(辽宁地区)2018年中考数学总复习 专题突破训练 第28讲 概率试题

合集下载

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

(完整版)2018全国中考数学统计概率题真题汇总(可编辑修改word版)

海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。

2018年中考数学真题专题汇编:统计与概率(解析版)

2018年中考数学真题专题汇编:统计与概率(解析版)
三、解答题
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:





的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。

2018 初三数学中考总复习 概率 专题复习练习 含答案

2018 初三数学中考总复习  概率  专题复习练习 含答案

2018 初三数学中考总复习 概率 专题复习练习1. 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是( C )A.12B.23C.25D.352. 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( C )A.16B.13C.12D.233.下列事件中,是必然事件的是( B )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片4.李湘同学想给数学老师送张生日贺卡,但她只知道老师的生日在6月,那么她一次猜中老师生日的概率是( C )A.128B.129C.130D.1315.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在丙区域内的概率是( D )A .1 B.12 C.13 D.146.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( C )A.25B.23C.35D.3107.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b)在函数y =12x图象上的概率是( D )A.12B.13C.14D.168.有5张看上去无差别的卡片,上面分别写着0,π,2,19,1.333.随机抽取1张,则取出的数是无理数的概率是__25__. 9.同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是__14__. 10.一个不透明的口袋里装有若干个除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球__20__个.11.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字之和可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.解:(1)略(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为26,即P(两个数字之和能被3整除)=1312.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1,2,3,4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.解:(1)列表得:(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8,6,5的结果有8种,所以抽奖一次中奖的概率为:P =816=12.答:抽奖一次能中奖的概率为1213.某班毕业联欢会设计了即兴表演节目摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1,2,3,4,5的乒乓球,这些球除数字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;(2)估计本次联欢会上有多少个同学表演即兴节目.解:(1)列表略,共有20种可能结果,其中两数和为偶数的共有8种,将参加联欢会的某位同学即兴表演节目记为事件A ,∴P(A)=P(两数和为偶数)=820=25(2)∵50×25=20(人),∴估计有20名同学即兴表演节目14.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少.(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.解:(1)共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=46=23 (2)∵两红的概率P =16,两白的概率P =16,一红一白的概率P =23,∴甲品牌化妆品获礼金券的平均收益是:16×6+23×12+16×6=10(元).乙品牌化妆品获礼金券的平均收益是:16×12+23×6+16×12=8(元), ∴选择甲品牌化妆品15. 某中学学生运动会刚刚闭幕.下面是未制作完的三个年级运动会志愿者的统计图.请你根据图中所给信息解答下列问题:(1)请你求出九年级有多少名运动会志愿者,并将两幅统计图补充完整;(2)要求从七年级、九年级志愿者中各推荐一名队长候选人,八年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是八年级志愿者的概率是多少?解:(1)设九年级有x 名志愿者,由题意得x =(18+30+x)×20%,解得x =12.九年级有12名志愿者,七年级占30%,图略 (2)共有12种等可能的结果,其中两人都是八年级志愿者的情况有两种,所以P(两名队长都是八年级志愿者)=212=1616. A ,B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?解:(1)P =13(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P =46=23,乙获胜的情况有2种,P =26=13,所以,这样的游戏规则对甲乙双方不公平。

