压杆稳定(改)(ppt文档)
合集下载
压杆稳定PPT课件

E20G0P , a设计要求的强度安全系数 n2,
稳定安全系数 nst3。试求容许荷载 P 的值。
A 2m
C 3m
P
B
h3.5m
D
35
解:1)由平衡条件可得
A
P NCD
2.5
2m
C 3m
D
2)按强度条件确定 [P]
P
B
h3.5m
N CD σ A σ n sπ 4 (D 2 d 2) 3K 40 N
Q
解:一、分析受力
1500
500
取CBD横梁研究
A
N Cr
A
Cr
A 2E 2
2m
46K9N
D
C 3m
P
B
h3.5m
稳定条件
Pcr P
nst
[N]NCr15K6 N nst
[N] [P] 62.5KN
2.5
38Leabharlann 2mC 3mPB
h3.5m
D
[P] = 62.5KN
39
例:托架,AB杆是圆管,外径D=50mm,内径d=40mm, 两端为球铰,材料为A3钢,E=206GPa,p=100。若规定 nst=3,试确定许可荷载Q。
4
实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 而是与 受压时变弯 有关。
5
稳定平衡与不稳定平衡的概念 当 P小于某一临界值Pcr,撤去横向力后,杆的轴线将 恢复其原来的直线平衡形态,压杆在直线形态下的
平衡是 稳定平衡。
6
P Q
PPcr
P
PPcr
2E cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式
稳定安全系数 nst3。试求容许荷载 P 的值。
A 2m
C 3m
P
B
h3.5m
D
35
解:1)由平衡条件可得
A
P NCD
2.5
2m
C 3m
D
2)按强度条件确定 [P]
P
B
h3.5m
N CD σ A σ n sπ 4 (D 2 d 2) 3K 40 N
Q
解:一、分析受力
1500
500
取CBD横梁研究
A
N Cr
A
Cr
A 2E 2
2m
46K9N
D
C 3m
P
B
h3.5m
稳定条件
Pcr P
nst
[N]NCr15K6 N nst
[N] [P] 62.5KN
2.5
38Leabharlann 2mC 3mPB
h3.5m
D
[P] = 62.5KN
39
例:托架,AB杆是圆管,外径D=50mm,内径d=40mm, 两端为球铰,材料为A3钢,E=206GPa,p=100。若规定 nst=3,试确定许可荷载Q。
4
实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 而是与 受压时变弯 有关。
5
稳定平衡与不稳定平衡的概念 当 P小于某一临界值Pcr,撤去横向力后,杆的轴线将 恢复其原来的直线平衡形态,压杆在直线形态下的
平衡是 稳定平衡。
6
P Q
PPcr
P
PPcr
2E cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式
压杆的稳定ppt

定义
01
边界条件是指压杆在支撑条件下的限制条件,如固定、自由、
简支等。
描述
02
不同的边界条件对压杆的稳定性产生不同的影响。例如,固定
边界条件下的压杆比自由边界条件下的压杆更稳定。
影响因素
03
边界条件对压杆稳定性的影响主要表现在支撑反力的分布和大
小上,从而影响压杆的临界载荷和屈曲载荷。
03
压杆稳定性问题的解决策略
合理选择材料和截面形状
选择高强度材料
如合金钢、不锈钢等,能够提高压杆的屈服强度和抗拉强度 ,增加压杆的稳定性。
选择合适的截面形状
如圆形、方形、工字形等,能够改变压杆的截面面积和惯性 矩,进而改变压杆的稳定性。
对压杆进行合理支撑和固定
增加支撑点
通过在压杆的适当位置增加支撑点,能够提高压杆的稳定性,防止其发生屈 曲变形。
船舶设计
