1972.2023.02.0108种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果∗马潇洋,于存(贵州大学林学院,贵州㊀贵阳550025)摘要:为筛选出对马尾松立枯病防效较好的杀菌剂,以1年生马尾松幼苗为研究对象,采用杀菌剂与病原菌平皿对峙和田间防效测定的方法开展8种杀菌剂(普力克㊁代森锌㊁多菌灵㊁代森锰锌㊁甲霜恶霉灵㊁百菌清㊁甲基托布津㊁敌克松)对其病原菌 尖孢镰刀菌抑菌能力和苗期病害田间防效的测定,以选择较好的杀菌剂种类进而实现对马尾松立枯病的有效防控㊂结果显示:参试的8种杀菌剂中甲霜恶霉灵和百菌清对尖孢镰刀菌的抑菌效果更明显,甲基托布津㊁代森锰锌㊁代森锌㊁普力克㊁多菌灵㊁敌克松对尖孢镰刀菌的抑菌率相对较低;化学药剂浓度筛选结果表明,10mg /mL 的甲霜恶霉灵对病原菌的抑菌率达到77.3%;8mg /mL 的百菌清对病原菌的抑菌率达到100%;田间防效结果表明,10mg /mL 甲霜恶霉灵对马尾松立枯病的防治效果更好,其病害发病率为20.0%,防效达70.0%㊂关键词:马尾松;立枯病;尖孢镰刀菌;化学防治中图分类号:S 763㊀㊀文献标识码:A㊀㊀文章编号:1672-8246(2023)02-0069-06Bacteriostatic Ability and Field Control Effect of EightFungicides Against Fusarium oxysporumMA Xiao-yang,YU Cun(College of Forestry Guizhou University,Guiyang Guizhou 550025,P.R.China)Abstract :In order to screen out the fungicides with better control effect on dampingoff disease in Pinus massoni-ana ,the 1-year -old P .massoniana seedlings were taken as the research object,determination of the bacteriostaticability and field control effect of eight kinds of fungicides(prequel,desenzin,carbendazim,mancozeb,metalaxyl,chlorothalonil,thiophanate -methyl,dixon)on the pathogen Fusarium oxysporum by the method of confrontation between fungicides and pathogens and field control effect determination,effective control on dampingoff disease inP .massoniana by selecting better fungicides.The results showed that the antibacterial effects of metalaxyl and chlo-rothalonil on pathogenic bacteria were more obvious among the 8fungicides tested,thiophanate -methyl,mancozeb,desenzin,prequel,carbendazim,dixon,the antibacterial rate of dixon against pathogenic bacteria was relatively low;the screening results of chemical concentration showed that the antibacterial rate of 10mg /mL metalaxyl to patho-genic bacteria reached 77.3%;the antibacterial rate of 8mg /mL chlorothalonil reached 100%;the field control re-sults showed that 10mg /mL metalaxyl had better control effect on masson pine blight,the disease incidence rate was 20.0%,and the control effect was 70.0%.Key words :Pinus massoniana ;damping -off disease;Fusarium oxysporum ;chemical control㊀第52卷㊀2期㊀2023年4月㊀㊀㊀㊀㊀㊀㊀㊀㊀西㊀部㊀林㊀业㊀科㊀学Journal of West China Forestry Science㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.52㊀No.2㊀Apr .2023㊀∗收稿日期:2022-08-07㊀㊀㊀基金项目:国家自然科学基金项目(32160375),贵州省科技计划项目(黔科合平台人才[2018]5261)㊂㊀㊀㊀第一作者简介:马潇洋(1996 ),男,硕士研究生,主要从事微生物资源开发与利用研究㊂E -mail:379085826@㊀㊀㊀通信作者简介:于存(1987 ),男,副教授,博士,主要从事森林病理和林业资源微生物研究㊂E -mail:chifengyucun@马尾松(Pinus massoniana Lamb.)