2018人教版中考数学专题《概率》中考真题回顾

2018人教版中考数学专题《概率》中考真题回顾

第2课时概率中考真题回顾命题点1 事件的分类1. (2015百色2题3分)必然事件的概率是()A.-1 B.0 C.0.5 D.12. (2015崇左16题3分)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为________事件(填“必然”或“不可能”或“随机”).命题点2 概率的计算3. (2014河池5题3分)世界杯足球赛正在巴西如火如荼地进行,赛前有人预测,巴西国家队夺冠的概率是90%,对他的说法理解正确的是()A.巴西队一定会夺冠B.巴西队一定不会夺冠C.巴西队夺冠的可能性很大D.巴西队夺冠的可能性很小4. (2014柳州12题3分)如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A. 0.25B. 0.5C. 0.75D. 0.95第4题图5. (2017贵港8题3分)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A. 14 B.12 C.34 D. 16. (2016河池15题3分)同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是________.7. (2017贺州21题8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1、2、3、4的四个和标有数字1、2、3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.8. (2017玉林崇左22题8分)在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球.则小强两次都摸到白球的概率是多少?命题点3 统计与概率结合9. (2016百色23题9分)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如下表所示:第9题图(1)求a 的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A 1,A 2,在第四组内的两名选手记为:B 1,B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).答案1. D 【解析】由于必然事件是每次试验一定会发生的事件,其概率为1.组号 分组 频数 一 6≤m <7 2 二 7≤m <8 7 三 8≤m <9 a 四9≤m ≤1022. 随机 【解析】一定发生的事件是必然事件,一定不发生的事件是不可能事件,可能发生也可能不发生的是随机事件.小明可能中奖,也可能不中奖,故“小明中奖”的事件是随机事件.3. C 【解析】巴西国家队夺冠的概率是90%,只能说明巴西队夺冠的可能性很大.4. C 【解析】列表如下:所有等可能的情况有4种,其中至少有一个灯泡发光的情况有3种,则合上开关时,至少有一个灯泡发光的概率P =34=0.75.5. B 【解析】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能的情况有3,5,7;3,5,10;3,7,10;5,7,10,共四种,其中能构成三角形的情况有3,5,7和5,7,10两种,所以P (能构成三角形)=24=12.6. 14 【解析】同时抛掷两枚质地均匀的硬币,共有四种等可能的结果:正正,正反,反正,反反.其中两枚硬币都正面朝上只有一种情况,故P (正正)=14. 7. (1)解:列表如下:盒子2 盒子11 2 3 1 2 3 4 2 3 4 5 3 4 5 6 4567………………………………………………………………(3分) 或画树状图如解图:第7题解图……………………………………………………………… (3分) 由上可知,共有12种等可能的情况,其中摸出的球上的数字之和小于6的情况有9种,∴P (小王去)=912=34;………………………………(5分) (2)我认同小李的说法.………………………………(6分) 理由如下:由(1)得,P (小王去)=34,P (小李去)=1-34=14, ∵34≠14∴这种规则不公平.………………………………(8分) 8. 解:(1)列表如下:a b c a (a ,b ) (a ,c ) b (b ,a ) (b ,c ) c(c ,a )(c ,b )………………………………………………………………(3分) 或画树状图如解图①:第8题解图①……………………………………………………………… (3分) 由上可知,共有6种等可能的情况,两次都摸到白球的情况有2种, ∴P (小丽两次都摸到白球)=26=13;………………………………(4分) (2)列表如下:a b c a (a ,b ) (a ,c ) b (b ,a ) (b ,b ) (b ,c ) c(c ,a )(c ,b )(c ,c )………………………………………………………………(7分) 或画树状图如解图②:第8题解图②……………………………………………………………… (7分) 由上可知,共有8种等可能的情况,两次都摸到白球的情况有4种, ∴P (小强两次都摸到白球)=48=12.………………………………(8分) 9. 解:(1)a =20-(2+7+2)=9;………………………………(2分) (2)分数在8≤m <9内所对应的扇形图的圆心角为360°×920=162°;………………………………………………………………(4分) (3)画树状图如解图:第9题解图……………………………………………………………… (6分) 或列表如下:A 1 A 2B 1 B 2 A 1 (A 1,A 2)(A 1,B 1) (A 1,B 2) A 2 (A 2,A 1) (A 2,B 1)(A 2,B 2) B 1 (A 2,A 1) (B 1,A 2) (B 1,B 2)B 2 (A 2,A 1)(B 2,A 2)(B 2,B 1)(6分)由上可知,从4名选手A 1,A 2,B 1,B 2中选取2名选手,共有12种等可能的结果,其中第一组至少有1名选手被选中(记为事件A)的结果有10种,∴P(A)=1012=56.………………………………(9分)。

2023中考数学复习-专题28 统计与概率(练透)(学生版)

2023中考数学复习-专题28 统计与概率(练透)(学生版)

