第五讲二次函数

合集下载

第5讲 二次函数y=ax^2(a≠0)的图象与性质(基础课程讲义例题练习含答案)

第5讲 二次函数y=ax^2(a≠0)的图象与性质(基础课程讲义例题练习含答案)

二次函数y=ax2(a≠0)的图象与性质—知识讲解(基础)【学习目标】1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=ax2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.3.二次函数y=ax 2(a ≠0)的图象的性质二次函数y=ax 2(a≠0)的图象的性质,见下表: 函数 图象 开口方向 顶点坐标 对称轴 函数变化 最大(小)值y=ax 2a >0向上 (0,0) y 轴 x >0时,y 随x 增大而增大; x <0时,y 随x 增大而减小.当x=0时,y 最小=0y=ax 2a <0向下 (0,0) y 轴 x >0时,y 随x 增大而减小; x <0时,y 随x 增大而增大.当x=0时,y 最大=0要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴. 要点二、二次函数y=ax 2+c(a ≠0)的图象与性质 1.二次函数y=ax 2+c(a ≠0)的图象 (1)0a >(2)0a <j xOy()0y ax c c =+>cjyxOc()0y ax c c =+<j yxOcj y xOc2.二次函数y=ax 2+c(a ≠0)的图象的性质关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>> 2(0,0)y ax c a c =+<>图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当0x >时,y 随x 的增大而增大;当0x <时,y 随x 的增大而减小.当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大.最大(小)值当0x =时,y c =最小值当0x =时,y c =最大值【典型例题】类型一、二次函数y=ax 2(a ≠0)的图象与性质1.(2014秋•青海校级月考)二次函数y=ax 2与直线y=2x ﹣1的图象交于点P (1,m ) (1)求a ,m 的值;(2)写出二次函数的表达式,并指出x 取何值时该表达式y 随x 的增大而增大? (3)写出该抛物线的顶点坐标和对称轴. 【思路点拨】(1)把点P (1,m )分别代入二次函数y=ax 2与直线y=2x ﹣1即可求出未知数的值; (2)把a 代入二次函数y=ax 2与即可求出二次函数表达式; 根据二次函数的对称轴及增减性判断出x 的取值. (3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P (1,m )在y=2x ﹣1的图象上∴m=2×1﹣1=1代入y=ax 2 ∴a=1(2)二次函数表达式:y=x 2因为函数y=x 2的开口向上,对称轴为y 轴,当x >0时,y 随x 的增大而增大; (3)y=x 2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性. 举一反三:【变式1】二次函数2y ax =与22y x =-的形状相同,开口大小一样,开口方向相反,则a = . 【答案】2.【变式2】(•山西模拟)抛物线y=﹣x 2不具有的性质是( ).A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点 【答案】A.2.已知y=(m+1)x 2m m+是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax 2(a≠0)的图象性质来解答. 【答案与解析】由题意,2210m m m ⎧+=⎨+⎩>,解得m=1,∴二次函数的解析式为:y=22x .【总结升华】本题中二次函数还应该有m+1≠0的限制条件,但当10m +>时,一定存在m+1≠0,所以就不再考虑了.类型二、二次函数y=ax 2+c(a ≠0)的图象与性质3.求下列抛物线的解析式: (1)与抛物线2132y x =-+形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; (2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.【思路点拨】抛物线形状相同则||a 相同,再由开口方向可确定a 的符号,由顶点坐标可确定c 的值,从而确定抛物线的解析式2y ax c =+. 【答案与解析】(1)由于待求抛物线2132y x =-+形状相同,开口方向相反,可知二次项系数为12, 又顶点坐标是(0,-5),故常数项5k =-,所以所求抛物线为2152y x =-. (2)因为抛物线的顶点为(0,1),所以其解析式可设为21y ax =+,又∵该抛物线过点(3,-2),∴912a +=-,解得13a =-. ∴所求抛物线为2113y x =-+. 【总结升华】本题考察函数2(0)y ax c a =+≠的基本性质,并考察待定系数法求简单函数的解析式.4.在同一直角坐标系中,画出2y x =-和21y x =-+的图象,并根据图象回答下列问题.(1)抛物线21y x =-+向________平移________个单位得到抛物线2y x =-;(2)抛物线21y x =-+开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线21y x =-+,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________.【思路点拨】利用描点法画出函数图象,根据图象进行解答. 【答案与解析】函数2y x =-与21y x =-+的图象如图所示:(1)下; l ; (2)向下; y 轴; (0,1); (3)>0; =0; 大; 大 ; 1. 【总结升华】本例题把函数21y x =-+与函数2y x =-的图象放在同一直角坐标系中进行对比,易得出二次函数2(0)y ax c a =+≠与2(0)y ax a =≠的图象形状相同,只是位置上下平移的结论.2(0)y ax c a =+≠可以看作是把2(0)y ax a =≠的图象向上(0)k >或向下(0)k <平移||k 个单位得到的. 