多元统计分析期末考试考点整理
多元统计分析期末复习试题

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵:当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= . )',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=qp ij r Y X ⨯=)(),(ρ),(~∑μP N X μ∑p X X X ,,,21特别地,当 为对角阵时, 相互独立。
(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布.(3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R(3) ,V分别是 和 的最大似然估计;(4)估计的性质是 的无偏估计; ,V分别是 和 的有效和一致估计; ;S~ , 与S相互独立;第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计知识点总结

多元统计知识点总结一、多元正态分布。
1. 定义。
- 设X=(X_1,X_2,·s,X_p)^T,若X的概率密度函数为f(x)=(1)/((2π)^frac{p){2}∑^(1)/(2)}exp<=ft{-(1)/(2)(x - μ)^T∑^-1(x-μ)},其中μ =(μ_1,μ_2,·s,μ_p)^T为均值向量,∑为p× p正定协方差矩阵,则称X服从p元正态分布,记为Xsim N_p(μ,∑)。
2. 性质。
- 线性变换性质:若Xsim N_p(μ,∑),设Y = AX + b,其中A为m× p矩阵,b 为m×1向量,则Ysim N_m(Aμ + b,A∑ A^T)。
- 边缘分布性质:X的任何子向量也服从正态分布。
例如,若X=(X_1,X_2,·s,X_p)^T,Xsim N_p(μ,∑),取X_(1)=(X_1,·s,X_q)^T,X_(2)=(X_q + 1,·s,X_p)^T,则X_(1)sim N_q(μ_(1),∑_11),其中μ_(1)为μ的前q个元素组成的向量,∑_11为∑的左上角q× q子矩阵。
- 条件分布性质:在多元正态分布中,已知部分变量时,另一部分变量的条件分布仍然是正态分布。
二、均值向量和协方差矩阵的估计。
1. 样本均值向量。
- 设X_1,X_2,·s,X_n是来自p元总体Xsim N_p(μ,∑)的样本,则样本均值向量¯X=(1)/(n)∑_i = 1^nX_i,且E(¯X)=μ,Cov(¯X)=(1)/(n)∑。
2. 样本协方差矩阵。
- S=(1)/(n - 1)∑_i = 1^n(X_i-¯X)(X_i-¯X)^T,S是∑的无偏估计,即E(S)=∑。
三、主成分分析(PCA)1. 基本思想。
- 主成分分析是一种降维技术,它的目的是在损失很少信息的前提下把多个指标转化为几个综合指标(主成分)。
多元统计分析期末复习

第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。
(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。
(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。
(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。
()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。
(√)μX 10.是的无偏估计。
( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。
(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。
(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。
( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。
( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。
多元统计分析期末试题汇编

一、填空题(20分)1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L=6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
二、计算题(60分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。
多元统计分析复习整理

一、聚类分析的基本思想:我们认为,所研究的样品或指标之间存在着程度不同的相似性。
根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另一些彼此之间相似程度较大的样品又聚合到另外一类。
把不同的类型一一划分出来,形成一个由小到大的分类系统。
最后,用分群图把所有的样品间的亲疏关系表示出来。
二、聚类分析的方法系统聚类法、模糊聚类法、K-均值法、有序样品的聚类、分解法、加入法三、系统聚类法的种类最短距离法、最长距离法、重心法、类平均法、离差平方和法四、判别分析的基本思想判别分析用来解决被解释变量是非度量变量的情形,预测和解释影响一个对象所属类别。
识别一个个体所属类别的情况下有着广泛的应用判别分析将对象进行分析,通过人们选择的解释变量来预测或者解释每个对象的所属类别。
五、判别分析的假设条件判别分析的假设条件之一是每一个判别变量不能是其他判别变量的线性组合;判别分析的假设之二是各组变量的协方差矩阵相等。
判别分析最简单和最常用的形式是采用线性判别函数。
判别分析的假设之三是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。
当违背该假设时,计算的概率将非常的不准确。
六、判别分析的方法距离判别法、Bayes判别法、Fisher判别法、逐步判别法七、距离判别法的判别准则设有两个总体1G 和2G ,x 是一个p 维样品,若能定义样品到总体1G 和2G 的距离d (x ,1G )和d (x ,2G ),则用如下规则进行判别:若样品x 到总体1G 的距离小于到总体2G 的距离,则认为样品x 属于总体1G ,反之,则认为样品x 属于总体样品x 属于总体2G ,若样品x 到总体1G 和2G 的距离相等,则让它待判。
八、Fisher 判别的思想Fisher 判别的思想是投影,将k 组p 维数据投影到某一个方向,使的它们的投影与组之间尽可能地分开。
多元统计分析期末考试考点

多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
2015-2016学年第二学期多元统计分析期末考试经验

