四川省仁寿县城北教学点2015届高三5月高考模拟考试数学(文)试题(有答案)

合集下载

2015年高考模拟考试5.29Word版含答案

2015年高考模拟考试5.29Word版含答案

2015年高考模拟考试试题文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若复数z 满足()12i z i +=-,则z =( )A .12 B . C .2 D 2、已知函数()sin 2f x x =(R x ∈),为了得到函数()sin 24g x x π⎛⎫=+ ⎪⎝⎭的图象,只要将()y f x =的图象( ) A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 3、平面向量a 与b 的夹角为60,()2,0a =,1b =,则2a b +=( )A .2B .CD .4、若某几何体的三视图如图所示,则此几何体的直观图是( )5、已知命题:p 2230x x +-≤;命题:q x a ≤,且q 的一个充分不必要条件是p ,则实数a 的取值范围是( )A .(,1-∞B .)1,+∞C .)1,-+∞D .(,3-∞- 6、设n S 为公差不为零的等差数列{}n a 的前项和,若983S a =,则85a a =( ) A .3 B .5 C .7 D .21 7、一只蜜蜂在一个棱长为5的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于2,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A .125B .8125C .1125D .271258、过双曲线C :22221x y a b-=(0a >,0b >)的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为2的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( )A .2213y x -= B .2214y x -= C .221412x y -= D .221124x y -= 9、函数()1ln f x x x ⎛⎫=- ⎪⎝⎭的图象是( )10、阅读右面的程序框图,则输出的S =( )A .14B .30C .20D .55 11、已知H 是球O 的直径AB 上一点,12AH =HB ,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为( )A .53π B .4π C .92π D .3π 12、若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞ 上是有界函数.下列函数: ①11)(-=x x f ; ②1)(2+=x x x f ; ③x xx f ln )(=; ④xinx x f =)(, 其中“在(1,)+∞上是有界函数”的序号为( )A. ②③B. ①②③C. ②③④D. ③④二、填空题(本大题共4小题,每小题5分,共20分.)13、已知0a >,,x y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =_______14、已知圆C :()()22112x y -+-=经过椭圆:Γ22221x y a b+=(0a b >>)的右焦点F 和上顶点B ,则椭圆Γ的离心率为 . 15、在我市2014年“创建文明城市”知识竞赛中,考评组从中抽取200份试卷进行分析,其分数的频率分布直方图如图所示,则分数在区间[)60,70上的人数大约有 份.16、在数阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭里,每行、每列的数依次均成等比数列,且222a =,则所有数的乘积为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)设数列{a n }的前n 项和为S n ,).1(2,11--==n n na S a n n (I )求证 数列{a n }是等差数列; (II )设数列}1{1+n n a a 的前n 项和为T n ,求T n .18.(本小题满分12分)某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[)180,175,第175,170,第四组[)165165,第三组[),160,第二组[),170五组[)180得到的频率分布直方图如图所示,185,(1)求第三、四、五组的频率;(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试。

四川省仁寿县城北教学点2015届高三5月高考模拟考试数学(理)试题(有答案)

四川省仁寿县城北教学点2015届高三5月高考模拟考试数学(理)试题(有答案)

2015年高三5月模拟数学(理)注意事项:1.答题前,务必将自乙的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 格笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米的黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题有必须在答题卡上作答,在试题卷上答题无效。

5.考试结束,将答题卡上交。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、复数i i +-1)1(2等于 A .1+i B.﹣1﹣i C. 1﹣i D. ﹣1+i2、对于以下判断(1)命题“已知R y x ∈,”,若x ≠2或y ≠3,则x + y ≠5”是真命题。

(2)设f (x )的导函数为f' (x ),若f' (x 0),则x 0是函数f (x )的极值点。

(3)命题“R x ∈∀,e x ﹥0”的否定是:“R x ∈∃,e x ﹥0”。

(4)对于函数f (x ),g (x ),恒成立的一个充分不必要的条件是f (x )min ≥g (x )max 。

其中正确判断的个数是A .1B .2C .3D .03、执行如右图所示的程序框图,输出的S 值为A .21B .43C .1411D .107 4、以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则y x ,的值分别为A . 5,2B .5,5C . 8,5D .8,85、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题中正确的是A .若βα⊥, ,α⊂m ,β⊂n 则n m ⊥B .若β//,//,n n m a m ⊥ ,则,ββα⊂⊥m C .若n m ⊥,,α⊂m ,β⊂n 则,ββα⊂⊥m D .若,//ββα⊂m ,αm ,β⊂n 则n m // 6、已知数列{a n }的前n 项和S n =2n +1-2,等差数列{b n }中,b 2 = a 2,面b n +3+b n -1=2b n +4, (n ≥2,n ∈N +), 则b n =A. 2n+2B.2nC. n-2D.2n-2 7、△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量),(sin c a B p += ,),sin (sin a b A C q --= .若,R ∈∃λ使,q p λ=则角C 的大小为A. 6πB. 32πC. 3πD. 2π8、节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的月秒内任一时刻等可能发生,然后每串彩灯在4秒内间隔闪亮,那么这两串彩灯同时通电后它们第一次闪亮的时刻相差不超过1秒的概率是A .165B .169C .41D .167 9、己知函数f (x )=R a a x ∈+,3在[-1,1]上的最大值为M (a ) ,若函数g (x )=M (x )-t x +2有4个零点,则实数t 的取值范围为。