是我国南方地区广泛分布的㊁重要的造林先锋树种,发挥着重要的生态和经济作用[1-3],马尾松育苗产业的发展对马尾松的资源培育和造林具有重要意义㊂然而,随着马尾松育苗和造林面积的扩大㊁土壤肥力下降以及土壤酸化面积增大,不仅马尾松的干旱胁迫[4]㊁低磷胁迫[5]㊁铝胁迫[6]等问题日益凸显,且多种病害也对马尾松造成严重危害㊂比如松树线虫病(Bursaphelenchus xylophilus)㊁松瘤病(Cron-artium quercum Miyabe)㊁幼苗立枯病(Fusarium oxysporum)㊁赤枯病(Pestalotia funerea)等[7-8]㊂其中,立枯病是马尾松苗期最严重的病害之一,该病害具有发病率高㊁致死速度快的特点,幼苗被侵染后死亡率较高,最高可达80%以上,马尾松立枯病在田间发生速度快,一旦发现地上症状,病害往往已经到了发病后期,其根系已大部分呈坏死状态[9],很难防冶㊂前期研究确定了马尾松立枯病的病原为尖孢镰刀菌(Fusarium oxysporum)[9],该病害发生初期叶片枯萎失水,根部表皮较健康根系呈现褐色,须根开始腐烂,随着病害的发生及发展,受害植株叶片完全干枯,呈黄褐色,根系由须根逐渐蔓延至侧根和主根,并变为黑色[10]㊂目前,马尾松立枯病的防治方法有生物防治㊁化学防治㊁环境调控等,而在生产实际中仍以化学防治为主,特别是在病害症状发生明显的情况下㊂但是,由于不同松苗的立枯病病原存在差异[11],不同杀菌剂对其抑菌和防治效果亦存在差异㊂同时,对马尾松立枯病病原进行针对性化学药剂筛选的报道较少㊂因此,有必要针对尖孢镰刀菌开展杀菌剂的筛选并进行其引起马尾松苗立枯病的田间防效检测㊂目前,针对马尾松立枯病的化学防治药剂主要为多菌灵和敌克松等,处理方式分为药剂与土壤混合或药剂喷洒发病植株的方法㊂以往报道显示,利用化学防治对松苗立枯病的防治率可以达到54%~ 92%[12-13]㊂但由于该病害发生和传播速度较快,化学药剂种类和浓度选择不当往往难以控制,且长时间㊁大量的施用杀菌剂会造成农药的3R(抗性resistance㊁再增猖獗resurgence和残留residue)问题㊂因此,针对马尾松立枯病有必要选择有针对性的杀菌剂种类和施用浓度,进而可以在生产实际中进行马尾松立枯病的应急防治㊂本研究选用8种化学杀菌剂,在室内通过与病原菌的平皿对峙作用筛选抑菌效果较好的杀菌剂种类和对应的浓度后,检测其对马尾松立枯病的田间防治效果,以期为马尾松立枯病的化学防治提供科学依据和实践指导㊂1㊀材料与方法1.1㊀研究地概况研究地点位于贵州省贵阳市花溪区贵州大学西校区苗圃(26ʎ44ᶄ58.23ᵡN,106ʎ65ᶄ91.53ᵡE),地处贵州省中部㊁贵阳市南部㊂该地海拔为1100m 左右,处于费德尔环流圈,常年受西风带控制,属于亚热带湿润温和型气候,年平均气温为15.3ħ,年平均相对湿度为77%,年平均总降水量为1 129.5mm,主要土壤类型为黄壤,酸碱度主要以酸性为主,中性次之,碱性较少㊂1.2㊀供试菌种马尾松立枯病病原菌由贵州大学森林保护实验室提供,为尖孢镰孢菌(GenBank号:rDNA-ITS为MK356546;ß-tubulin为MK356093)[9]㊂1.3㊀供试药剂77.2%普力克水剂(江苏蓝丰生物化工股份有限公司)㊁65%代森锌可湿性粉剂(利民化工股份有限公司)㊁50%多菌灵可湿性粉剂(江苏蓝丰生物化工股份有限公司)㊁70%代森锰锌可湿性粉剂(利民化工股份有限公司)㊁3%甲霜恶霉灵水剂(天津市绿化亨化工有限公司)㊁70%百菌清可湿性粉剂(利民化工股份有限公司)㊁70%甲基托布津可湿性粉剂(江苏蓝丰生物化工股份有限公司)㊁70%敌克松可湿性粉剂(上海悦联化工有限公司)㊂1.4㊀培养基马铃薯葡萄糖琼脂培养基(PDA培养基):马铃薯200g,葡萄糖20g,琼脂15g,氯霉素0.1g,蒸馏水定容至1L㊂马铃薯葡萄糖肉汤培养基(PDB培养基):马铃薯200g,葡萄糖20g,氯霉素0.1g,蒸馏水定容至1L㊂1.5㊀试验方法1.5.1㊀不同杀菌剂对尖孢镰刀菌的抑菌效果检测采用平皿对峙法检测不同杀菌剂对尖孢镰刀菌的抑菌效果,具体如下:用无菌蒸馏水将8种杀菌剂分别配制成浓度为20mg/mL的液体,用5mL 注射器分别取上述药剂2mL,用水系25mmˑ0.22μm的滤膜过滤至18mL的PDA中,摇匀倒入9 cm的平皿中㊂以加入等量无菌水的PDA平皿为对照组㊂随后每个培养皿内接入直径为8mm的尖孢镰刀菌㊂每个处理重复3次㊂接种后的平皿置于28ħ恒温培养箱培养,5d后观察菌落大小,用十07西㊀部㊀林㊀业㊀科㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年㊀字交叉法测量菌落直径,计算抑菌率[14]㊂抑菌率的计算公式如下㊂S(%)=(L-8)-(R-8)(L-8)ˑ100式中:S为抑菌率,L为对照组菌落直径(mm),R为处理组菌落直径(mm)㊂1.5.2㊀不同浓度杀菌剂对尖孢镰刀菌的抑菌效果在杀菌剂种类筛选的基础上,进行不同浓度甲霜恶霉灵和百菌清抑菌能力的测定㊂两种药剂浓度分别为1㊁2㊁4㊁6㊁8㊁10mg/mL㊂以杀菌剂种类筛选的相同方式进行含杀菌剂PDA培养基的配置,之后进行接菌处理㊂每个处理重复3次㊂接种后置于28ħ下培养,5d后用十字交叉法测量菌落直径,计算抑菌率[14]㊂1.5.3㊀杀菌剂对马尾松立枯病的田间防效试验通过室内实验筛选出对马尾松立枯病抑制效果较好的杀菌剂种类和浓度后,在田间开展化学杀菌剂对马尾松苗立枯病防治效果的检测㊂截取尖孢镰刀菌菌饼(Φ=8mm)5块放入含有100mL