矢量量化技术

合集下载

矢量量化编码

矢量量化编码

矢量量化编码1. 引言矢量量化是一种高效的数据压缩技术,它具有压缩比大、解码简单和失真较小等优点。

自从1980年提出矢量量化器(Vector Quantizater)码书设计的LBG算法[Linde et al(1980)]以来,矢量量化(Vector Quantization)技术[Gray(1984)]已经成功地应用到图像压缩和语音编码中。

矢量量化压缩中最核心的技术是码书的设计,码书的优化性直接影响到压缩效率和图像复原质量。

这里主要对码书设计算法进行讨论。

首先介绍了经典的LBG算法及其在图像压缩中的应用;然后,针对LBG算法的不足,结合图像处理的特点,提出了改进的覆盖聚类算法,有效改善了系统性能。

2 .码书的设计码书设计是矢量量化压缩系统的关键环节。

码书设计得越优化,矢量量化器的性能就越好。

实际中,不可能单独为每幅待编码的图像设计一个码书,因此通常是以一些代表性图像构成的训练集为基础,为一类图像设计一个最优码书。

从数学的观点看,矢量量化中的码书设计,实质是把系统的率失真函数看成目标函数,并使之在高维空间中成为最小的全局优化问题。

假设采用平方误差测度作为失真测度,训练集中的矢量数为M,目的是生成含N(N<M)个码字(码矢量)的码书。

码书设计过程就是寻求把M 个训练矢量分成N类的一种最佳方案(使均方误差最小),而把各类的质心矢量作为码书的码字。

可以证明,各种可能的码书个数为(1/ N!)Σ(一1)(N-i)CNiM,其中( 为组合数。

通过测试所有码书的性能可得到全局最优码书。

然而,在N 和M 比较大的情况下,搜索全部码书是根本不可能的。

为了克服这个困难,各种码书设计方法都采取搜索部分码书的方法得到局部最优或接近全局最优的码书。

因此,研究码书设计算法的目的就是寻求有效的算法尽可能找到全局最优或接近全局最优的码书以提高码书性能,并尽可能减少计算复杂度。

3 LBG算法描述经典的码书设计算法是LBG算法[它是Y.Linde,A.Buzo与R.M.Gray 在1980年推出的,其思想是对于一个训练序列,先找出其中心,再用分裂法产生一个初始码书A0,最后把训练序列按码书A0中的元素分组,找出每组的中心,得到新的码书,转而把新码书作为初始码书再进行上述过程,直到满意为止。

矢量量化在语音信号处理中的应用

矢量量化在语音信号处理中的应用

矢量量化在语音信号处理中的应用简介矢量量化是一种常用的数据压缩技术,旨在通过将连续信号离散化表示来减少数据传输和存储的成本。

在语音信号处理中,矢量量化广泛应用于语音编码、语音识别和语音合成等领域。

本文将深入探讨矢量量化在语音信号处理中的应用。

语音编码语音信号的特点为了更好地理解矢量量化在语音编码中的应用,首先需要了解语音信号的特点。

语音信号是一种时间连续的信号,具有较高的带宽要求和较低的信噪比。

此外,语音信号中的语音内容通常通过谐波周期、共振峰和无意义的噪声等特征进行表示。

矢量量化在语音编码中的角色在语音编码中,矢量量化被用于将连续的语音信号转换为离散表示,以实现对语音信号的压缩。

通过将语音信号分割成不同的时间段或频率帧,并将这些帧用离散的码矢量表示,矢量量化可以显著减少所需的传输和存储资源。

此外,矢量量化还能提供一种方式来描述和比较不同语音片段之间的相似性。

矢量量化的实现方法在语音编码中,有许多矢量量化的实现方法可供选择。

其中,最简单但性能相对较差的方法是基于均匀矢量量化。

该方法将矢量空间均匀划分为一系列子区域,并为每个子区域分配一个代表矢量。

然而,由于语音信号的非均匀分布特性,均匀矢量量化的效果有限。

为了克服均匀矢量量化的不足,研究人员提出了一些更高级的方法,如聚类算法和向量量化树。

聚类算法将语音帧分成几个类别,并为每个类别分配一个代表矢量。

而向量量化树则是一种层次结构,通过递归地将帧分成更小的子集,并为每个叶子节点分配一个代表矢量。

这些方法相对于均匀矢量量化能够更好地适应语音信号的分布特性,从而提高编码效果。

矢量量化的应用实例矢量量化在语音编码中的应用有很多,以下是一些常见的实例:1.无损压缩:通过高效地将连续语音信号转换为离散表示,矢量量化可以实现对语音信号的无损压缩。