2015届高三质检试卷数学(文) Word版含答案

2015届高三质检试卷数学(文) Word版含答案

2015年永安市普通高中毕业班质量检查文 科 数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题).本试卷共6页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内 作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标记; 非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔 迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s = 13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,则复数()2i i -=等于( )(A)2i - (B)12i -+ (C)2i + (D)12i + 2.已知命题p :x ∀∈R ,sin 1x ≤,则p ⌝为( )(A)x ∀∈R ,sin 1x ≥ (B)x ∀∈R , sin 1x > (C)0x ∃∈R , 0sin 1x ≥ (D)0x ∃∈R ,0sin 1x >3.设集合{}2log P x y x ==, {}3Q y y x ==,则P Q ⋂等于( )(A)R (B)[)∞+0 (C)()+∞,0 (D)[)+∞,1 4.已知直线1l :11y k x =+和直线2l :2y k x b =+,则“12k k =”是“12//l l ”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 5.将sin 26y x π⎛⎫=- ⎪⎝⎭图象向右平移12π个单位,所得函数图象的一条对称轴的方程是( ) (A)12x π=(B)6x π=(C)3x π=(D)12x π=-6.如右图,在ABC ∆中,已知3BC DC =,则AD 等于( )(A)1233AB AC + (B) 1233AB AC -(C) 2133AB AC + (D)2133AB AC - 7.执行右边的程序框图,则输出的结果是( )(A)73 (B)94 (C)115 (D)1368.设l ,m ,n 为不同的直线,α,β为不同的平面,则正确的是( ) (A)若αβ⊥,l α⊥,则//l β (B)若αβ⊥,l α⊂,则l β⊥ (C)若l m ⊥,m n ⊥,则//l n(D)若m α⊥,//n β且//αβ,则m n ⊥9.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点分别为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为12,则C 的方程为( )(A)22132x y += (B)2213x y += (C)221128x y += (D)22196x y += 10.函数1sin y x x=-的图象大致是( )11.已知函数()()32212015,3f x x ax b x a b R =+++∈,若从区间[]1,3中任取的一个数a ,从区间[]0,2中任取的一个数b ,则该函数有两个极值点的概率为( )(A)18 (B)34 (C)78 (D)8912.对于函数()y f x =(x D ∈),若存在常数c ,对于任意的1x D ∈,存在唯一的2x D ∈,使得()()122f x f x c +=,则称函数()f x 在D 上的算术平均数为c .已知函数()f x = ln x ,[]2,8x ∈,则()f x 在[]2,8上的算术平均数为( )(A)ln 2 (B)ln 4 (C)ln5 (D)ln8第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡相应位置. 13.为了了解某市高三学生的身体发育情况,抽测了该市50名高三男生的体重(kg ),数据得到的频率分布直方图如右图.根据右图可知这50名男生中体重在[]56.5,60.5的人数是 .14.若函数()()220()0x ax x f x x x x ⎧+<⎪=⎨-+≥⎪⎩是奇函数,则实数=a . 15.在钝角ABC ∆中,||BC =||cos =||cos AC B BC A ,则AC = .16.已知甲、乙、丙、丁四位同学,在某个时段内每人互不重复地从语文、数学、英语、文综这四个科目中选择一科进行复习.现有下面五种均为正确的说法:A .甲不在复习语文 ,也不在复习数学;B .乙不在复习英语 ,也不在复习语文;C .丙不在复习文综 ,也不在复习英语;D .丁不在复习数学 ,也不在复习语文;E .如果甲不在复习英语,那么丙不在复习语文. 根据以上信息,某同学判断如下:①甲在复习英语 ②乙在复习文综 ③丙在复习数学 ④丁在复习英语 则上述所有判断正确的序号是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 为等差数列,49a =,且8222a a +=.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若点(),n n n A a b 在函数3x y =的图像上,求数列{}n b 的前n 项和n S .18.(本小题满分12分)下列两图(图中点与年份对应)分别表示的是某市从2003年到2015年的人均生活用水量和常住人口的情况:y(Ⅰ)若从2003年到2015年中随机选择连续的三年进行观察,求所选的这三年的人均用水量恰好依次递减的概率;(Ⅱ)由图判断,从哪年开始连续四年的常住人口的方差最大?并结合两幅图表推断该市在2012年到2015年这四年间的总生活用水量......的增减情况.(结论不要求证明)19.(本小题满分12分)如图,在三棱锥P ABC-中,PA⊥平面ABC,AC BC⊥,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图所示.(Ⅰ)证明:AD⊥平面PBC;(Ⅱ)求三棱锥D ABC-的体积.20.(本小题满分12分)如图,A是单位圆与x轴正半轴的交点,点P、B在单位圆上,设AOPθ∠=,AOBα∠=,且OQ OA OP=+.