PDB 的250mL三角瓶中,于28ħ恒温振荡培养箱震荡培养5d后,得到尖孢镰孢菌发酵液,利用无菌水将孢子浓度稀释至105cfu/mL㊂利用昆虫针刺伤1年生的马尾松幼苗距离主根0.5cm处的侧根,将幼苗置于尖孢镰孢菌发酵液中浸泡30min后,移植到穴盆中㊂随后在马尾松幼苗根茎周围3cm处用玻璃棒打3个孔洞(深度为3~5cm),用10mL 注射器吸取5mL尖孢镰孢菌发酵液,然后接入孔洞中㊂采用同样方式,用注射器分别向上述孔洞中打入5mL杀菌剂㊂以无菌水代替化学农药的处理作为对照㊂每个处理重复5次,每个重复为15株幼苗㊂处理后的马尾松苗常规培养30d后统计发病株数㊁发病等级,计算发病率㊁病情指数和防效㊂其中发病等级参考Luo[9]的方法㊂具体计算方法如下:发病率(%)=(发病株数/试验总株数)ˑ100病情指数(%)=[ð(各级发病株数ˑ相应发病等级)/(调查总株数ˑ4)]ˑ100防效(%)=[(对照区病情指数-处理区病情指数)/对照区病情指数]ˑ1002㊀结果与分析2.1㊀8种杀菌剂对尖孢镰刀菌的抑菌效果8种杀菌剂对尖孢镰孢菌均有一定的抑制效果,但抑制效果存在差异(表1,图1)㊂在培养5d时,甲霜恶霉灵和百菌清对尖孢镰刀菌抑菌率分别为34.4%和23.0%;其次为甲基托布津(21.3%)㊁代森锰锌(16.4%)㊁代森锌(11.5%)㊁普力克(8.2%)㊁敌克松(3.3%)㊂其中,甲霜恶霉灵和百菌清对病原菌的抑制效果相对较好,故选取这两种化学药剂作为后续防治实验的防治药剂㊂表1㊀不同杀菌剂对尖孢镰孢菌在5d时的抑制效果Tab.1㊀Suppression effect of different fungicides onF.oxysporum at5d药剂名称菌落直径/mm抑菌率/%对照㊀㊀㊀69.00i普力克㊀㊀64.08.20ʃ0.04f代森锌㊀㊀62.011.50ʃ0.26e多菌灵㊀㊀66.0 4.90ʃ0.06g代森猛锌㊀59.016.40ʃ0.84d甲霜恶霉灵48.034.40ʃ0.62a百菌清㊀㊀55.023.00ʃ0.65b甲基托布津56.021.30ʃ0.16c敌克松㊀㊀67.0 3.30ʃ0.12h注:同列数据后的不同小写字母表示差异显著(P<0.05)㊂图1㊀8种杀菌剂对尖孢镰孢菌生长的抑制图注:A.对照组,B.百菌清,C.代森锰锌,D.代森锌,E.敌克松,F.多菌灵,G.甲基托布津,H.甲霜恶霉灵,I为普力克Fig.1㊀A diagram of the inhibition of8fungicides on the growth of Fusarium oxysporum17㊀第2期㊀㊀㊀㊀㊀马潇洋等:8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果2.2㊀不同浓度甲霜恶霉灵和百菌清对尖孢镰刀菌的抑制作用2种杀菌剂不同浓度对病原菌的抑菌效果见表2㊂由表2可知,随浓度的增加2种杀菌剂的抑菌率均呈现逐渐增高的趋势㊂其中,甲霜恶霉灵的浓度由1mg /mL 增加至10mg /mL 时,其抑菌率分别由18.3%逐渐增加至76.7%㊂百菌清的浓度从1mg /mL 增加至6mg /mL 时,抑菌率由10.0%增加至61.7%;当百菌清浓度达到8mg /mL 时,抑菌率为100%,已经达到最大㊂对比2种杀菌剂的抑菌效果发现,在浓度较低时(1~4mg /mL)甲霜恶霉灵比百菌清具有更高的抑菌率㊂在浓度达到6mg /mL 时,二者抑菌率接近㊂而由6mg /mL 继续增加至8mg /mL 时,百菌清抑菌率达到最大(100%),而甲霜恶霉灵在浓度为10mg /mL 时抑菌率仅为76.76%㊂表2㊀不同浓度杀菌剂对尖镰孢菌菌丝抑制效果Tab.2㊀Suppression effect of different concentrations of fungicides on F .oxysporum药剂名称浓度/mg㊃mL -1菌落直径/mm 抑菌率/%药剂名称浓度/mg㊃mL -1菌落直径/mm 抑菌率/%甲霜恶霉灵15718.33ʃ0.35f 24341.67ʃ0.43e 43751.67ʃ0.57d 63161.67ʃ0.46c 82866.67ʃ0.68b 102276.67ʃ0.78a百菌清16210.02ʃ0.33d 26013.33ʃ0.22d 44243.33ʃ0.83c 63161.67ʃ0.87b 88100ʃ0.00a 108100ʃ0.00a图2㊀不同浓度下甲霜恶霉灵对尖镰孢菌菌丝抑制情况注:A 为对照组,B 浓度为1mg /mL,C 浓度为2mg /mL,D 浓度为4mg /mL,E 浓度为6mg /mL,F 浓度为8mg /mL,G 浓度为10mg /mL,下同Fig.2㊀Suppression effect of F .oxysporum by metalaxyl at differentconcentrations图3㊀不同浓度下百菌清对尖镰孢菌菌丝抑制情况Fig.3㊀Suppression effect of F .oxysporum by chlorothalonil at different concentrations27西㊀部㊀林㊀业㊀科㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年㊀2.3㊀甲霜恶霉灵和百菌清对马尾松立枯病的田间防效2种杀菌剂在田间对马尾松立枯病的防效结果见表3㊂对照组立枯病发病率为100%,甲霜恶霉灵处理的发病率为15%,百菌清处理的发病率为25%;对照处理㊁甲霜恶霉灵处理和百菌清处理的病情指数分别为66.7%㊁20.0%和33.3%㊂甲霜恶霉灵处理的防效为70.0%,百菌清处理防效为50.0%㊂表3㊀杀菌剂对马尾松立枯病的防治效果Tab.3㊀Control