在船舶设计中,压杆被用于船体结构的支撑和固定。特 别是在海洋环境中,压杆的稳定性对于抵御海浪冲击和 保证船舶的安全至关重要。
地下工程
在隧道、地铁等地下工程中,压杆被用于支撑和固定土 石方及结构物。其稳定性对于保障地下工程的稳定性和 安全性至关重要。
06
总结与展望
总结
压杆稳定的定义
压杆稳定的重要性
05
压杆稳定性问Leabharlann 的工程应用建筑结构中的压杆稳定性问题
建筑物的支撑结构
在建筑设计中,压杆常被用于支撑和固定建筑结构,如桥梁、高层建筑等。其稳定性直接 影响到建筑物的安全性和使用寿命。
抗风和抗震设计
在地震或强风天气中,建筑物的压杆稳定性显得尤为重要。压杆能够提供必要的支撑力, 帮助建筑物抵御自然灾害。
定义
材料力学压杆稳定PPT课件

6
工程背景 (Engineering background)
crane truck
7
问题的提出
p pcr
p pcr
p pcr
求载荷pcr是稳定问题的实质!!! 对象—压杆
方法—静力学方法
基本问题—
求pcr; 讨论支承对临界力的影响;
8
压杆稳定条件
2 细长压杆的欧拉临界压力
横向干扰力产生初始变形, P
1983年10月4日,北京的一幢正在施工的高层建筑 的高54.2m、长17.25m、总重565.4kN大型脚手架屈 曲坍塌,5人死亡、7人受伤 。
1907年北美魁北克圣劳伦斯河上大铁桥施工中,珩架下 弦受压杆屈曲,就如少一杆,成变形体而坍塌.
1925年苏联莫兹尔桥试运行时,因压杆失稳而破坏。
1940年美国塔科马桥,一场大风,因侧向压杆失稳而破 坏。
解:压杆在xoy平面内,
z
l
iz
1210012.21 17 .32
压杆在xoz平面内,
y
l1
iz
1200086 .6 11 .55
1
2E p
2205109
200106
101
maxmax{y,z}121.21
18
iz
b 23
17 .32 mm
iy
a 23
1ห้องสมุดไป่ตู้ .55 mm
所以,压杆为细长杆。
Pcr2E2 A33.06kN
3
液压缸顶杆
hydraulic pressure post rod
4
Scaffold frame
脚手架中的压杆
工程背景 (Engineering background)
《压杆稳定教学》课件

增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
压杆的稳定性PPT课件

l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
《压杆稳定》课件

《压杆稳定》PPT课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
9-1压杆稳定-PPT精品文档-专业PPT文档

1
2 EI
0.7 L 2
0.7
2 EI
0.5 L 2
0.5
2 EI L2
1 16
压杆稳定
例9-2-1 试导出下图两端固定的细长压杆临界力公式。
P P
解:变形如图,其挠曲线近似微分方程为:
E yI M (x) Py M 0
L
M0 xP
M
令: k2 P
EI
x
得: yk2yM0
EI
通解 : 为
y
解:(1)、求T与P之间的关系:
T0 T L
LPLT
LTLT LPPL EA
Lt P
LP
PTEA
(2)判断杆的失效性质 (是稳定失效?还是强度失效?)
35
压杆稳定
T0 T L
Lt P
LP
(2)判断杆的失效性质
i D2 d2 4 402302 412.5mm
l i
0.52(1 .251 03)8 0
y
yAsiknx Bcoksx M0 P
M
P
0
边界条件为:
M0
P
x0 y0及y0
xL y0及y0
17
压杆稳定
解得:
A 0 B M0 / P coskL 1 sinkL 0
kL 2n ( n1,2,3...)