(Ⅰ)记四边形OAQP的面积为S,当0θπ<<时,求OA OQ S+的最大值及此时θ的值;(Ⅱ)若2παk≠,()k k Zθπ≠∈,且OB∥OQ,求证:tan tan2θα=.侧(左)视图正(主)视图PDCBA22x21.(本小题满分12分)设抛物线Γ:22(0)x py p =>的准线被圆O :224x y +=(Ⅰ)求抛物线Γ的方程;(Ⅱ)设点F 是抛物线Γ的焦点,N 为抛物线Γ上的一动点,过N 作抛物线Γ的切线交圆O 于P 、Q 两点,求FPQ ∆面积的最大值.22.(本小题满分14分) 已知函数1()ln ()f x a x a R x=+∈. (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)是否存在实数a ,使得函数()()2g x f x x =-在(0,)+∞上单调递减? 若存在, 求出a 的取值范围;若不存在,请说明理由; (Ⅲ)当0a >时,讨论函数()y f x =零点的个数.2015年永安市普通高中毕业班质量检查 文科数学试题参考答案及评分标准一、选择题1. D2. D 3.C 4.B 5.D 6.A 7.B 8. D 9.D 10.A 11.C 12.B 二、填空题① 三、解答题17.解:(Ⅰ)法一:设{}n a 的公差为d ,则4139a a d =+=,11722a d a d +++= 解得13a =,d 2= ………………4分所以12+=n a n ………………6分法二:由2822a a +=得511a = ………………2分又49a =所以{}n a 的公差为d =54a a -=2 ………………4分 所以4(4)21n a a n d n =+-=+ ………………6分(Ⅱ)由点(),n n n A a b 在函数3x y =的图像上得2133n a n n b +==所以23121393n n n n b b +++== ,211327b +==所以{}n a 是以27为首项,以9为公比的等比数列………………10分 所以12n n S b b b =+++27(19)27(91)198n n --==- ………………12分 18.解:(Ⅰ)在13年中共有11个连续的三年………………3分 其中只有2007至2009和2010至2012两个连续三年的 人均用水量符合依次递减………………6分 所以随机选择连续的三年进行观察,所选的这三年的人均用水量恰是依次递减的概率为211………………8分 (Ⅱ)2009至2012连续四年的常住人口的方差最大………………10分 2012至2015四年间的总生活用水量是递增的.………………12分 19.解::(Ⅰ)因为PA ⊥平面ABC ,所以PA BC ⊥,又AC BC ⊥,所以BC ⊥平面PAC ,所以BC AD ⊥.………3分 由三视图可得,在PAC ∆中,4PA AC ==,D 为PC 中点, 所以AD PC ⊥,所以AD ⊥平面PBC ………………6分(Ⅱ)由三视图可得4BC =,由⑴知90ADC ∠=︒,BC ⊥平面PAC ………………9分 又三棱锥D ABC -的体积即为三棱锥B ADC -的体积,所以,所求三棱锥的体积111164443223V =⨯⨯⨯⨯⨯=………………12分20. 解:(Ⅰ)由已知)sin ,(cos ),0,1(θθP AOQ OA OP =+,∴(1cos ,sin )OQ θθ=+ ………………3分又,sin θ=SOQABC DP∴sin cos 1)14OA OQ S πθθθ⋅+=++=++)0(πθ<<故S +⋅的最大值是12+,此时4πθ=………………6分(Ⅱ)∵(1cos ,sin )OA OP θθ+=+,OB ∥()OA OP +, ∴cos sin (1cos )sin 0αθθα-+=………………9分 又2k πα≠,k θπ≠()k Z ∈, ∴sin tan 1cos θαθ=+22sin cos22tan 22cos 2θθθθ==………………12分 21.解:(Ⅰ)因为抛物线Γ的准线方程为2p y =-, 且直线2p y =-被圆O :224x y +=,所以22()42p =-,解得1p =, 因此抛物线Γ的方程为22x y =………………4分(Ⅱ)设N (2,2t t ),由于'y x =知直线PQ 的方程为:2()2t y t x t -=-.即22t y tx =-………………6分因为圆心O 到直线PQ2所以|PQ|=7分设点F 到直线PQ 的距离为d,则2d ==8分 所以,FPQ ∆的面积S 12PQ d =⋅===≤=11分当t =±=”,经检验此时直线PQ 与圆O 相交,满足题意.综上可知,FPQ ∆12分22.解:(Ⅰ)当2a =时,1()2ln f x x x=+,(1)1f =, 所以221()f x x x'=-,(1)1f '=. 所以切线方程为y x =. ……………………3分(Ⅱ)存在.因为()()2g x f x x =-在(0,)+∞上单调递减,等价于21()20a g x x x '=--≤在(0,)+∞恒成立……………………5分 变形得12a x x≤+ (0)x >恒成立……………………6分而12x x +≥=(当且仅当12x x=,即x =时,等号成立).所以a ≤. ……………………8分 (Ⅲ)21()ax f x x -'=. 令()0f x '=,得1x a =……………………9分 所以min ()=()f x f a=ln(1ln )a a a a a+=-……………………10分 (ⅰ)当0a e <<时,min ()0f x >,所以()f x 在定义域内无零点; (ⅱ)当a e =时,min ()0f x =,所以()f x 在定义域内有唯一的零点; (ⅲ)当a e >时,min ()0f x <,① 因为(1)10f =>,所以()f x 在增区间1(,)a+∞内有唯一零点; ② 21()(2ln )f a a a a=-, 设()2ln h a a a =-,则2()1h a a'=-, 因为a e >,所以()0h a '>,即()h a 在(,)e +∞上单调递增, 所以()()0h a h e >>,即21()0f a>, 所以()f x 在减区间1(0,)a内有唯一的零点. 所以a e >时()f x 在定义域内有两个零点.综上所述:当0a e <<时,()f x 在定义域内无零点; 当a e =时,()f x 在定义域内有唯一的零点;当a e >时,()f x 在定义域内有两个零点.……………………14分 (若用其他方法解题,请酌情给分)。