effect of fungicides on dampingoff disease in P.massoniana%药剂名称发病率病情指数防治效果对照㊀㊀㊀100a66.7a-甲霜恶霉灵15c20.0c70.0a 百菌清㊀㊀25b33.3b50.0b3㊀讨论与结论本研究测定了8种杀菌剂对尖孢镰刀菌的抑制作用㊂由实验的结果可知,8种杀菌剂对尖孢镰刀菌均有抑制作用,但不同杀菌剂对病原菌的抑菌效果存在差异㊂究其原因,可能与不同杀菌剂抑菌机理的不同有关[15]㊂如:代森锰锌是通过抑制菌体内丙酮酸的氧化达到杀菌效果[16];多菌灵通过干扰病原菌有丝分裂中纺锤体的形成,影响细胞分裂,起到杀菌作用[17];甲霜恶霉灵由恶霉灵和甲霜灵组合而成,甲霜灵抑制病菌菌丝体内蛋白质的合成,恶霉灵抑制病原真菌菌丝体的正常生长,二者为作用互补药剂[18];百菌清主要针对真菌病害,破坏真菌中3-磷酸甘油醛脱氢酶的活力,从而对病原菌起到防治作用[19]㊂杀菌剂的用量增加可以提高对病原菌的抑制效果,但高浓度的杀菌剂使用会对植物产生药害,同时造成环境污染,破坏生物多样性[20]㊂本研究中,甲霜恶霉灵浓度由1mg/mL逐渐增加至10mg/mL 过程中,其抑菌率由18.33%增加至76.67%,之所以没有继续增加恶霉灵的浓度使抑菌率达到100%主要是考虑在生产实际运用过程中减少化学药剂的用量,以减少传统化学农药使用带来的环境污染问题[21]㊂虽然百菌清浓度在8mg/mL时对病原菌的抑菌率达到100%,优于10mg/mL甲霜恶霉灵的抑菌效果,但在田间的防治效果,甲霜恶霉灵体现了更好的防效,其处理后的病害发生率和病情指数都相对更低㊂这与张蝶[22]研究发现抑菌效果较差的3%中生菌素WP在田间防效上可能会产生变化的研究结果一致㊂分析本研究中2种药剂田间防效差异的原因可能与甲霜恶霉灵的内吸传导性及其可以发挥对植物生长调节剂的作用有关[23-24]㊂本研究中,甲霜恶霉灵和百菌清单独作用后的田间防效都发挥了一定的防治效果,但二者组合后是否可以发挥更好的防治效果是未知的,可以在未来做进一步的研究加以验证㊂此外,采用化学杀菌剂防治马尾松立枯病,生产实际中仅仅作为应急处置措施,病害的控制应以预防为主,以生物防治等无公害的手段代替或减少化学杀菌剂的用量㊂综上所述,供试的8种杀菌剂中甲霜恶霉灵和百菌清对尖孢镰刀菌的抑菌效果更明显㊂10mg/ mL的甲霜恶霉灵对病原菌的抑菌率达到76.7%; 8mg/mL的百菌清对病原菌的抑菌率达到100%㊂田间防效实验中,10mg/mL甲霜恶霉灵对马尾松立枯病的防治效果要优于8mg/mL百菌清的防效,其病害发病率为15.0%,防效达70.0%㊂参考文献:[1]宋月君,黄炎和,杨洁,等.赣中第四纪红壤区马尾松林下水土流失特征及防治成效分析[J].干旱区资源与环境,2018,32(4):119-125.[2]毛兰花,查轩,张婧,等.红壤侵蚀退化地马尾松幼苗生长及养分利用效率对施肥的响应[J].水土保持学报, 2022,36(1):316-324.[3]秦国峰.马尾松地理起源及进化繁衍规律的探讨地[J].林业科学研究,2002,15(4):406-412.[4]邵畅畅,罗仙英,丁贵杰,等.干旱对马尾松茎叶水力特征及解剖特性的影响[J].植物生理学报,2022,58(5): 937-945.[5]乔光,崔博文,文晓鹏,等.不同种源马尾松幼苗对低磷胁迫的生理响应[J].种子,2017,36(8):32-36,41. [6]张盛楠,刘亚敏,刘玉民,等.马尾松幼苗生长及生理特性对铝胁迫的响应[J].西北植物学报,2016,36(10): 2022-2029.[7]林洪双,宋玉龙,黄萧洒.简谈马尾松病虫害防治技术策略[J].绿色科技,2017(13):187-188.[8]方书元.马尾松的主要病虫害及其防治对策[J].南方农业,2021,15(21):31-32.[9]Luo X,Yu C.First report of damping-off disease caused by Fusarium oxysporum in Pinus massoniana in China37㊀第2期㊀㊀㊀㊀㊀马潇洋等:8种杀菌剂对尖孢镰刀菌的抑菌能力和田间防治效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :m a t h /0701696v 1 [m a t h .C V ] 24 J a n 2007On planar Beurling and Fourier transformsH ˚akan HedenmalmAbstract.We study the Beurling and Fourier transforms on subspaces of L 2(C )defined by aninvariance property with respect to the root-of-unity group.This leads to generalizations of these transformations acting unitarily on weighted L 2-spaces over C .1.IntroductionBeurling and Fourier transforms.In this note,we