最小临界力为 n = 1 即取: kL2
所以,临界力为:
2EI
Pcr ( L / 2 )2
即: cr
2E 2
3、柔度(长细比): L i
惯性半:径 i I A
27
压杆稳定
4、欧拉公式的分界与大柔度杆
c
r
2E 2
P
2 EI
0.7 L 2
0.7
2 EI
0.5 L 2
0.5
2 EI L2
1 16
压杆稳定
例9-2-1 试导出下图两端固定的细长压杆临界力公式。
P P
解:变形如图,其挠曲线近似微分方程为:
E yI M (x) Py M 0
L
M0 xP
M
令: k2 P
EI
x
得: yk2yM0
EI
通解 : 为
y
解:(1)、求T与P之间的关系:
T0 T L
LPLT
LTLT LPPL EA
Lt P
LP
PTEA
(2)判断杆的失效性质 (是稳定失效?还是强度失效?)
35
压杆稳定
T0 T L
Lt P
LP
(2)判断杆的失效性质
i D2 d2 4 402302 412.5mm
l i
0.52(1 .251 03)8 0
y
yAsiknx Bcoksx M0 P
M
P
0
边界条件为:
M0
P
x0 y0及y0
xL y0及y0
17
压杆稳定
解得:
A 0 B M0 / P coskL 1 sinkL 0
kL 2n ( n1,2,3...)
最小临界力为 n = 1 即取: kL2
所以,临界力为:
2EI
Pcr ( L / 2 )2
即: cr
2E 2
3、柔度(长细比): L i
惯性半:径 i I A
27
压杆稳定
4、欧拉公式的分界与大柔度杆
c
r
2E 2
P
《压杆稳定》PPT课件_OK

因此,压杆的稳定性对各类结构都是非常重要的,要保证 压杆的正常工作,还必须对它进行稳定性计算。
2021/7/27
图7.2 压杆不稳定平衡状态
6
2021/7/27
7
2021/7/27
8
临界荷载和临界应力
表7-1中列出的杆端约束,都是典型的理想约束。但在工程实际中,杆端约束情况复杂,有 时很难简单地归结为哪一种理想约束。这时应根据实际情况具体分析,参考设计规范来确定 值。
图7.1 压杆稳定平衡状态
2021/7/27
5
压杆稳定的概念
当力P继续增大到某一特定值Pcr时,在与力P垂直的方向上给一微小干扰力,压杆处于微弯 曲状态(如图7.2(b)所示),当干扰力撤去后,压杆不再恢复到如图7.2(a)所示的直线平衡状态,而 是处于弯曲的平衡状态(如图7.2(c)所示),说明在没有施加外干扰力时,压杆所处的直线平衡状态 是不稳定的,即压杆处于不稳定的平衡状态,此时,杆件所受的力Pcr远小于按发生材料强度破 坏计算的承载力Pcu,即Pcr<Pcu,这就是为什么在其他条件相同的情况下,粗短杆的承载力大于 细长杆的原因。
值得注意的是:欧拉公式在推导过程中假定压杆在微弯平衡状态下,横截面上的应力在弹 性范围之内,因此本公式只适用于弹性范围,即只适用于弹性稳定性问题;另外在应用公式时, 公式中的I为截面对其中性轴的惯性矩,且当截面对不同主轴的惯性矩不相等时,应取其中最小 值。
【例7.1】 计算两端铰支情况下的欧拉临界力。 如图7.3所示压杆由14号工字钢制成,其两端铰支。已知钢材的弹性模量E=210GPa,屈服 点应力σs =240MPa,杆长l=3600mm。 (1) 试求该杆的临界力Pcr;(2) 计算屈服力Ps。 解 (1) 计算临界力,查型钢表得14号工字钢几何特性:
2021/7/27
图7.2 压杆不稳定平衡状态
6
2021/7/27
7
2021/7/27
8
临界荷载和临界应力
表7-1中列出的杆端约束,都是典型的理想约束。但在工程实际中,杆端约束情况复杂,有 时很难简单地归结为哪一种理想约束。这时应根据实际情况具体分析,参考设计规范来确定 值。