这种压缩方法无需对语音信号进行任何信息损失,因此在一些对语音质量要求较高的应用中非常有用。

2.语音传输:矢量量化能够显著减少语音信号传输所需的带宽和存储资源。

矢量量化原理 第六章

矢量量化原理 第六章
矢量量化的复杂度比标量量化的复杂度高。
▪ 归结起来,正如率-失真理论所指出的,组编码总
是优于单个输出的逐个编码的,当编码长度K趋于
无穷大时,可以达到率失真界。
27
6.3 最佳矢量量化
▪ 一.最佳矢量量化器的概念
▪ 给定条件下,失真最小的矢量量化器,称为这个
条件下的最佳矢量量化器。给定矢量量化器的码
4
三、矢量量化技术的发展历程
1956年 1957年 1978年
最佳矢量量化问题
如何划分量化区间 及求量化值问题
Steinhaus Loyd和Max
1980年
提出实际矢量量化器
Buzo
LBG算法
Linde,Buzo和Gray
5
四、矢量量化的优点
矢量量化优于标量量化,为不可逆压缩方法,采用矢量 量化技术对信号波形或参数进行压缩处理,可以获得很好 的效益,具有存储要求低、比特率低、解码简单、失真较 小和计算量小等优点。 采用矢量量化的效果优于标量量化的原因: ➢ 矢量量化能有效的应用矢量中各分量之间的四种相互关 联性质来消除数据中的冗余度。这四种相互关联的性质是 线性依赖(相关性)、非线性依赖(统计不独立)、概率密度 函数的形状和矢量量化的维数,而标量量化仅能利用线性 依赖和概率密度函数的形状来消除冗余度。
6
五、矢量量化研究的目的
针对特定的信息源和矢量维数,设计 出一种最优化的量化器,在R(量化速率) 一定的情况下,给出的量化失真尽可能接 近D(R)(最小量化失真)。
7
6.2 矢量量化的基本原理
标量量化是对信号的单个样本或参数的幅 度进行量化;标量是指被量化的变量,为 一维变量。
矢量量化的过程是将语音信号波形的K个样 点的每一帧,或有K个参数的每一参数帧构 成K维空间的一个矢量,然后对这个矢量进 行量化。

矢量量化

矢量量化

矢量量化器定义:
维数为P,码本长度为J的矢量量化器Q定义: 为从P维欧几里德空间RP到一包含J个输出(重构)
点的有限集合C的映射,
Q:RP→C,其中C={y1 ,y2 ,… ,yJ} yi
RP,i=1,…,J
集合C称作码本或码书,码本长度为J 。 码本的J个元素称作码字或码矢量,它们均
为RP中的矢量,P维矢量。
共有N个P维矢量X={X1,X2,…,XN},其中第i个矢量为Xi,
i=1,2,…N。类比过来,N个语音帧,每帧中共有P个 声道参数,共组成N个P维矢量。 a11,a12,…,a1K aN1,aN2,…,aNK
第1帧
第N帧
第一帧 第二帧
X1=a11,a12,…,a1P X2=a21,a22,….,a2P
采样
量化
x1 xa1

xak
xak+1
xaL
xaL+1
1-dimensional VQ is shown below:
-2 -
2 2
标量量化
2. 矢量量化:
若干个标量数据组成一个矢量,矢量量化是
对矢量进行量化,和标量量化一样,它把矢量空间
分成若干个小区域,每个小区域寻找一个代表矢量,
码书
N个特征矢量 wen {X , X , … , X } 1 2 N
{2 , 4, … , 1}
语 码本
文 码本 {Y1 ,Y2 ,…,YJ}
音 码本
模板库
学 码本
三、矢量量化在语音识别中的应用
先对系统中的每个字,做一个码本作为该字 的参考(标准)模板,共有M个字,故共有M个码 本,组成一个模板库。 识别时,对于任意输入的语音特征矢量序列X ={X1 , X2 , … , XN},计算该序列中每一个特 征矢量对模板库中的每个码本的总平均失真量误

语音编码的基本方法

语音编码的基本方法

语音编码的基本方法语音编码是将语音信号转换为数字信号的过程,以便能够利用数字信号处理技术进行存储、传输、分析和合成。

语音编码的目标是尽可能减小存储和传输所需的比特率,同时尽量保持原始语音信号的质量。

下面将介绍语音编码的基本方法。

1.线性预测编码(LPC)线性预测编码(Linear Predictive Coding,LPC)是一种基于声道模型的语音编码方法。

该方法假设语音信号可以由线性滤波器和一个激励源合成。

LPC编码先通过线性预测分析,估计出语音信号的线性滤波器参数,然后将这些参数进行编码传输。

2.矢量量化矢量量化是一种有损数据压缩技术,也是常用的语音编码方法。

它将一组相关的样本(向量)映射到一组有限的离散码字中。

在语音编码中,矢量量化可以应用于线性预测编码的残差信号,以及其他一些语音特征参数的编码。

3.短时傅里叶变换编码(STFT)短时傅里叶变换编码(Short-Time Fourier Transform,STFT)是一种频域分析方法,常用于语音信号的编码。