shall study certain extensions of the Beurling and Fourier transforms on the complex plane C .The Fourier transform of an appropriately area-integrable function f isF [f ](ξ)=Ce −2i R e [z ¯ξ]f (z )d A (z ),ξ∈C ,while the Beurling transform is the singular integral operatorB C [f ](z )=pvCf (w )π,z =x +i y,is normalized area measure.The two transforms are connected viaFB C [f ](ξ)=ξ1991Mathematics Subject Classification.Primary 32A25,32A36;Secondary 46E15,47A15.Key words and phrases.Beurling transform.Research supported by the G¨o ran Gustafsson Foundation.2HedenmalmIt is easy to see that f∈L2n,N(C)if and only f∈L2(C)is of the form(1.2)f(z)=z n g(z N),z∈C,where g some other complex-valued function.We shall study the Beurling and Fourier transforms on the subspaces L2n,N(C).This will be shown to lead to interesting generalizations of these transforms to the weighted spaces L2θ(C),with normf 2L2θ(C)= C|f(z)|2|z|2θd A(z).Here,θis a real parameter.We apply the results obtained regarding the Beurling transform to conformal mapping,and obtain Grunsky-type identities in the spirit of[3].The Grunsky-type identity obtained here implies the Prawitz inequality(see,e.g.,[5],[6])as a special case.The Grunsky-type inequality that follows from the Grunsky-type identity is more or less equivalent to the general Grunsky inequality that forms the backdrop to Louis de Branges’work leading up to the solution of the Bieberbach conjecture(see[1]).2.The Beurling transformThe Cauchy transform.The Cauchy transform C C is the integral transformC C[f](z)= C f(w)2 ∂∂y,¯∂z=1∂x+i∂(w−z)2d A(w)=pv CαnNpv C α∈A NαnN α∈A NαnOn planar Beurling and Fourier transforms3 The function G then has a simple pole at1,and is analytic everywhere else in the complex plane. Moreover,F vanishes at infinity,so G vanishes there,too.This leaves us but one possibility,that G has the formG(z)=CN α∈A Nαn1−z N,z∈C.As a consequence,we getH(z):=F(z)+zF′(z)=[zF(z)]′=1(1−αz)2=z N−n N1−z N .This allows us to compute the sum we need:1(αw−z)2=1z =z n−2w N−nNz N z N−w N .For f∈L2n,N(C),we thus get the representationB C[f](z)=z n−2pvC Nz N z N−w N w N−n f(w)d A(w),z∈C.Let f and g be connected via(1.2),and implement this relationship into the above formula:(2.2)B C[f](z)=z n−2pv C Nz N z N−w N w N g(w N)d A(w),z∈C.A similar expression may be found for the Cauchy transform as well:(2.3)C C[f](z)=z n−N−1 C w NzC