仁寿县高三数学测验题(文科)1.docx

仁寿县高三数学测验题(文科)1.docx

仁寿县2015届高三数学测验题(文科)1本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{}1==x x M ,{}x x x N ==2,则=⋃N M(A ){}1 (B ){}1,1- (C ) {}1,0 (D ){}1,0,1-2、复数2(1)1i i+-=A. 1i +B. 1i -+C. 1i --D. 1i -3、已知平面γβα,,,直线c b a ,,,则下列命题正确的是(A )若,,γβγα⊥⊥则βα//;(B )若,,c b c a ⊥⊥则b a //; (C )若,,αα⊥⊥b a 则b a //; (D )若,//,//ααb a 则b a //.4、如图所示,某几何体的三视图相同,均为圆周的41,则该几何体的表面积为 (A )π43 (B)π45(C)π (D) π2 5、执行右图的程序框图,则输出的结果为 (A )66(B)64(C)62(D)606、设y x ,满足约束条件⎩⎨⎧≤-≤-≤≤0131y x x ,则y x z -=2的最大值为(A )3 (B )2 (C )1 (D )07、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcosC+ccosB=asinA ,则△ABC 的形状为( ) A . 等腰三角形B . 锐角三角形C . 钝角三角形D . 直角三角形8、已知直线21//l l ,A 是21,l l 之间的一定点,并且A 点到21,l l 的距离分别为3,2,B 是直线2l 上一动点,作AB AC ⊥,且使AC 与直线1l 交于点C ,则ABC ∆面积的最小值为 (A )2 (B )3 (C )6 (D )49、已知21,F F 分别是双曲线1:2222=-by a x C 的左,右焦点,若2F 关于渐近线的对称点恰落在以1F 为圆心,1OF 为半径的圆上,则双曲线C 的离心率为 (A )3 (B)3 (C)2 (D)210、已知函数),0()0,()(+∞⋃-∞是定义在x f 上的偶函数,当0>x 时,111)(4)(2),2(21,20,12)(|1|-=⎪⎩⎪⎨⎧>-≤<-=-x f x g x x f x x f x 则函数的零点个数为A .4B .6C .8D .10第二部分 (非选择题 共100分)注意事项:必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答。