2015-2016学年第二学期多元统计分析期末考试经验一、填空题(3分/共30分)1.多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律性的一门统计学科。
2.多元总体的数字特征是总体均值向量和总体协差阵,它的样本估计量是样本均值向量和样本协差阵。
3.p元总体的样本是全部n个样品组成的局部整体,样品是每一个个体的p个变量的一次观测。
4.在SPSS软件中进行主成分分析的流程是Analyze→Dimension Reduction→Factor5.因子分析模型中,分解为特殊因子和公共因子6.变量的类型有间隔尺度、有序尺度、名义尺度。
7.系统聚类方法首先要定义样品间距离和类与类之间的距离。
二、论述题(10分/共50分)1.请举例说明一个多元样本,其样本是什么?同时请说明其样品和变量。
参考答案:调查北京工业大学2013级本科生身体状况,随机抽取100名北京工业大学2013级本科生,其中样本是这100名北京工业大学2013级本科生的身高体重肺活量,样品是一名北京工业大学2013级本科生的身高体重肺活量,变量是身高体重肺活量这三个指标。
2.请简述判别分析与聚类分析的异同参考答案:聚类分析是研究(样品或变量)分类问题的一个多元统计方法(类指相似元素的集合)。
判别分析是判别样品所属类型的一种统计方法。
聚类分析和判别分析都是用来对样品进行分类,即分析每一个样品归属于哪一类。
但是,判别分析是先已知某些样品的分类结果,然后总结出判别规则,是一种有指导的学习。
即:判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行归类判别。
聚类分析则是有了一批给定的样品,而要划分的类型事先并不知道,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是一种无指导的学习。
正因为如此,判别分析和聚类分析往往联合起来使用。
多元统计分析期末复习

多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵:当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X ); E (AXB )=AE (X )B;D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’;(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立.)',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=qp ij r Y X ?=)(),(ρ(3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当为对角阵时,相互独立。
(2).若,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计(1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量样本均值向量=样本离差阵S=样本协方差阵V= S ;样本相关阵R(3) ,V分别是和的最大似然估计;(4)估计的性质是的无偏估计; ,V分别是和的有效和一致估计;;S~,与S相互独立;),(~∑μP N X μ∑μp X X X ,,,21Λ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1X μ∑μX)1,(~∑n N X P μ),1(∑-n W p XX第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二名词解释
1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广
2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化
3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量
三、计算题
解:
答:
答:
题型三解答题
1、简述多元统计分析中协差阵检验的步骤
答:
第一,提出待检验的假设和H1;
第二,给出检验的统计量及其服从的分布;
第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;
第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想
答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.
3、多元统计分析的内容和方法
答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等
2、分类与判别,对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
4、系统聚类法基本原理和步骤
答:
1)先计算n个样本两两间的距离
2)构造n个类,每个类只包含一个样本
3)合并距离最近的两类为一新类
4)计算新类与当前各类的距离
5)类的个数是否等于1,如果不等于回到3在做
6)画出聚类图
7)决定分类个数和类
5、聚类分析的类型有:
答:
(1)对样本分类,称为Q型聚类分析
(2)对变量分类,称为R型聚类分析 # Q型聚类是对样本进行聚类,它使具有相似性特征的样本聚集在一起,使差异性大的样本分离开来。
# R型聚类是对变量进行聚类,它使具有相似性的变量聚集在一起,差异性大的变量分离开来,可在相似变量中选择少数具有代表性的变量参与其他分析,实现减少变量个数,达到变量降维的目的。
6、简述欧氏距离与马氏距离的区别和联系。
7、试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
8对样品和变量进行聚类分析时所构造的统计量分别是什么?简要说明为什么这样构造?
答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n个样本看作p维空间的n个点。
点之间的距离即可代表样品间的相似度。
常用的距离为
9、在进行系统聚类时,选择距离公式应遵循哪些原则?
答:(1)要考虑所选择的距离公式在实际应用中有明确的意义。
如欧氏距离就有非常明确的空间距离概念。
马氏距离有消除量纲影响的作用。
(2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。
如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。
(3)要考虑研究对象的特点和计算量的大小。
样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具体分折。
实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合适的距离测度方法。
10、欧式距离的优点缺点
优点:几何意义明确,简单,容易掌握,由于中学数学就已初步接触,数学知识不多的人也可以把握它的基本含义。
缺点:从统计学的角度看,使用欧式距离要求一个向量的n个分量不相关,且具有相当的方差,或者说各个坐标对欧式距离的贡献同等且变差大小相同,此时使用欧式距离才合适,且效果良好,否则就不能如实反映情况且容易导致错误的结论。
因此需要对坐标加权,化为统计距离
11、模糊聚类分析的实质和基本原理
答:模糊聚类分析的实质就是根据研究对象本身的属性而构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系
基本原理:如果水平满足,则按水平分出的每一类必是按水平分出的每一类的子类。
(p62页)
12、模糊聚类分析计算步骤:
答:
(1)对原始数据进行变换。
变换方法通常有标准化变换、极差变换、对数变换等。
(2)计算模糊相似矩阵
(3)建立模糊等价矩阵
(4)进行聚类。