举一反三:【变式】函数23y x =可以由231y x =-怎样平移得到?【答案】向上平移1个单位.二次函数y=ax 2(a ≠0)的图象与性质—巩固练习(基础)【巩固练习】 一、选择题1.关于函数y=2x 的图象,则下列判断中正确的是( ) A.若a 、b 互为相反数,则x=a 与x=b 的函数值相等; B.对于同一个自变量x,有两个函数值与它对应; C.对任一个实数y,有两个x 和它对应; D.对任意实数x,都有y >0.2.下列函数中,开口向上的是( )A.23y x =- B.212y x =-C. 2y x =-D.216y x = 3.把抛物线2y x =向上平移1个单位,所得到抛物线的函数表达式为( ).A .21y x =+ B .2(1)y x =+ C .21y x =- D .2(1)y x =-4.下列函数中,当x <0时,y 值随x 值的增大而增大的是( )A.25y x = B.212y x =-C. 2y x =D.213y x = 5.在同一坐标系中,作出22y x =,22y x =-,212y x =的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点 6.(•黄陂区校级模拟)抛物线y=2x 2+1的对称轴是( ) A .直线x=B . 直线x=﹣C . y 轴D . x 轴二、填空题7.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________, 当x >0时,y 随x 的增大而________.8.若函数y =ax 2过点(2,9),则a =________.9.已知抛物线y =x 2上有一点A ,A 点的横坐标是-1,过点A 作AB ∥x 轴,交抛物线于另一点B ,则△AOB 的面积为________.10.(•巴中模拟)对于二次函数y=ax 2,已知当x 由1增加到2时,函数值减少4,则常数a 的值是 . 11.函数2y x =,212y x =、23y x =的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12.若对于任意实数x ,二次函数21x a y )(+=的值总是非负数,则a 的取值范围是____________. 三、解答题13.已知2(2)mmy m x +=+是二次函数,且当x >0时,y 随x 的增大而增大.(1)求m 的值;(2)画出函数的图象. 14. 已知抛物线2y ax =经过A (-2,-8). (1)求此抛物线的函数解析式;(2)判断B (-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.(春·牙克石市校级月考)函数y=ax 2(a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.【答案与解析】 一、选择题 1.【答案】A. 2.【答案】D ;【解析】开口方向由二次项系数a 决定,a >0,抛物线开口向上;a <0,抛物线开口向下. 3.【答案】A ; 【解析】由抛物线2y x =的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为21y x =+. 4.【答案】B ;【解析】根据抛物线2(0)y ax a =≠的图象的性质,当a <0时,在对称轴(x=0)的左侧,y 值随x 值的增大而增大,所以答案为B. 5.【答案】C ;【解析】y =2x 2,y =-2x 2,212y x =的图象都是关于y 轴对称的,其顶点坐标都是(0,0). 6.【答案】C ;【解析】∵抛物线y=2x 2+1中一次项系数为0, ∴抛物线的对称轴是y 轴. 故选C .二、填空题 7.【答案】下 ; y 轴; (0,0); 减小; 8.【答案】94; 【解析】将点(2,9)代入解析式中求a. 9.【答案】 1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则1121122AOB A S AB y ==⨯⨯=△.10.【答案】43-; 【解析】当x=1时,y=ax 2=a ;当x=2时,y=ax 2=4a ,所以a ﹣4a=4,解得a=43-.故答案为:43-. 11.【答案】23y x =,2y x =,212y x =. 【解析】先比较12,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y =3x 2,y =x 2,212y x =. 12.【答案】a >-1;【解析】二次函数21x a y )(+=的值总是非负数,则抛物线必然开口向上,所以a+1>0. 三、解答题 13.【解析】解:(1)∵2(2)mmy m x +=+为二次函数,且当x >0时,y 随x 的增大而增大,∴ 2220m m m ⎧+=⎨+>⎩,∴ 122m m m ==-⎧⎨>-⎩或,∴m=1.(2)由(1)得这个二次函数解析式为23y x =,自变量x 的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14.【解析】解:(1)∵抛物线2y ax =经过A (-2,-8),∴-8=4a ,∴a=-2,抛物线的解析式为:22y x =-.(2)当x=-1时,y=-2()21⨯-=-2≠-4,∴点B (-1,-4)不在此抛物线上.(3)当y=-6时,即226x -=-,得3x =∴此抛物线上纵坐标为-6-6)和(-6). 15.【解析】解:(1)将x=1,y=b 代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax 2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x 2,顶点坐标为(0,0),对称轴为直线x=0(即y 轴). (3)当x <0时,y 随x 的增大而增大.(4)设直线y=- 2与抛物线y=-x 2相交于A 、B 两点,抛物线顶点为O(0,0).由22y y x =-⎧⎨=-⎩,,得112x y ⎧=⎪⎨=-⎪⎩222x y ⎧=⎪⎨=-⎪⎩ ∴A(,-2),,-2).∴,高=|-2|=2.∴122AOBS =⨯=。