专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( )A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4 C .5 D .6 3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A .27B .29C .30D .31 4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是( )A .16B .13C .12 D .565.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定甲、乙出苗谁更整齐 6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是( )A .49B .23C .12D .137.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm和212cm的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为()A.49B.59C.25D.359.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节 4 5 6 7 8人数/人9 11 11 5 4A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是()A.小刚的平均分高B.小刚的中位数高C.小刚的方差小D.小刚最低分高二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a、b,把a、b作为点A的横、纵坐标;求点A(a,b)的个数为:__________;点A(a,b)在函数y x的图象上的概率为:______.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数5 10 15 20 25 30 每回进球次数3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m ______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm)如下:甲:172 168 175 169 174 167 166 169乙:164 175 174 165 162 173 172 175(1)甲、乙两名运动员跳高的平均成绩分别是多少?(2)分别求出甲、乙跳高成绩的方差;(3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm方可获得冠军,又应该选哪位运动员参赛?21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中 “篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表: 投篮次数n 10 50100 150 200 命中次数m 4 25 65 90 120命中率 0.4 0.5 0.65(1(2)这个运动员投篮命中的概率约是_____.(3)估计这个运动员3分球投篮15次能得多少分?23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级 平均分 中位数 众数 方差七年级 91 a89 45.2 八年级 9192.5 b 39.2请根据相关信息,回答以下问题:(1)直接写出表格中a,b的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活x )的学生人数是多少.动成绩优秀(90。

沈阳市初中数学概率知识点训练及答案

沈阳市初中数学概率知识点训练及答案

沈阳市初中数学概率知识点训练及答案一、选择题1.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.2.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.A.15 B.17 C.16 D.18【答案】B【解析】【分析】根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数.【详解】∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷817= 17(个),故答案选B.【点睛】本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.6.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.7.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.19【答案】B【解析】【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为29;故选:B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解8.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84 =故选D.10.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.设黑球的个数为x个,根据题意得:41 43=x,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.12.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.13.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A.12B.14C.35D.23【答案】D【解析】【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:46=23.【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60 ,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.15.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

2018版中考数学:7.2-概率(含答案)

2018版中考数学:7.2-概率(含答案)

A.4 1 C.22§7.2概率一、选择题1.(改编题)抛掷一枚均匀的硬币,前 2 次都正面朝上,第 3 次正面朝上的概率()1A .大于21C .小于21B .等于2D .不能确定解析 根据概率的意义解答.∵硬币由正面朝上和朝下两种情况,并且是等可能,1∴第 3 次正面朝上的概率是2.答案 B2.(改编题)掷一枚质地均匀的硬币 10 次,下列事件可能性最大的是( )A .10 次都是正面朝上B .10 次都是反面朝上C .5 次正面朝上,5 次反面朝上D .1 次正面朝上,9 次反面朝上解析 硬币质地均匀,故出现正面朝上和反面朝上的可能性是相同的,故抛掷 10 次,各出现 5 次的可能性最大.故选 C.答案 C3.(原创题)在“直通春晚”总决赛中,选手金池、许艺娜、阿普萨萨、木江子组合要经过抽签进行终极 PK ,工作人员准备了 4 个签,签上分别写有 A 1,B 1,A 2,B 2 的字样.规定:抽到 A 1 和 B 1,A 2 和 B 2 的选手分两组进行终极 PK.许艺娜第一个抽签,抽到了 A 1,金池第二个抽签,则金池能和许艺娜进行 PK的概率是 ( )11解析金池第二个抽签,共 3 种等可能的结果,其中金池能抽到 B 1 的可能的A.31C.22答案2,1结果是1种,则P(金池能和许艺娜进行PK)=3.故选B.答案B4.(改编题)某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为() 11解析设这三辆车分别是A,B,C,列表可知共有9种等可能的结果,其中31小王与小菲同车的结果为3种,所以P(小王与小菲同车)=9=3.小菲小王A B CA B C AABACAABBBCBACBCCC答案A二、填空题5.(原创题)小明在书店一次购买了五本书:莫言的《丰乳肥臀》和《红高粱家族》,杨红樱的《淘气包马小跳》乔布斯的《活着就为改变世界》钱钟书的《围城》.小华来和小明借书,小明就从这五本新书中随机拿了一本给小华,则恰好是莫言的作品的概率是________.解析随机拿一本共5种等可能的结果,其中是莫言的作品的有2种结果,2∴P(恰好是莫言的作品)=5.56.(原创题)在一次对药用胶囊抽查中,随机抽取某胶囊厂20袋胶囊,测得各袋的胶囊的铬含量分别为(单位:mg/k g):42,45,53,55,65,93,0.5,1.5,33,20,15,6,25,1.3,1.6,5,20,12,1.2,28.按照国家标准铬含量不得超过2mg/kg,那么任买这个胶囊厂的一袋胶囊,铬含量符合规定的概率为________.51解析这次抽查中,铬含量符合规定的频率是20=4,由于这次抽查是随机抽取的胶囊,则抽查的结果接近实际情况,所以任意买这个胶囊厂的一袋胶囊,1铬含量符合规定的概率是4.答案14三、解答题7.(改编题)电脑中的信号都是以二进制数的形式给出的.二进制数是由0和1组成,电子元件的“开”、“关”分别表示“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如:“开”“开”“开”“关”表示“1110”.如图,电脑芯片的某段电路上分布着一组电子元件A,B,C,D,且这四个元件的状态始终呈现为两开两关.(1)请用二进制数表示这组元件所有开关状态;(2)求A,B两个元件“开”“关”状态不同的概率.解(1)所有可能出现的结果如下:A111B111C111D111结果110010101001001101010110总共有6种结果,每种结果出现的可能性相同;(2)所有的结果中,满足A,B两个元件“开”“关”状态不同的结果有4种,2所以A,B两个元件“开”“关”状态不同的概率是3.。