四川省高中2015届高三“联盟”测试数学试题(文史类) 扫描版含答案

四川省高中2015届高三“联盟”测试数学试题(文史类) 扫描版含答案

四川省高中2015 届名校联盟文科数学参考答案及评分标准一、选择题1~5: B A D C D 6~10: A D D C B 二、填空题11. 0 12.三、解答题12[ , 5]51113.214. 900 15. ①③④16. 解:(Ⅰ)由题设sin A = sin(B +C )= sin 3B = sin 2B cos B + cos 2B sin B= 2 s in B cos2 B + (1 - 2 s in 2 B) sin B= 2 s in B(1 - sin 2 B) + (1 - 2 s in 2 B) sin B= 3sin B - 4 s in3 B 6 分(Ⅱ)在∆ABC中,0<π-3B <π得0<B < π,∴1< cos B <1 3 2由正弦定理AB +BC sin C + sin A=sin 3B + sin 2B AC sin B sin B=-4 s in 2 B + 2 cos B + 3= 4 cos2 B + 2 cos B -1= 4(cos B +12 -54 4易得所求取值范围为(1, 5)12 分17. 解:(Ⅰ)当空气质量为一级时,对应的PM2.5 浓度落在[0, 50]中,其频率P1=0.003⨯50=0.15 ,当空气质量为二级时,对应的P M2.5 浓度落在(50,100]中,其频率P2 =0.006⨯50=0.30 ,故由样本数据频率分布直方图估算该市居民每天可正常进行运动的概率P1+P2=0.45(Ⅱ)空气质量为“重度污染”和“严重污染”即P M2.5 浓度落在(200, 500]的频率为0.002 ⨯50+0.001⨯50+4 ⨯0.00025 ⨯50=0.20 ,则由题设知在未来每一天中出现雾霾天气5 1 1 7 7 1的概率P=0.20 ⨯ = . ∴在未来2天里恰有一天为雾霾天气的概率P= ⨯ + ⨯8 8 8 8 8 818.解:(Ⅰ) 证明 ① 平面PAB ⊥ 平面ABCD 且相交于直线AB而AD ⊂ 平面ABCD , AD ⊥ AB ∴ AD ⊥ 平面PAB , 又PB ⊂ 平面PAB ∴ PB ⊥ AD , 又PB ⊥ PD , AD PD = D .∴ PB ⊥ 平面PAD . PB ⊂ 平面PBC , 故平面PAD ⊥ 平面PBC4 分② 取PB 中点T , 连接RT 、ST ,RT / / P A , ST / / BC .且PB ⊥ PA , PB ⊥ BC . ∴ PB ⊥ RT , PB ⊥ ST .又RT ST =T , 则PB ⊥ 平面RST . 又PB ⊥ 平面PAD , ∴ 平面RST ⊥ 平面PAD . 且RS ⊂ 平面RST , 故RS / /平面PAD .8 分(Ⅱ) C D ⊥ 平面PDQ ,∴ PQ ⊥ CD .又PQ ⊥ AD , C D ⋂ AD = D ,∴ PQ ⊥ 平面ABCD .则PQ ⊥ AB ,由已知AQ = 1 , PQ = ,∴ DQ =, 又CD 22 2 C D ⊥ QD ,∴ ∆CQD 是面积S = 1 CD ⋅ DQ = 5.2 4则三棱锥P - CDQ 的体积为V = 1 ⋅ S ⋅ PQ = 3 ,3 24 故三棱锥Q - PCD 的体积为 .2412 分19.解: (Ⅰ) 设等比数列{b n }的公比为q ,由题设b 3 = -4,∴b = - 4 , b = - 4 . 1q 2 2 q或31则f ( x) =-4q2x -4x - 4 =-(2x +1)2 - 3q q∴f ( x)在R上的最大值为- 3,即a-7=-3,∴a=1.6 2 6 2(Ⅱ) d ≠ 0且f (a2+a8) = f (a3+a11),∴f ( x)图象的对称轴方程为x =(a3+a11) + (a2+a8)=2a7+ 2a5 = 2a=1.2 2 6由此得2=-1,即q =-2.q∴等比数列{bn}的通项公式bn=b q n-3 =-(-2)n-1(n ∈N * )(Ⅲ)a=-7,a=1,∴d=a6-a2 =1.2 2 6 2 6 - 2T =a2-a1 +a3-a2 ++an+1-ana1a2a2a3anan+1=1-1+1-1a2a1a3a2++1an-1an+1=1-1=-2-2=-4a1an+19 2n - 9 9解得n = 9.20. 解:(Ⅰ)设R( x, y), F1(-c, 0), F2 (c, 0).由题设RF+ RF=c2 +1,c> 0且c ≠ 1,∴F F= 2c <c2 +1.1 2 1 2则由椭圆的定义可知点R 的轨迹是以F1、F2为焦点,c2 +1为长轴的椭圆则2c=得⎧⎪c⎧⎪c =, 或.c2 +1 2 ⎨⎨c2 +1= 4 4⎪⎩⎪c2 +1=⎪⎩ 3设椭圆E 的长轴长,短轴长分别为2a, 2b⎧a2 = 4则⎨⎩b2 =1⎧a2 =4⎪9⎨⎪b2 =92 2 2故圆锥曲线E 的标准方程为x+y 2 =1 或x+y=1. 4 分4 4 19 9(Ⅱ) 设P (m , n ), B ( x 0 , y 0 ), A , P 两点关于原点对称,∴ A (-m , -n ).由(Ⅰ)知,椭圆E 的标准方程为xa2y 2+=1b2m2 n2x 2 y 2x 2 -m2y 2 -n2y 2 -n2 b2且+=1, 0 +0 =1.∴0 +0 = 0,即0 =-.a2 b2a2 b2a2 b2x 2 -m2 a2y -n y+n y 2 -n2 1又k =0 , k=0 ,∴k k=0 =-8 分1 x -m 2x +m1 2 x 2 -m2 40 0 0(Ⅲ)由已知可设P(m,n ),A、P两点关于原点对称∴A(-m,-n)当E 的方程为x+y2 =1 时,4F0),k2=由(Ⅱ)知k1=-+m,4nPA ⊥PB,∴(⋅n4n m=-1,得m =3易得n = ,∴k=6 28AB所在直线方程为y x3)8x2y2当E 的方程为4+1=1 时,同理可得,99AB所在直线方程为y =(x-)8 3 13 分21. 解:(Ⅰ)f '( x) =1 - 2ax2x(x > 0).(1)当a ≤ 0时,f '( x) > 0在(0, +∞)上恒成立∴f ( x)在(0, +∞)上递增.(2)当a > 0时, 设f '( x) > 0 ⇔ 0 <x设f '( x) < 0 ⇔x >∴f ( x)在(0, 1 )上递增,+∞)上递减.综上,当a ≤ 0时,f ( x )的单调递增区间为(0, +∞),当a > 0时,f ( x )的单调递增区间为)f ( x )的单调递减区间为1+∞).4 分(Ⅱ)由(Ⅰ)知当a = 时, f ( x )在(0, 2]上递增, 在[2, +∞)上递减.8设g ( x ) =f ( x ) - f ( 3 ) ( x ∈[2, +∞)) .2∴ g ( x )在[2, +∞)上递减, 2 ∈[2, +∞), 3e ∈[2, +∞)2由(Ⅰ)知f ( x )在(0, 2]上递增, 2> 3 ,∴ f (2) > f ( 3则g (2) = 2 2f (2) - f ( 3 ) > 02又g ( 3 e )=f ( 3 e ) - f ( 3 ) = ln 3 e - 1 ⋅ 9 e 2 - ln 3 + 92 2 2 2 8 4 2 3241 - 9e 2 = < 0,由零点存在定理可知,32g ( x )在(2 3e )上必有唯一零点记为x , , 2 0即g ( x )=f ( x ) - f ( 30 02故存在x ∈[2, +∞), 使f ( x )=f ( 3 ). 9 分0 02(Ⅲ)由(Ⅰ)知当a ≤ 0时, f ( x )在[1, 3]上递增, 不合题意,∴ a > 0.11。