STFT将语音信号分段进行傅里叶变换,将时域信号转换为频域信号,然后对频域信号进行编码传输。

4.频率对齐线性预测编码(FSLP)频率对齐线性预测编码(Frequency-Selective Linear Prediction,FSLP)是一种新型的语音编码方法。

它通过对语音信号进行预处理,将频率对齐后的语音信号分帧,然后利用线性预测分析得到每一帧的滤波器系数,并对这些系数进行编码传输。

5.自适应编码自适应编码是一种根据传输条件自动调整编码参数的方法。

最常见的自适应编码方法是可変速率编码(Variable Bit Rate,VBR)和可变码率编码(Adaptive Bit Rate,ABR)。

这些编码方法根据语音信号的特性和传输条件,动态调整编码参数,以尽可能减小比特率,并保持较高的语音质量。

除了上述几种基本方法,还有很多其他的语音编码技术,如无失真编码、人工神经网络编码等。

第四章 矢量量化.

第四章 矢量量化.

第四章矢量量化1、矢量量化?(VQ)是1956年由steinhaus首次提出的,1970年代后期发展起来的数据压缩和编码技术。

它主要应用于:语音编码、语音合成、语音识别和说话人识别。

矢量量化在语音信号处理中占有重要地位。

2、标量量化和矢量量化?✓标量量化:是对标量进行量化,即一维的矢量量化。

将动态范围分成若干个小区间,每小区间有一个代表值。

当输入信号落入某区间时,量化成该代表值。

✓矢量量化:是对矢量进行量化。

将矢量空间分成若干个小区域,每小区域有一个代表矢量。

当输入矢量落入某区域时,量化成该代表矢量。

矢量量化是标量量化的发展。

矢量量化总是优于标量量化,维数越高,性能越优越。

矢量量化有效利用各分量间的互相关性。

1970年代末,Linde,Buzo,Gray和Markel等人首次解决了矢量量化码书生成的方法,并首先将矢量量化用于语音编码获得巨大成功。

如,在语音通信方面,将在原来编码速率为2.4kbit/s的线性预测声码器基础上,将每帧的10个反射系数加以10维的矢量量化,就可使编码速率降低到800bit/s,而声音质量基本未下降。

又如分段声码器,由于采用矢量量化,可以使数码率降低到150bit/s。

3、矢量量化的基本原理?标量量化是对信号的单个样本或参数的幅度进行量化;标量是指被量化的变量,为一维变量。

矢量量化的过程是将语音信号波形的K个样点的每一帧,或有K个参数的每一参数帧构成K维空间的一个矢量,然后对这个矢量进行量化。

标量量化可以说是K=1的矢量量化。

矢量量化的过程和标量量化过程相似。

在标量量化时,在一维的零至无穷大值之间设置若干个量化阶梯,当某输入信号的幅度值落在某相邻的两个量化阶梯之间时,就被量化成两阶梯的中心值。

而在矢量量化时,则将K维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。

矢量量化的定义将信号序列{}i y 的每K 个连续样点分成一组,形成K 维欧氏空间中的一个矢量,矢量量化就是把这个K 维输入矢量X 映射成另一个K 维量化矢量。

第四章 矢量量化

第四章 矢量量化

第四章矢量量化1、矢量量化?(VQ)是1956年由steinhaus首次提出的,1970年代后期发展起来的数据压缩和编码技术。

它主要应用于:语音编码、语音合成、语音识别和说话人识别。

矢量量化在语音信号处理中占有重要地位。

2、标量量化和矢量量化?✓标量量化:是对标量进行量化,即一维的矢量量化。

将动态范围分成若干个小区间,每小区间有一个代表值。

当输入信号落入某区间时,量化成该代表值。

✓矢量量化:是对矢量进行量化。

将矢量空间分成若干个小区域,每小区域有一个代表矢量。

当输入矢量落入某区域时,量化成该代表矢量。

矢量量化是标量量化的发展。

矢量量化总是优于标量量化,维数越高,性能越优越。

矢量量化有效利用各分量间的互相关性。

1970年代末,Linde,Buzo,Gray和Markel等人首次解决了矢量量化码书生成的方法,并首先将矢量量化用于语音编码获得巨大成功。

如,在语音通信方面,将在原来编码速率为2.4kbit/s的线性预测声码器基础上,将每帧的10个反射系数加以10维的矢量量化,就可使编码速率降低到800bit/s,而声音质量基本未下降。