C[h](z),and introduce,for0≤θ≤1,the modified Beurling transform(2.4)BθC[h](z)=B C[h](z)+T C[h](z),z∈C;here,h is assumed to be a nice enough function so that the above Beurling and Cauchy transforms make sense.It is easy to check that withh(z)=z g(z)4Hedenmalmwhere we suppose thatθ=(n−1)/N.However,fractions of this type are dense in the interval [0,1],so that(2.5)extends to allθwith0≤θ≤1.In other words,for0≤θ≤1,the operator BθC is unitary on the space L2θ(C),which was defined earlier.It is known[7]that B C is a bounded operator on L2θ(C)for−1<θ<1(but not forθ=±1).This means that for−1<θ<1,both terms in(2.4)are bounded operators on Lθ(C).We suspect that the second term in(2.4),the operator T C,is compact with small spectrum.Extension to realθ.Wefirst note that M z,multiplication by the independent variable,is an isometric isomorphism L2θ+1(C)→L2θ(C)for all realθ.Therefore,for integers k and0≤θ≤1, the operatorBθ+kC:=M−k z BθC M k zis unitary on L2θ+k(C).It supplies an extension of Bθto all realθ.Note that since1w−z =w z (z).3.Fourier transformsThe Fourier transform and root-of-unity invariance.The Fourier transform of a function in L2(C) is given byF[f](ξ)= C e−2i R e[z¯ξ]f(z)d A(z),ξ∈C.By the Plancherel identity,we haveF[f] L2(C)= f L2(C),f∈L2(C).Now,suppose f∈L2n,N(C),so that f has the invariance property(1.1).Then,by the change of variables formula,F[f](ξ)= C e−2iR e[z¯ξ]f(z)d A(z)=αn C e−2iR e[αz¯ξ]f(z)d A(z)=αn F[f](¯αξ),ξ∈C, forα∈A N.Taking the average over A N,we get the identityF[f](ξ)= C E n,N(z¯ξ)f(z)d A(z),ξ∈C,whereE n,N(z)=1On planar Beurling and Fourier transforms5The extended Fourier transform.We now introduce the generalized Fourier transformF n,N[h](ξ)=|ξ|−2(n−1)/N|z|2−2/N,we get thatC |f(z)|2d A(z)=1N C F n,N[h](ξ) 2|ξ|2(n−1)/N d A(ξ).The Plancherel identity thus states that F n,N is a unitary transformation on L2(n−1)/N (C).Theinverse transformation is quite similar:F−1n,N[h](z)=(−1)N−n F n,N[h] (−1)N z . We need to express the function D n,N in a different manner.Sincee−2i R e[αz]=e−iαz e−i¯α¯z=+∞j,k=0(−i)j+kN α∈A Nαm=+∞ l=−∞δm,Nl,where delta stands for the Kronecker delta,we haveE n,N(z)=1N+∞j,k=0(−i)j+kj!k!z j¯z kδj−k+n,Nl=+∞l=−∞+∞ k=0(−1)k(−i)−n+Nl(k−n+Nl)!k!|z|2k z Nl,with the understanding that1(k−n+Nl)!k!