图7.1 压杆稳定平衡状态
2021/7/27
5
压杆稳定的概念
当力P继续增大到某一特定值Pcr时,在与力P垂直的方向上给一微小干扰力,压杆处于微弯 曲状态(如图7.2(b)所示),当干扰力撤去后,压杆不再恢复到如图7.2(a)所示的直线平衡状态,而 是处于弯曲的平衡状态(如图7.2(c)所示),说明在没有施加外干扰力时,压杆所处的直线平衡状态 是不稳定的,即压杆处于不稳定的平衡状态,此时,杆件所受的力Pcr远小于按发生材料强度破 坏计算的承载力Pcu,即Pcr<Pcu,这就是为什么在其他条件相同的情况下,粗短杆的承载力大于 细长杆的原因。
值得注意的是:欧拉公式在推导过程中假定压杆在微弯平衡状态下,横截面上的应力在弹 性范围之内,因此本公式只适用于弹性范围,即只适用于弹性稳定性问题;另外在应用公式时, 公式中的I为截面对其中性轴的惯性矩,且当截面对不同主轴的惯性矩不相等时,应取其中最小 值。
【例7.1】 计算两端铰支情况下的欧拉临界力。 如图7.3所示压杆由14号工字钢制成,其两端铰支。已知钢材的弹性模量E=210GPa,屈服 点应力σs =240MPa,杆长l=3600mm。 (1) 试求该杆的临界力Pcr;(2) 计算屈服力Ps。 解 (1) 计算临界力,查型钢表得14号工字钢几何特性:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的压力,理论上是多值的。在这些压力
x Fcr F M(x)
中,使杆件保持为曲线平衡的最小压力, 才是临界压力。
EI
取n = 1
x wv=wv((xx))
Oy
y
ቤተ መጻሕፍቲ ባይዱ
O
F
(a)
(b)
Fcr
2EI
l2
两端铰支压杆的欧拉公式
§14-3 其他杆端约束情况下细长压杆的临界力
千斤顶螺杆就是一 根压杆(如右图),其下 端可简化成固定端,面 上端因可与顶起的重物 共同作微小的位移,所 以简化成自由端。这样 就成为下端固定、上端 自由的压杆。
压杆的挠曲线的上半部
分相同。则临界压力:
Fcr
π 2 EI (2l)2
§14-3 其他杆端约束情况下细长压杆的临界力
利用同样的方法得到:
两端固定的压杆的临界压力为:
Fcr
π 2 EI (0.5l ) 2
一端铰支另一端固定的压杆的临界压力为:
Fcr
π 2 EI (0.7l ) 2
两端铰支为:
π 2 EI Fcr l 2
弯曲 除去扰动
F Fcr
•不稳定直线平衡 F Fcr
微小扰动 新的弯曲平衡
弯曲 除去扰动
F Fcr
F Fcr
v
•随遇平衡 F Fcr
除直线平衡形式外,无穷小邻域内,可能微弯平衡 压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
§14-1压杆稳定的概念 2、压杆失稳与临界压力
O
F
B 0, Asin kl 0
(a)
(b)
§14-2 两端铰支细长压杆的临界力
x F
EI Oy (a)
v Asin kx Bcoskx B 0, Asin kl 0
x Fcr F M(x)
x wv=wv((xx)) y
O F (b)
若A=0,表明杆为直线,这与压杆处于 微弯平衡状态不符。
Fcr
临界状态
稳
对应的
不
定 平
过
稳 度渡 定
衡
压力
平 衡
临界压力: Fcr
压杆丧失直线形式平衡状态的现象称为丧失稳 定,简称 失稳。
当压杆的材料、尺寸和约束情况已经确定时, 临界压力是一个确定的值。因此可以根据杆件的实际 工作压力是否大于临界压力来判断压杆是稳定还是不 稳定。解决压杆稳定的关键问题是确定临界压力。
一端铰支,一端自由:
Fcr
π 2 EI (2l)2
§14-3 其他杆端约束情况下细长压杆的临界力
综合各种不同的约束条件,统一写成如下形式:
Fcr
π2EI
(l)2
上式即为欧拉公式的一般形式。
l为相当长度, 为长度因数,
与压杆两端的支 承情况有关。其 数值为
§14-3 其他杆端约束情况下细长压杆的临界力
x F
EI Oy (a)
图示坐标系,考察微弯状态下任意 一段压杆的平衡(图b),杆件横截面上 的弯矩为:
x Fcr F M(x)
M (x) Fcr v 根据挠曲线近似微分方程,有
x wv=wv((xx))
y
取
O
F
(b)
M EIv'' k 2 Fcr
EI v'' k 2v 0
§14-1压杆稳定的概念
3、压杆失稳的特点
压杆失稳后,压力的微小增加将引起弯曲变形的显著增大, 从而使杆件丧失承载能力。但是压杆失稳时,杆内的应力不一 定高,有时甚至低于材料的比例极限。可见,压杆失稳并非强 度不足。由于压杆失稳是突然发生的,因此所造成的后果也是 很严重的。
§14-1压杆稳定的概念
第十四章
压杆稳定
§14-1压杆稳定的概念
问题的提出
拉压杆的强度条件为:
= —F—N [ ]
A
(a): 木杆的横截面为矩形(12cm), 高 为 3 cm , 当 荷 载 重 量 为 6kN 时杆还不致破坏。
(b): 木杆的横截面与(a)相同,高为 1 . 4 m( 细 长 压 杆 ) , 当 压 力 为 0.1KN时杆被压弯,导致破坏。
§14-2 两端铰支细长压杆的临界力
k 2 Fcr
v'' k 2v 0
x
EI
F
解微分方程得到通解为
v Asin kx Bcoskx
x Fcr F M(x)
A和B为待定常数,根据压杆的约束边界
EI
条件来确定,在两端铰支的情况下,边
界条件为
x wv=wv((xx))
Oy
y
v(0) v(l) 0
(a)和(b)竟相差60倍,为什么?
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
§14-1压杆稳定的概念
§14-1压杆稳定的概念
弹性杆件 •稳定直线平衡 F Fcr
微小扰动 恢复直线平衡
sin kl 0 kl nπ (n 0,1,2,....)
k n
l
k 2 Fcr EI
Fcr
n 2 π 2 EI l2
(n 0,1,2,......)
§14-2 两端铰支细长压杆的临界力
x
Fcr
n 2 π 2 EI l2
(n 0,1,2,......)
F
上式表明,使杆件保持为曲线平衡
美国哈特福特城的体育馆网架结构,平面92m×110m,突然于 1978年破坏而落地,破坏起因可能是压杆屈曲。以及1988年加拿 大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌 落,这两次事故都和没有设置适当的支撑有关。
§14-1压杆稳定的概念
薄壁容器失稳
梁或板条失稳
§14-2 两端铰支细长压杆的临界力
4、压杆失稳造成的灾难
1907年8月9日,在加拿大离魁北克城14.4Km横跨圣劳伦斯河的 大铁桥在施工中倒塌.灾变发生在当日收工前15分钟,桥上74人坠河 遇难.原因是在施工中悬臂桁架西侧的下弦杆有二节失稳所致.
杭州某研发生产中心的厂房屋顶为园弧形大面积结构,屋面采 用预应力密肋网架结构,密肋大梁横截面(600mm×1400mm),屋面 采用现浇板,板厚120mm .2003年2月18日晚19时,当施工到26~28轴 时,支模架失稳坍塌,造成重大伤亡事故。
千斤顶螺杆
§14-3 其他杆端约束情况下细长压杆的临界力
不同约束形式 压杆的临界力,可 以用类似的方法求 解微分方程导出。
但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l 2l
F
F 一端固定,一端自由,
长为l 的的压杆的挠曲线
和两端铰支,长为2l的