第5讲二次函数与幂函数PPT课件

第5讲二次函数与幂函数PPT课件

或1a≥4, f4=16a-8+2≥0,
∴aa≥≥10, 或14a<>a12<1,
或aa≤≥1438,.
∴a≥1 或12<a<1 或∅,即 a>12;
(2)当 a<0 时, f1=a-2+2≥0, f4=16a-8+2≥0, 解得 a∈∅; (3)当 a=0 时, f(x)=-2x+2,f(1)=0,f(4)=-6, ∴不合题意.


[0,+∞)增
(0,0),(1,1)
[0,+∞) 非奇非偶

y=x-1
{x|x∈R且 x≠0}
{y|y∈R 且y≠0}
奇 (-∞,0)减
, (0,+∞)减
(1,1)
2.二次函数 (1)二次函数的定义 形如 f(x)=ax2+bx+c(a≠0) 的函数叫做二次函数. (2)二次函数的三种常见解析式 ①一般式:f(x)=ax2+bx+c(a≠0); ②顶点式:f(x)=a(x-m)2+n(a≠0); ③两根式:f(x)=a(x-x1)(x-x2)(a≠0).
答案 f(x)= x
5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1, x2,则x1+x2=________.
解析 由 f(3+x)=f(3-x),知函数 y=f(x)的图象关于直线 x=3 对称,
应有x1+2 x2=3⇒x1+x2=6.
答案 6
考点一 幂函数的图象与性质
【训练3】 函数f(x)=-x2+4x-1在区间[t,t+1](t∈R)上的最大值为g(t).
(1)求g(t)的解析式; 请先暂停,完成题目后继续观看!
(2)求g(t)的最大值. 解 (1)f(x)=-x2+4x-1=-(x-2)2+3.对称轴x=2. ①当t+1<2,即t<1时,函数f(x)在区间[t,t+1]上为增函数,

二次函数的图像和性质初中数学经典课件

 二次函数的图像和性质初中数学经典课件
________________,对称轴是过顶点且平行于_____的一条直线. (2) 若a>0,则当x=______时,二次函数y=ax2+bx+c有最_____值,为
________ ; 若 a < 0 , 则 当 x = _____ 时 , 二 次 函 数 y = ax2 + bx + c 有 最 _____值,为________. 2. 用 配方 法 可 将二 次 函 数 y = ax2 + bx + c(a≠0) 转 化 为 y= a(x + ____)2 + _______.
5.2 二次函数的图像和性质
1.理解二次函数y=ax2+bx+c与y=a(x+h)2+k之间的关系 2.掌握二次函数y=ax2+bx+c的图像和性质
3.体会二次函数y=ax2+bx+c的图像与a,b,c之间的关

思考(一) 请说出抛物线y=ax²+k, y=a(x+h)²,y=a(x+h)²+k 的开口方向、对称轴和顶点坐标.
(2)若该函数的图像不经过第三象限,当-5≤x≤1时,函
数的最大值与最小值之差为16,求b的值.
∴最大值与最小值之差是 25(不合题意,舍去). 当 b>0 时,c>0,若函数的图像不经过第三象限,则 b2 -4×2b≤0,∴0<b≤8.∴-4≤-b2<0. 当-5≤x≤1 时,函数有最小值-b42+2b, 当-b2≤-2,即 b≥4 时,函数有最大值 1+3b; 当-b2>-2,即 b<4 时,函数有最大值 25-3b.
1. “提”:提出 二次项系数;

y= - (x+2)2-1.
y= - (x2+4x+4-4)-5 y= - (x+2) 2-5+4 y= - (x+2) 2-1

二次函数的基本概念

二次函数的基本概念

二次函数的基本概念二次函数是数学中一个重要的函数类型,其形式通常为f(x) = ax^2 + bx + c,其中a、b和c为实数且a ≠ 0。

二次函数的图像呈现出拱形,常常在数学和科学领域被广泛应用。

本文将介绍二次函数的基本概念和相关性质。

1. 二次函数的标准形式二次函数的标准形式是f(x) = ax^2 + bx + c,其中a、b和c分别代表函数的系数。

在标准形式中,x^2项的系数a决定了二次函数图像的开口方向和形状。

当a>0时,图像开口朝上,形状为向上的拱形;当a<0时,图像开口朝下,形状为向下的拱形。

2. 二次函数的顶点二次函数的图像呈现出拱形,其中最高点或最低点称为顶点。

顶点的横坐标为x = -b/2a,纵坐标为f(-b/2a)。

通过顶点的坐标,可以了解二次函数的对称轴,对称轴与x轴的交点也是顶点。

3. 二次函数的轴对称性二次函数的图像是关于对称轴x = -b/2a对称的,即对称轴将图像分成两个完全相同的部分。

这意味着,如果(x, y)是图像上的一点,那么(-x, y)也一定是图像上的一点。

4. 二次函数的零点二次函数的零点是函数图像与x轴相交的点,即f(x) = 0的解。

根据二次方程求根公式,二次函数的零点可以通过以下公式得到:x = (-b ± √(b^2-4ac))/(2a)其中,b^2-4ac被称为判别式,可以用来判断二次函数的零点类型。