|z|2k/N z l−1.6HedenmalmWe should mention that as E n,N (z )is bounded by 1in modulus,we have D n,N (z )≤|z |n/N −1,z ∈C .The formula for D n,N allows us to express the modified Fourier transform accordingly (provided f (z )=O (|z |−m )as |z |→+∞for every positive integer m ):F n,N [f ](ξ)=|ξ|−2(n −1)/N(k −n +Nl )!k !|ξ|2k/N ξl −1C |z |2k/N z l −1f (z )d A (z ).An application involving the confluent hypergeometric function.Next,we consider a function f ofthe formf (z )=¯z m |z |2αe −β|z |2/N,where m is an integer,α,βare real with β>0,andm +2α+n −1N,where r is an integer,we obtain by calculation that F n,N [f ](ξ)=(−i)−n +N (m +1)|ξ|−2(n −1)/N ξm (k −n +N (m +1))!k !|ξ|2k/N×C|z |2(k −n +r +1)/N +2m e −β|z |2/Nd A (z )=(−i)−n +N (m +1)ξm |ξ|−2(n −1)/N(k −n +N (m +1))!k !−|ξ|2/Nβr −n +1+N (m +1)(N (m +1)+r −n )!β,where 1F 1stands for the standard confluent hypergeometric function.We have from one of the classical identities that1F 1 N (m +1)−n +r +1;N (m +1)−n +1;−|ξ|2/Nβ,where the right hand side is easy to compute for positive r ,as the sum is then finite.As a result of the unitarity of F n,N ,we find that (with β=1and M =N (m +1)−n +1)+∞01F 1 −r ;M ;t2e −2t t M −1d t =(M +2r −1)![(M −1)!]2On planar Beurling and Fourier transforms 74.Applications of Beurling transforms to conformal mappingTransfer to the unit disk.We need to introduce some general notation.Let M F denote the operator of multiplication by the function F .We also need the Hilbert space L 2θ(X )with the normh 2L 2θ(X )=X|h (z )|2|z |2θd A (z ),where X is some Borel measurable subset of C with positive area.In the sequel,we fix θto theinterval 0≤θ≤1.Fix a bounded simply connected domain Ωin C ,which contain the origin,and let ϕ:D →Ωdenote the conformal mapping with ϕ(0)=0and ϕ′(0)>0.Let f ∈L 2(Ω),and extend it to the whole complex plane so that it vanishes on C \Ω.Let B Ω[f ]denote therestriction to Ωof B C [f ],and do likewise to define the operators C Ω,T Ω,T ′Ω,B θΩ,as well as B −θΩ.We introduce transferred operators on spaces over the unit disk in the following fashion.First,we suppose f ∈L 2θ(Ω).Then the associated function(4.1)g (z )=¯ϕ′(z )ϕ(z )zθC Ω[f ](z )=Dw ϕ(z )ϕ(w )−ϕ(z )g (w )d A (w ).The transferred modified Beurling transform is defined analogously:B θϕ[g ](z )=ϕ′(z )ϕ(z )zθB Ω[f ]◦ϕ(z )+θϕ(z )C θϕ[g ](z ),whereB θ,0ϕ[g ](z )=pvDw ϕ(z )(ϕ(w )−ϕ(z ))2g (w )d A (w ).It is clear thatB θϕis a norm contraction on L 2θ(D ).Let P θbe the integral operatorP θ[f ](z )= D11−z ¯w f (w )|w |2θd A (w );it is the