2015届高三文科数学综合测试(一)参考答案.doc

2015届高三文科数学综合测试(一)参考答案.doc

2015届高三文科数学综合测试(一)参考答案一、选择题1-5,CBBDB 6-10,CBCBC 二、填空题11、150 12、-9 13、3 14、213- 15、 12三、解答题16、解:(1)(0)2sin()16f π=-=- 4分(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 6分16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3c o s 5β= 8分 ∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= 10分∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 12分 17、解: ⑴优秀 非优秀 合计 甲班 10 50 60 乙班 20 30 50 合计3080110………………………3分(2)假设成绩与班级无关,则()22211010302050()7.5()()()()30805060n ad bc K a b c d a c b d ⨯-⨯-==≈++++⨯⨯⨯则查表得相关的概率为99%,故没达到可靠性要求。

………………………8分(3)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为),(y x .所有的基本事件有:)1,1(、)2,1(、)3,1(、 、)6,6(共36个. ………………………10分事件A 包含的基本事件有:)6,3(、)5,4(、)4,5(、)3,6(、)5,5(、)6,4(、)4,6(共7个………………… …12分所以367)(=A P ,即抽到9号或10号的概率为367. ………………………13分18、(1)证明:∵⊥PB 底面ABC ,且⊂AC 底面ABC , ∴AC PB ⊥ …………………1分由90BCA ∠=,可得CB AC ⊥ ………………………2分又 PB CB B = ,∴AC ⊥平面PBC …………………………3分 注意到⊂BE 平面PBC , ∴AC BE ⊥ ……………4分BC PB = ,E 为PC 中点,∴BE PC ⊥…………………………5分 PCAC C =, ∴BE ⊥平面PAC ……………………6分(2)取AF 的中点G ,AB 的中点M ,连接,,CG CM GM ,∵E 为PC 中点,2FA FP =,∴//EF CG . ……………7分 ∵CG ⊄平面,BEF EF ⊂平面BEF , ∴//CG 平面BEF .…………8分 同理可证://GM 平面BEF .又CG GM G =, ∴平面//CMG 平面BEF . …………9分 ∵CD ⊂平面CDG ,∴//CD 平面BEF . …………10分 (3)由(1)可知BE ⊥平面PAC ,又由已知可得22=BE .238213131=⋅⨯==∆∆PC AC S S PAC AEF …………11分∴93231=⋅==∆--BE S V V AEF AEF B ABE F …………12分所以三棱锥ABE F -的体积为932. …………13分19、解:(1)由已知和得,当2≥n 时,23))1(21)1(23()2123(221-=-----=-=-n n n n n S S b n n n ……2分又21311-⨯==b ,符合上式。