当判别式大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。

5. 二次函数的图像特征二次函数的图像特征包括开口方向、顶点坐标、对称轴、零点以及图像的凹凸性等。

根据系数a的正负和判别式的值,可以确定二次函数图像的这些特征。

掌握这些特征可以帮助我们更好地理解和分析二次函数。

总结:二次函数是数学中一种重要的函数类型,具有拱形的图像特征。

了解二次函数的基本概念和相关性质,如标准形式、顶点、轴对称性、零点以及图像特征,对于解决实际问题、分析数据以及深入研究数学领域都具有重要意义。

高一数学单元知识点专题讲解5---二次函数的最值问题

高一数学单元知识点专题讲解5---二次函数的最值问题

1/4
【例 3】当 x ≥ 0时,求函数 y = −x(2 − x)的取值范围.
解:作出函数 y = −x(2 − x) = x2 − 2x 在 x ≥ 0 内的图象.
可以看出:当 x = 1时, ymin = −1,无最大值. 所以,当 x ≥ 0时,函数的取值范围是 y ≥ −1.
【例 4】当t ≤ x ≤ t +1时,求函数 y = 1 x2 − x − 5 的最小值(其中t 为常数). 分析:由于 x 所给的范围随着t 的变化而2变化,所以2需要比较对称轴与其范围的相对位置.
ymax = 37
当 时, ;当 时, . (2) a ≥ 0 ymax = 27 + 10a a < 0 ymax = 27 −10a
. . 2 −2 ≤ m ≤ −1 . . 3 a = 2,b = −2
4. a = − 1 或 a = −1. 4
5.当t ≤ 0 时, ymax = 2 − 2t ,此时 x = 1;当t > 0 时, ymax = 2 + 2t ,此时 x = −1.
解:函数 y = 1 x2 − x − 5 的对称轴为 x = 1.画出其草图.
2
2
(1) (2)
当对称轴在所给范围左侧.即t 当对称轴在所给范围之间.即t
> 1时:
当 时, x = t
ymin
时: ≤ 1 ≤ t + 1 ⇒ 0 ≤ t ≤ 1
=
1 t2 2
−t

5 2

(3)
当当对x称=轴1时在,所给ym范in 围= 右12 ×侧1.2 −即1t−+521
; (1) y = 2x2 − 4x + 5

二次函数人教版课件ppt[二次函数课件]

二次函数人教版课件ppt[二次函数课件]

二次函数人教版课件ppt[二次函数课件]【引言】一般形式的二次函数方程为:y = ax^2 + bx + c,其中a、b和c是实数常数且a不为零。

二次函数的图像是一个抛物线。

【基本特点】1.开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

2.平移:使用平移变换,可以使抛物线的顶点移动到任意位置。

3.对称性:抛物线关于其顶点是对称的。

【顶点及最值】1.顶点的坐标为:(-b/2a,f(-b/2a)),其中f(x)表示函数的值。

2.当a大于0时,抛物线的顶点代表最小值,没有最大值;当a小于0时,抛物线的顶点代表最大值,没有最小值。

【零点】1. 二次函数的零点即为方程y = ax^2 + bx + c的解,可以通过求解二次方程的方法得到。

2.根的个数与判别式有关:当判别式大于0时,方程有两个不相等的实根;当判别式等于0时,方程有两个相等的实根;当判别式小于0时,方程没有实根。

【图像分析】1.根据二次函数的图像,可以分析函数的性质。

2.开口方向决定了函数的增减性:当a大于0时,函数单调递增;当a小于0时,函数单调递减。

3.顶点的位置决定了函数的最值。

【图像变换】通过变换参数a、b和c,可以产生不同形态的二次函数图像:1.参数a的变化可以改变开口方向。

2.参数b的变化可以改变抛物线的位置。

3.参数c的变化可以改变抛物线的平移。

【实际应用】二次函数在现实生活中有许多应用案例,例如:1.抛物线的轨迹:运动物体的轨迹通常是抛物线。

2.弹性力:弹簧的伸长量与施加的力的关系可以通过二次函数表示。

3.面积最大值问题:根据给定的条件,可以通过二次函数解决面积最大值问题。

【总结】二次函数是数学中重要的函数之一,具有许多特点和应用。

通过理解二次函数的性质和变换规律,可以更好地理解和应用二次函数。

高三数学第二轮复习第五讲二次函数和复合函数

高三数学第二轮复习第五讲二次函数和复合函数

第五讲 二次函数一、基础知识1.解析式:))((44)2(21222x x x x a ab ac a b x a c bx ax y --=-++=++=(其中a 、b 、c ∈R ,a ≠0,x 1、x 2是此方程的两根(此时△≥0)。

2.二次函数性质:①定义域:二次函数本身的定义域是R ,但在综合、应用问题中出现的二次函数常常会 出现“限制型”的定义域;②值域:a >0时为;44,0),,44[22⎥⎦⎤⎝⎛-∞-<+∞-a b ac a a b ac 时为 (注意:当定义域变化时,值域也发生相应的变化)③奇偶性:当b=0时为偶函数,当b ≠0时既非奇函数也非偶函数;④单调性:⎥⎦⎤ ⎝⎛-∞->a b a 2,,0在时上为减函数,在⎪⎭⎫⎢⎣⎡+∞-,2a b 上为增函数;⎥⎦⎤ ⎝⎛-∞-<a b a 2,,0在时 上为增函数,在⎪⎭⎫⎢⎣⎡+∞-,2ab 上为减函数; ⑤特性:1)对称轴方程为a b x 2-=,2)顶点).44,2(2ab ac a b --二、实根分布条件:已知2()f x ax bx c =++(其中a 、b 、c ∈R )1.二次方程f(x)=0的两根中一根比r 大,另一根比r 小⇔a ·f(r)<0;2.二次方程f(x)=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>-≥。