orthogonal projection to the subspace of analytic functions in L 2θ(D ).As both B θϕand P θare contractions on L 2θ(D ),so is their product P θB θϕ.It remains to represent the operator P θB θϕin a reasonable fashion.The main observation is thatw ϕ(z )(ϕ(w )−ϕ(z ))2=1ϕ(z )−1w −z+O (1)near the diagonal z =w ,so that(4.3) w ϕ(z )(ϕ(w )−ϕ(z ))2+θϕ′(z )z ϕ(w )θϕ′(w )(w −z )2+θ8Hedenmalmagain near the diagonal.We observe that in view of(4.3),weget the Grunsky-type identity(4.4)PθBθϕ=Bθϕ−B D+PθB D+θPθT D−θT D.To make the involved operators PθB D and PθT D appearing in the right hand side of(4.4)more concrete,it is helpful to know that forλ∈D,Pθ[fλ](z)=¯λ|λ|2θ 10 11−t¯λz tθd t,fλ(z)=1(1−t¯λz)2+θ(λ−z)2.In view of these relations,we quickly verify thatPθB D+θPθT D=0.The Grunsky-type identity(4.4)thus simplifies a bit:(4.5)PθBθϕ=Bθϕ−B D−θT D.The corresponding Grunsky-type inequality reads(4.6) Bθϕ−B D−θT D [f] L2θ(D)≤ f L2θ(D),f∈L2θ(D).To get a concrete example of how the Grunsky-type inequality works,we pickfλ(z)=|z|−2θ 11−¯zλ ,z∈D,and computeBθϕ−B D−θT D [f](z)= λϕ(z)(ϕ(λ)−ϕ(z))2−1ϕ(z) λϕ(z)ϕ(λ)−ϕ(z)−θzϕ(λ) θϕ′(z)ϕ′(λ)(λ−z)2+θϕ′(z)zϕ(λ)θϕ′(λ)z(λ−z)2|z|2θd A(z)≤ D|fλ(z)|2|z|2θd A(z)= D 11−¯zλ 2|z|−2θd A(z)=11−|λ|2. The special caseλ=0gives us the inequality of Prawitz(see[5]and[6];we assumeϕ′(0)=1):Dϕ′(z)ϕ(z)1−θ.On planar Beurling and Fourier transforms9A dual version.We carry out the corresponding calculations on the basis of the fact that B−θCis unitary on L2−θ(C)for0≤θ≤1.In analogy with the above treatment,we connect two functions f,g via(4.8)g(z)=¯ϕ′(z) ϕ(z)z −θB−θΩ[f]◦ϕ(z)=ϕ′(z) ϕ(z)z ◦ϕ(z) =B−θ,0ϕ[g](z)−θϕ′(z)C−θϕ g(1−w¯z)2−θ10Hedenmalm[4]H.Hedenmalm,H.,B.Korenblum,K.Zhu,Theory of Bergman spaces.Graduate Texts in Mathematics199,Springer-Verlag,New York,2000.[5]H.Hedenmalm,S.Shimorin,Weighted Bergman spaces and the integral means spectrum of conformalmappings,Duke Math.J.,vol.127(2005),341-393.[6]in,Univalent functions and orthonormal systems.Translated from the Russian.Translationsof Mathematical Monographs,Vol.49.American Mathematical Society,Providence,R.I.,1977. [7]S.Petermichl,A.L.Volberg,Heating of the Ahlfors-Beurling operator:weakly quasiregular maps on theplane are quasiregular.Duke Math.J.112(2002),281–305.Hedenmalm:Department of Mathematics,The Royal Institute of Technology,S–10044Stock-holm,SWEDENE-mail address:haakanh@math.kth.se。

相关文档
最新文档