2015年四川高考文科数学试卷(word版)和答案

2015年四川高考文科数学试卷(word版)和答案

2015年普通高等学校招生全国统一考试(四川卷)数学(文史类)姓名 成绩一、选择题:本题共10个小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B =( )()A {|13}x x -<< ()B {|11}x x -<< ()C {|12}x x << ()D {|23}x x <<2、设向量(2,4)a =与向量(,6)b x =共线,则实数x =( ) ()A 2 ()B 3 ()C 4 ()D 63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ) ()A 抽签法 ()B 系统抽样法 ()C 分层抽样法 ()D 随机数法4、设,a b 为正实数,则"1"a b >>是22log log 0"a b >>的( )()A 充要条件 ()B 充分不必要条件 ()C 必要不充分条件 ()D 既不充分也不必要条件5、下列函数中,最小正周期为π的奇函数是( )()A cos(2)2y x π=+ ()B sin(2)3y x π=+ ()Csin 2cos 2y x x =+ ()D sin cos yx x =+6、执行如图所示程序框图,输出S 的值为( )()A ()B ()C 12- ()D 127、过双曲线2213y x -=的右焦点且与x ,A B 两点,则||AB =( )()A ()B ()C 6 ()D 8、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y e=( 2.718...e =为自然对数的底数,,k b 为常数)。

2015届高三数学模拟考试(文)试题 Word版含答案

2015届高三数学模拟考试(文)试题 Word版含答案

22-=++++n(ad bc )K (a b )(c d )(a c )(b d )2015届高三年级模拟考试数学(文)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集为R ,集合A {}|33x x =-<<,{}15B x x =-<≤,则()R A C B =A.(]3,1--B.(3,1)--C.(3,0)-D.(3,3)-2.设i 是虚数单位,复数z=31()2+的值是A .i -B .iC .1-D .13.若p 是真命题,q 是假命题,则A .p q ∧是真命题B . p q ∨是假命题C .p ⌝是真命题D .q ⌝是真命题4.某程序框图如图2所示,现将输出(,)x y 值依次记为:1122(,),(,),,(,),n n x y x y x y 若程序运行中输出的一个数组是(,10),x -则数组中的x =A .32B .24C .18D .165.设3log a π=,13log b π=,3c π-=,则A.a b c >>B.b a c >>C.a c b>> D.c b a >>6.下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是A .si n (2)3π=-y x B .s i n (2)6π=-y x C .si n (2)6π=+y x D .s in ()23π=+x y7.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:参照附表,得到的正确结论是A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到…光盘‟与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到…光盘‟与性别无关”C .有90%以上的把握认为“该市居民能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该市居民能否做到…光盘‟与性别无关” 8.定义在R 上的奇函数()f x 满足(2)()f x f x -=-,且在[0,1]上是增函数,则有A .113()()()442f f f <-<B .113()()()442f f f -<<C .131()()()424f f f <<-D .131()()()424f f f -<<9.如图,在4,30,ABC AB BC ABC AD ∆==∠=o 中,是边BC 上的高,则AD AC ⋅的值等于A .0B .4C .8D .4-10.若0a >,0b >,2a b +=,则下列不等式中: ①1ab ≤222a b +≥;④112a b+≥.对一切满足条件的a ,b 恒成立的序号是A.①②B.①③C.①③④D.②③④11.已知双曲线2222:1x y C a b-=的左、右焦点分别是12,F F ,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,则双曲线C 的离心率的值是A .123+ BC .1313+ D12.已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是 A .4[0,]3 B .3[0,]4 C .14[,]43 D .13[,]44第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题 5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高三5月模拟
数学(文)
一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、复数2)1(i -等于
A .2+2i B.﹣2i C. 2﹣2i D. 2i
2、对于以下判断
(1)命题“已知R y x ∈,”,若x ≠2或y ≠3,则x + y ≠5”是真命题。