Δ0)(20r f a ra b 3.二次方程f(x)=0在区间(p,q)内有两根⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<≥。

Δ0)(0)(20p f a q f a q ab p 4.二次方程f(x)=0在区间(p,q)内只有一根⇔f(p)·f(q)<0,或⎩⎨⎧>⋅=0)(0)(q f a p f (检验)或⎩⎨⎧>⋅=0)(0)(p f a q f (检验)。

5.二次方程f(x)=0的一根小于p ,另一根大于q(p<q)⇔⎩⎨⎧<⋅<⋅。

初高中数学衔接:第五讲 二次函数

初高中数学衔接:第五讲  二次函数

第五讲 二次函数二次函数虽属于初中内容,在考试大纲中也没有明确要求,但二次函数、一元二次方程和一元二次不等式又是高考的热点内容之一,因此,二次函数的重要性在于它的工具性和基础性,从题型上看,选择、填空、大题都有.掌握好二次函数的关键是掌握其图象,记住它的图象,其性质就很容易掌握.1.二次函数解析式的三种形式(1)一般式:f (x )= (a ≠0); (2)顶点式:f (x )= (a ≠0); (3)零点式:f (x )= (a ≠0). 2.二次函数的图象与性质(1)二次函数f (x )=ax 2+bx +c (a ≠0)的图象是一条抛物线,它的对称轴、顶点坐标、开口方向、值域、单调性分别是: ①对称轴:x = ; ②顶点坐标: ;③开口方向:a >0时,开口 ,a <0时,开口 ; ④值域:a >0时,y ∈ ,a <0时,y ∈ ; ⑤单调性:a >0时,f (x )在 上是减函数,在 上是增函数;a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上是 ,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上是____________.(2)二次函数、二次方程、二次不等式三者之间的关系二次函数f (x )=ax 2+bx +c (a ≠0)的零点(图象与x 轴交点的横坐标)是相应一元二次方程ax 2+bx +c =0的 ,也是一元二次不等式ax 2+bx +c ≥0(或ax 2+bx +c ≤0)解集的 . 3.二次函数在闭区间上的最值二次函数在闭区间上必有最大值和最小值.它只能在区间的 或二次函数的 处取得,可分别求值再比较大小,最后确定最值.4.一元二次方程根的讨论(即二次函数零点的分布)设x 1,x 2是实系数一元二次方程ax 2+bx +c =0(a >0)的两实根,则x 1,x 2的分布范围与系数之间的关系如表所示.【自查自纠】1.(1)ax 2+bx +c (2)a (x -h )2+k (3)a (x -x 1)(x -x 2)2.(1)①-b 2a ②⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a ③向上 向下④⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝ ⎛⎦⎥⎤-∞,4ac -b 24a ⑤⎝ ⎛⎭⎪⎫-∞,-b 2a ⎝ ⎛⎭⎪⎫-b 2a ,+∞ 增函数 减函数 (2)根 端点值 3.端点 顶点函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =1()3-a ()a +6()-6≤a ≤3的最大值为()A .9B.92C .3D.322解:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92,当a =-32时,取等号.故选B. (也可用基本不等式求解)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解:A 选项中,由于二次函数图象开口向下,所以a <0,且函数与y 轴交点在y 轴负半轴,所以c <0,又abc >0,所以b >0,函数的对称轴x =-b2a >0,显然A 不正确;B 选项中,a <0,c >0,所以b <0,所以对称轴x =-b 2a <0,所以B 不正确;C 选项中,a >0,c <0,所以b <0,所以对称轴x =-b 2a >0,所以C 错. 故选D.若函数y =mx 2+x +5在-2,+∞)上是增函数,则m 的取值范围是 .解:m =0时,函数在给定区间上是增函数;m ≠0时函数是二次函数,由题知m >0,对称轴为x =-12m ≤-2,∴0<m ≤14,综上0≤m ≤14.故填⎣⎢⎡⎦⎥⎤0,14.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为0,+∞),若关于x 的不等式f (x )-c <0的解集为(m ,m +6),则实数c 的值为________.类型一 求二次函数的解析式已知二次函数f (x )满足f (2)=-1, f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 解法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0), 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解之得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为y =-4x 2+4x +7. 解法二:(利用顶点式)设f (x )=a (x -m )2+n ,∵f (2)=f (-1), ∴抛物线对称轴为x =2+(-1)2=12,∴m =12,又根据题意,函数有最大值为8, ∴n =8, ∴f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,即a ⎝ ⎛⎭⎪⎫2-122+8=-1.解之得a =-4.∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.【评析】解法二由条件f (2)=f (-1)及f (x )的最大值是8,根据对称性知其对称轴为x =12,故此题利用顶点式较为简捷.如果把2,-1看作函数g (x )=f (x )+1的两个零点,利用零点式求g (x )的解析式,再求f (x )的解析式也很方便.