又如分段声码器,由于采用矢量量化,可以使数码率降低到150bit/s。

3、矢量量化的基本原理?标量量化是对信号的单个样本或参数的幅度进行量化;标量是指被量化的变量,为一维变量。

矢量量化的过程是将语音信号波形的K个样点的每一帧,或有K个参数的每一参数帧构成K维空间的一个矢量,然后对这个矢量进行量化。

标量量化可以说是K=1的矢量量化。

矢量量化的过程和标量量化过程相似。

在标量量化时,在一维的零至无穷大值之间设置若干个量化阶梯,当某输入信号的幅度值落在某相邻的两个量化阶梯之间时,就被量化成两阶梯的中心值。

而在矢量量化时,则将K维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。

矢量量化的定义将信号序列{}i y 的每K 个连续样点分成一组,形成K 维欧氏空间中的一个矢量,矢量量化就是把这个K 维输入矢量X 映射成另一个K 维量化矢量。

矢量量化技术

矢量量化技术

如果我们知道只有4种可能的声道形状,与 4个可能的声道滤波器系数组成的矢量相对应, 若某一个滤波器系数知道了,其它系数就知道 了,也就是矢量中的标量值之间是高度相关的, 在这种情况下,一个分析帧,只需要一个 2bits对4个滤波器系数进行编码,这样降低了 所需的比特数。矢量量化就是利用数据之间的 相关性来降低所需的比特率。
维矢量。所有可能的二维矢量就构成了一个平面。 第i个二维矢量记为: Xi={xi1,xi2}。先把这个平面 划分成J块互不相交的子区域,从每个子区域中找 出一个代表矢量。如J=7。
x2 Y3
Y4
Y2
Y1
Y7
x1
Y5
Y6
码本 Y={Y1,Y2,…,YJ} 码本长度 J=7
码字 Yj={xj1,xj2},j=1,2,…J
第七章 矢量量化技术 (vector quantization VQ)
§7.1 §7.2 §7.3 §7.4
概述 矢量量化的基本原理 矢量量化的失真测度 矢量量化的最佳码本设计
§7.1 概述
一、矢量量化的应用 二、标量量化和矢量量化的区别
一、矢量量化的应用
矢量量化技术技术是一种数据压缩和编码技术, 矢量量化压缩技术的应用领域非常广阔,如军事部门 和气象部门的卫星(或航天飞机)遥感照片的压缩编码 和实时传输、雷达图像和军用地图的存储与传输、数 字电视和DVD的视频压缩、医学图像的压缩与存储、 网络化测试数据的压缩和传输、语音编码、图像识别 和语音识别等等 。
二、标量量化和矢量量化的区别
1.标量量化: 整个动态范围被分成若干个小区间,每个小区间
有一个代表值,量化时落入小区间的信号值就用这个 代表值代替,或者叫被量化为这个代表值。这时的信 号量是一维的,所以称为标量量化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)矢量量化
将语音信号的取样值或语音的特征参数值分成若干 组,每组构成一个矢量,然后分别对每个矢量进行量 化。这种量化就称为矢量量化(N维)。
- 波形特征参数矢量量化:设L = 1024(40种语音单 位,每个对应25种变形),即为了指定码本中任意码 矢需要10bit,则对每秒100个特征矢量的传输需率就 为1,000bit/s。
矢量量化原理
(1)标量量化 对语音信号的每个取样值,或语音信号的每个特征参
数值分别独立地进行量化,称为标量量化(一维)。 - 标量量化与传输率 - 波形量化:采样频率为10kHz、振幅量化为16bit的语 音信号的传输速率是:
16x10000 = 160i,0=000bit/s(bps)。 - 波形特征参数量化:对次数为10、每秒100个特征矢 量(如频谱包络参数),如振幅量化也为16bit的话,其 传输速率是:16x100x10=16,000bit/s。矢量量化示意图N来自.码矢12
3
t
4
VQ
(Vector Quantization )
f
142 t
矢量量化过程
设: 有限矢量集合Y={ yi, 1≤i≤L} ,Y称为码本,L是码本的大小,yi 称 为码矢,码矢是N维矢量,即yi = ( yi1, yi2, …, yiN)T。 -码本搜索:对输入矢量x进行VQ的过程,就是在码本中以某种方 式进行搜索,寻找一个与x最接近的码矢之过程,即用该码矢去替代 x。这里,所谓最接近,应按某种失真测度d(x, yi)为标准来衡量。 I = argmin d(x, yi) i -码矢地址编码:为了传输量化后得到的码矢yi,一般都需要进行 编码。通常,并不是直接对yi进行编码,而是对yi在码本中的地址或 标号进行编码。要传送的正是这个标号的码字I。在接受到标号的码 字后,就可在接受端的码本中找到相应的码矢,这便是重建码矢。 对于L级码本来说,为了表示其中任意一个码矢的标号,最多只要 log2L个bit的二进制代码就够了。
相关文档
最新文档