(2)设f (x )的导函数为f' (x ),若f' (x 0),则x 0是函数f (x )的极值点。

(3)命题“R x ∈∀,e x ﹥0”的否定是:“R x ∈∃,e x ﹥0”。

(4)对于函数f (x ),g (x ),恒成立的一个充分不必要的条件是f (x )min ≥g (x )max 。

其中正确判断的个数是
A .1
B .2
C .3
D .0
3、执行如右图所示的程序框图,输出的S 值为
A .21
B .43
C .1411
D .10
7 4、以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩
(单位:分)
已知甲组数据的中位数为15,乙组数据的平均数为16.8,则y x ,的值分别为
A . 5,2
B .5,5
C . 8,5
D .8,8
5、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题中正确的是
A .若βα⊥, ,α⊂m ,β⊂n 则n m ⊥
B .若β//,//,n n m a m ⊥ ,则,β
βα⊂⊥m C .若n m ⊥,,α⊂m ,β⊂n 则,β
βα⊂⊥m D .若,//ββα⊂m ,α
m ,β⊂n 则n m // 6、已知数列{a n }的前n 项和S n =2n +1-2,等差数列{b n }中,b 2 = a 2,面b n +3+b n -1=2b n +4, (n ≥2,n ∈N +), 则b n =
A. 2n+2
B.2n
C. n-2
D.2n-2 7、△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量),(sin c a B p += ,),sin (sin a b A C q --= .若,R ∈∃λ使,q p λ=则角C 的大小为
A. 6π
B. 32π
C. 3π
D. 2
π 8、设f(x)=(1+t e )x-t e 2. 其中R x ∈,t 为常数;集合M={x )(x f ﹤0,R x ∈},则对任意实常数t ,总有
A .-3
∉M ,0∈M B .-3∉M ,0∉M
C .-3∈M ,0∉M
D .-3∈M ,0∈M 9、己知函数f (x )=R a a x ∈+,3在[-1,1]上的最大值为M (a ) ,则函数g (x )=M (x )-12-x 的零点个数为
A. 1个
B. 2个
C. 3个
D. 4个
10、节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的月秒内任一时刻等可能发生,然后每串彩灯在4秒内间隔闪亮,那么这两串彩灯同时通电后它们第一次闪亮的时刻相差
不超过1秒的概率是
A .165
B .169
C .41
D .16
7 二、填空题:本大题共5小题。

每小题5分,共25分,把答案填在答题卡相应位置上。

11、某几何体的三视图如图所示,则其体积为_______。

12、已知定义在R 上的奇函数f (x )满足f (x +2)=- f (x ),则f (-6)的
值为_______。

13、函数f (x )=sin 2(x +4π)-sin 2(x -4π), x ∈(6π,3π)的值域是_______。

14、从一个盒子中,有分别标有数字1,2,3,4,5的5张卡片,现从中一
次取出2张卡片,则取出的卡片上的数字之积为偶数的概率为
_______。

15、已知集合M={ f
(x)R y x y x f y x f y f x f ∈-+=-,),()()()(22},有下列命题
1, x 0≥
① 若f (x)= ,则f (x)∈M ;②若f (x)=2x ,则f (x)∈M ;
-1, x ﹤0
③f (x)∈M ,则y = f (x)的图像关于原点对称;
④f (x)∈M ,则对于任意实数x 1,x 2(x 1≠x 2),总有2
121)()(x x x f x f --﹤0成立。

其中所有正确命题的序号是_______。

(写出所有正确命题的序号)
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤
16、(12分)已知数列{a n }是首项为-1,公差d ≠0的等差数列,且它的第2、3、6项依次构成等比数列{ b n }的前3项。

(1)求{a n }的通项公式;
(2)若{ b n }的前项和为S n ,求使得S n ﹤400的n 的最大值。

17、(12分)已知锐角三角形ABC 中,向量)sin cos ,sin 22(B B B m --= , )sin cos ,sin 1(B B B n ++= ,且n m ⊥。

(1) 求角B 的大小;
(2)当函数y=2sin2A+cos (2
3A C -)取最大值时,判断三角形ABC 的形状。

18、(12分)某工厂有25周岁以上(含2S 周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60), [60,70), [70,80), [80,90), [90,100), 分别加以统计,得到如图所示的频率分布直方图。

(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数:
(2) 若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”; “25周岁以下组”中日平均生产不足60件的称为“菜鸟”。

此工厂有一个优良传统,要求1名“菜鸟”必须找一位“生产能手”组成“师徒组”。

从样本中的“生产能手”和“菜鸟”中任意抽取2人,求2人恰好能组成“师徒组”的概率。

19、(12分)如图,正三棱柱ABC-A'B'C'中,D 是BC 的中点,AA'=AB =2
(1)求证:AD ⊥// B'D ;
(2)求三棱锥A'-AB'D 的体积。

20、(13分)已知函数f (x)=x 3+ax -2, (a ∈R )
(l)若f (x)在区间(1, +∞)上是增函数,求实数a 的取值范围;
f'((x)-a, x 0≤
(2)若g(x)=
,1x
x ﹥1,且f (x 0)=3,求x 0的值。

af'(x-1),x 1≤
(3)若g(x)= ,且在R 上是减函数,求实数a 的取值范围。

,1x
x ﹥1
21、己知函数f (x)=e 2,x ∈R
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。

(2)证明:曲线y=f(x)与曲线y=
12
12++x x 有唯一公共点; (3)设a ﹤b ,比较2)()(b f a f +与a b a f b f --)()(的大小,并说明理由。

相关文档
最新文档