与对称轴有关的二次函数一般设为顶点式.如果与零点有关,则要注意函数的对称性及韦达定理的应用.已知y =f (x )是二次函数,且f ⎝ ⎛⎭⎪⎫-32+x =f ⎝ ⎛⎭⎪⎫-32-x 对x ∈R 恒成立,f ⎝ ⎛⎭⎪⎫-32=49,方程f (x )=0的两实根之差的绝对值等于7.求此二次函数的解析式.解:由x ∈R ,f ⎝ ⎛⎭⎪⎫-32+x =f ⎝ ⎛⎭⎪⎫-32-x 知,f (x )的对称轴为x =-32.又f ⎝ ⎛⎭⎪⎫-32=49,则二次函数f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,故设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0).解法二:设f (x )=0的两根为x 1,x 2,且x 1<x 2,由两实根之差的绝对值为7得x 1=-32-72=-5,x 2=-32+72=2,将x 1或x 2代入f (x )=0得a =-4.从而得到f (x )=-4x 2-12x +40.类型二 二次函数的图象已知二次函数y =ax 2+bx +c 满足a >b >c ,且a +b +c =0,那么它的图象是下图中的( )解:∵a >b >c 且a +b +c =0, ∴a >0,c <0,b 2-4ac >0,∴图象开口向上,在y 轴上截距为负,且过(1,0)点.故选A.【评析】a 决定抛物线开口的方向,c 确定抛物线在y 轴上的截距,b 与a 确定顶点的横坐标(或对称轴的位置),再结合题设条件就不难解答此题了.在同一坐标系中,函数y =ax 2+bx 与y =ax +b (ab ≠0)的图象只可能是( )解:抛物线y =ax 2+bx 过原点排除A ,又直线y =ax +b 与抛物线y =ax 2+bx 都过点⎝ ⎛⎭⎪⎫-b a ,0,排除B ,C.故选D.类型三 二次函数的最值已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值g (a ).(3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在0,1]上单调递减,∴g (a )=f (x )min =f (1)=a -2. 综上所述,g (a )=⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.【评析】解答二次函数在区间上的最值问题的基本方法有两种:一是图象法,即利用二次函数的图象来确定二次函数在区间上的单调性,从而确定其最值在何处取得,当二次函数的解析式含有参数或区间含有参数而不确定时,则应抓住图象开口方向及图象的对称轴,依据对称轴是位于区间上,还是位于左边、右边进行分类讨论,从而确定函数在区间上的单调性;二是导数法,二次函数的导函数为一次函数,利用它很容易确定其在区间上的符号,进而确定其单调性.设函数f (x )=x 2-2x -1在区间t ,t +1]上有最小值g (t ),求g (t )的解析式.类型四 二次方程根的分布已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围;(2)若方程两根均在区间(0,1)内,求m 的取值范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎨⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0 ⇒ ⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.∴-56<m <-12.故m 的取值范围为⎩⎨⎧⎭⎬⎫m|-56<m <-12.(2)由抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎨⎧f (0)=2m +1>0,f (1)=4m +2>0,Δ=(2m )2-4(2m +1)≥0,0<-m <1.⇒ ⎩⎪⎨⎪⎧m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.∴-12<m ≤1- 2. 故m 的取值范围为⎩⎨⎧⎭⎬⎫m|-12<m ≤1-2.【评析】一元二次方程根的分布,即二次函数零点的分布,关键在于作出二次函数的草图,由此列出不等式组,要注意二次函数的对称轴及Δ与方程根的关系.已知二次函数f(x)=x2+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.总结1.求二次函数的解析式利用已知条件求二次函数的解析式常用的方法是待定系数法,但须根据不同条件选取适当形式的f(x),一般规律是:①已知三个点的坐标时,宜用一般式;②已知抛物线的顶点坐标、对称轴、最大(小)值时,常用顶点式;③若已知抛物线与x轴有两个交点,且横坐标已知时,选用零点式更方便.2.含有参数的二次函数在闭区间上的最值或值域二次函数在区间m,n]上的最值或值域问题,通常有两种类型:其一是定函数(解析式确定),动区间(区间的端点含有参数);其二是动函数(解析式中含有参数),定区间(区间是确定的).无论哪种情况,解题的关键都是抓住“三点一轴”,“三点”即区间两端点与区间中点,“一轴”即为抛物线的对称轴.对于动函数、动区间的类型同样是抓住“三点一轴”,只不过讨论要复杂一些而已.3.二次函数的综合应用解二次函数的综合应用问题时,要充分应用二次函数、二次方程、二次不等式三者之间的密切关系,对所求问题进行等价转化,要注意f(x)=ax2+bx+c(a≠0)的结构特点和a,b,c的几何意义(可结合解析几何中的抛物线方程x2=±2py理解a的几何意义),注意一些特殊点的函数值,如f (0)=c ,f (1)=a +b +c ,f (-1)=a -b +c 等.【课时作业】1.若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则在区间(-∞,0]上f (x )是( )A .增函数B .减函数C .常数D .可能是增函数,也可能是常数2.