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28讲概率(时间40分钟满分100分)A卷一、选择题(每小题3分,共21分)1.(2017·新疆生产建设兵团)下列事件中,是必然事件的是( B )A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯2.(2017·岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( C )A.15B.25C.35D.453.(2017·广州)某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( A )A.110B.19C.13D.224.(2017·河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( C )A.18B.16C.14D.12(导学号58824212)5.(2017·南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.126.(2017·兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( D) A.20 B.24 C.28 D.307.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( D )A.12B.13C.14D.16二、填空题(每小题3分,共18分)8.(2017·随州)“抛掷一枚质地均匀的硬币,正面向上”是_随机_事件(从“必然”、“随机”、“不可能”中选一个).9.(2017·徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_23_.,第9题图) ,第11题图)10.(2017·哈尔滨)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为_617_. 11.(2017·盘锦模拟)如图所示,平行四边形的两条对角线及过对角线交点的任意一条直线将平行四边形纸片分割成六个部分,现在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为_14_.(导学号 58824213)12.(2017·贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有_3_个.13.(2017·重庆B )点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是_15_.三、解答题(本大题3小题,共30分)14.(10分)(2017·衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.15.(10分)(2017·凉州区)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.解:(1)根据题意列表如下:可见,两数和共有(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为612=12;刘凯获胜的概率为312=14.16.(10分)(2017·黔西南州)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A ,B ,C ,D 表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图①、图②两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人? (2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A ,B ,C ,D 粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.(导学号 58824214)解:(1)根据题意得:60÷10%=600(人); (2)补全统计图如解图①,②所示;(3)根据题意得:40%×8000=3200(人); (4)画树状如解图③,图③得到所有等可能的情况有12种,其中第二个吃到的恰好是C 粽的情况有3种, 则P(C 粽)=312=14,答:他第二个吃到的恰好是C 粽的概率是14.B 卷1.(3分)(2017·海南改编)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )A .12B .14C .18D .116,第1题图) ,第2题图)2.(3分)(2017·赤峰)小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为( B )A .12B .14C .13D .18(导学号 58824215)3.(3分)(2017·台州)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为_13_.4.(11分)(2017·怀化)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动,为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况; (2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.解:(1)用列表法得出所有可能的结果如下:(2)裁判员的这种做法对甲、乙双方是公平的. 理由:根据表格得,P(甲获胜)=39,P(乙获胜)=39.∵P(甲获胜)=P(乙获胜),∴裁判员这种做法对甲、乙双方是公平的.5.(11分)(2017·烟台)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A .放下自我,彼此尊重;B .放下利益,彼此平衡;C .放下性格,彼此成就;D .合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有_50_人; (2)表中a =_10_,b =_0.16_; (3)将条形统计图补充完整;(4)现准备从A ,B ,C ,D 四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.解:(3)补充条形统计图如解图①;图①(4)根据题意画出树状图如解图②,图②由树状图可知:共有12种等可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率=612=12.。

相关文档
最新文档