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,那么( ) A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解:由条件知抛物线的对称轴为x =12,又开口向上,∴f (0)<f (-1)<f (-2),而f (-1)=f (2),则f (0)<f (2)<f (-2).故选D.3.已知函数f (x )=x 2-2x +3在区间0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .1,+∞)B .0,2]C .(-∞,2]D .1,2]解:注意f (0)=3,f (1)=2,f (2)=3,结合图象可知1≤m ≤2.故选D.4.函数f (x )=2x 2-mx +3,当x ∈-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)等于( )A .-3B .13C .7D .5解:由题意知f (x )的对称轴x =m 4,要使f (x )在-2,+∞)上是增函数,在(-∞,-2]上是减函数,则m 4=-2,∴m =-8,∴f (1)=2+8+3=13.故选B.5.已知函数f (x )=⎩⎨⎧-2+x ,x >0,-x 2+bx +c ,x ≤0,若f (0)= -2f (-1)=1,则函数g (x )=f (x )+x 的零点个数为( )A .1B .2C .3D .46.在二次函数f (x )=ax 2+bx +c 中,a ,b ,c 成等比数列,且f (0)=-1,则( )A .f (x )有最大值-34B .f (x )有最小值34C .f (x )有最小值-34D .f (x )有最大值34解:因为a ,b ,c 成等比数列,∴b 2=ac ,又f (0)=c =-1,∴b 2=-a >0,则a <0.f (x )max =4ac -b 24a =-34.故选A.7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解:∵f (x )是偶函数,∴f (-x )=f (x ),即|x -a |=|x +a |,两边平方得4ax =0,∴a =0.故填0.8.设a 为常数,函数f (x )=x 2-4x +3.若f (x +a )在0,+∞)上是增函数,则a 的取值范围是______________.解:∵f (x )=x 2-4x +3=(x -2)2-1,∴f (x +a )=(x +a -2)2-1,且当x ∈2-a ,+∞)时,函数f (x )单调递增,因此2-a ≤0,即a ≥2.故填2,+∞).9.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数.解:∵f (2)=f (-1),∴对称轴x =12,故设f (x )=a ⎝ ⎛⎭⎪⎫x -122+8(a <0), 由f (2)=-1得,a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得 a =-4.故二次函数f (x )=-4⎝ ⎛⎭⎪⎫x -122+8. 10.f (x )=-x 2+ax +12-a 4在区间0,1]上的最大值为2,求a 的值.11.已知13 ≤a ≤1,若f (x )=ax 2-2x +1在区间1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ).求g (a )的函数表达式.解:函数f (x )=ax 2-2x +1的对称轴为直线x =1a ,∵13≤a ≤1,∴1≤1a ≤3,∴f (x )在1,3]上,N (a )=f ⎝ ⎛⎭⎪⎫1a =1-1a . ①当1≤1a ≤2,即12≤a ≤1时,M (a )=f (3)=9a -5; ②当2<1a ≤3,即13≤a <12时,M (a )=f (1)=a -1.∴g (a )=M (a )-N (a )=⎩⎪⎨⎪⎧9a +1a -6,12≤a ≤1,a +1a -2,13≤a <12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数【高考新动向】一、考纲点击1.理解并掌握二次函数的定义、图象及性质;2.会求二次函数在闭区间上的最值;3.运用二次函数、一元二次方程及一元二次不等式之间的联系去解决问题.二、热点、难点提示1.二次函数图象的应用及求最值是高考的热点.2.常将二次函数及相应的一元二次不等式、一元二次方程交汇在一起命题,重点考查三者之间的综合应用.3.题型以选择题、填空题为主,若与导数、解析几何知识交汇,则以解答题的形式出现.【考纲全景透析】知识点1 二次函数的图象和性质1.二次函数的解析式点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.①已知三个点的坐标时,宜用一般式.②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2.二次函数的图象与性质3.二次函数f(x)=ax2+bx+c(a≠0),当Δ=b2-4ac>0时,图象与x轴有两个交点M1(x1,0)、M2(x2,0),|M1M2|=|x1-x2|=Δ|a|.【热点难点全析】一、求二次函数的解析式1.相关链接求二次函数解析式的方法及思路求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:题型一求二次函数的解析式例1 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数.例2、如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上、两点,该抛物线的对称轴x=-1与x 轴相交于点,且∠ABC =90°,求:(1)直线AB 对应函数的解析式;(2)抛物线的解析式.练习:1、设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y 轴上的截距为1,在x 轴上截得的线段长为,22求f(x)的解析式.2、 设()f x 是定义在R 上的偶函数,当02x ≤≤时,y x =,当2x >时,()y f x =的图象是顶点为(3,4)P ,且过点(2,2)A 的抛物线的一部分。

(1)求函数()f x 在(,2)-∞-上的解析式;(2)写出函数()f x 的值域。

题型二 二次函数的图象及性质例1、设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( ).变式1 已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象的大致形状是( ).二、二次函数图象与性质的应用1.相关链接<一>求二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)常结合二次函数在该区间上的单调性或图象求解,最值一般在区间的端点或顶点处取得. 二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值一般分为三种情况讨论:(1)若对称轴2b x a=-在区间左边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值;(或利用函数的单调性直接决定函数的最大(小)值)(2)若对称轴2b x a=-在区间右边,则函数在此区间上具有单调性,只需比较(),()f p f q 的大小即可决定函数的最大(小)值;(3)若对称轴2b x a =-在区间内,则()2b f a-是函数的最小值(0a >)或最大值(0a <),再比 较(),()f p f q 的大小决定函数的最大(小)值。

点评:(1)两个重要的结论:连续函数在闭区间上一定存在最大值和最小值;单调连续函数在闭区间的两个端点处取得最值。

(2)二次函数()02≠++=a c bx ax y 在闭区间[]q p ,上的最值的讨论的基点是对称轴ab x 2-=与区间[]q p ,的相对位置的讨论,尤其当顶点横坐标是字母时,则应抓住讨论的基点进行讨论。

特别要注意二次项系数a 的符号对抛物线开口及结论的影响。

<二>二次函数单调性问题的解法结合二次函数图象的升、降对对称轴进行分析讨论求解.注:配方法是解决二次函数最值问题的常用方法,但要注意自变量范围与对称轴之间的关系.题型三 二次函数中的单调性例1、已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间.变式训练1:(1).已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为_____ ___(2)已知函数f (x )=x 2+mx +n 的图象过点(1,3),且f (-1+x )=f (-1-x )对任意实数都成立,函数y =g (x )与y =f (x )的图象关于原点对称.(1)求f (x )与g (x )的解析式;(2)若F (x )=g (x )-λf (x )在(-1,1]上是增函数,求实数λ的取值范围.题型三 二次函数在闭区间上的最值例1(1)设函数f(x)=x 2-2x+2,x∈[t,t+1]的最小值为g(t),求g(t)的解析式。

(2)已知函数21sin sin 42a y x a x =-+-+的最大值为2,求a 的值。

(3)已知31≤a≤1,若f(x)=ax 2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),① 求g(a)的函数表达式; ② 判断函数g(a)的单调性,并求出g(a)的最小值。

探究提高 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.变式训练1:(1)已知函数f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有一个最大值-5,求a 的值.(2)已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.(3) 设x 、y 是关于m 的方程m 2-2am +a +6=0的两个实根,则(x -1)2+(y -1)2的最小值是( )A.-1241B.18C.8D.43题型四 二次函数中的恒成立的问题例1、若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.变式训练1:(1)已知2()2(2)4f x x a x =+-+,① 如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;②如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.三、二次函数与一元二次方程、一元二次不等式的综合问题1.相关链接二次函数问题的解题思路(1)解决一元二次方程根的分布问题的方法,常借助于二次函数的图象数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)解决一元二次不等式的有关问题的策略,一般需借助于二次函数的图象、性质求解. 二次函数、一元二次方程及一元二次不等式之间的关系当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔ 20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞。

一元二次方程20ax bx c ++=实根分布的充要条件一般地对于含有字母的一元二次方程20ax bx c ++=的实根分布问题,用图象求解,有如下结论:令()f x =2ax bx c ++(0a >)(同理讨论0a <的结论)(1) x 1<α, x 2<α ,则0/(2)()0b a f αα∆≥⎧⎪-<⎨⎪>⎩; (2) x 1>α, x 2>α,则0/(2)()0b a f αα∆≥⎧⎪->⎨⎪>⎩(3) α<x 1<β, α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4) x 1<α, x 2>β (α<β),则()0()0f f αβ<⎧⎨<⎩ (5)若f(x)=0在区间( α ,β)内只有一个实根,则有0))(<(βαf f点评:(1)讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式; ②区间端点的函数值的符号; ③对称轴与区间的相对位置. 在讨论过程中,注意应用数形结合的思想.题型五 二次函数与方程例1、已知二次函数c bx ax x f ++=2)((1)若a>b>c,且f(1)=0,证明f(x)的图象与x 轴有2个交点;(2) 在(1)的条件下,是否存在m∈R,使池f(m)= - a 成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由.(3)若对121212,,<,()()x x R x x f x f x ∈≠且,121()=[()+()]2f x f x f x 方程 有2个不等实根,证明必有一个根属于12(,)x x例2、二次函数21y ax x =++ (0)a >的零点分别为12,.x x(1)证明12(1)(1)1;x x +⋅+=(2)证明121,1;x x <-<-(3)若12,x x 满足不等式|lg21x x |≤1,试求a 的取值范围.变式练习1、已知二次函数.92)1(42)(22++---=a a x a x x f(1)若在区间[-1,1]内至少存在一个实数m ,使得0)(>m f ,求实数a 的取值范围;(2)若对区间[-1,1]内的一切实数m 都有0)(>m f ,求实数a 的取值范围。

相关文档
最新文档