光发送机与接收机
光发送机与接收机课件

➢ 应用:光缆电话网、公用天线电视(CATV)、宽带综合业 务数字网等互联网的数据业务
➢ 特点:传输距离较短、带宽要求宽 ➢ 结构:树型拓扑、总线拓扑
光发送机与接收机
8
光纤通信系统
树形拓扑结构: Hub
Hub
光发射机与光接收机
Hub
Hub Hub
信道在中心点分配,光纤的作用与点到点连接系统 类似。
光发射机与光接收机
光发射机 1 光发射机 2 光发射机 3
光发射机 N
MUX
EDFA
DEMUX
功放
线放
前放
典型的点对点光纤通信系统
1 光接收机 2 光接收机 3 光接收机
N 光接收机
光发送机与接收机
7
光纤通信系统
光发射机与光接收机
四、光纤广播分配网
➢ 功能:光纤通信系统不仅要求传送信息,而且要求将信息 分配给多个用户
光发送机与接收机
14
数字光纤通信系统
光发射机与光接收机
辅助系统:
①监控管理系统:监测、控制、管理系统,保证光纤通信正常运行;
②公务通信系统:公务电话,为值班维护人员联络使用(数字段内、 数字段间);
③自动倒换系统:主用系统出现故障时启动备用系统;
④告警处理系统:发出告警指令,并含告警显示信息,使维护人员快 速、有效识别故障设备;
2024/5/31
光通发信送技机术与专接业收教机学团队
21 21
线路编码
光发射机与光接收机
线路编码
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点, 但是,AMI码有一个重要的缺点,即接收端从该信号中获取定时信息时,由于 它可能出现长的连“0”串,因而会造成提取定时信号的困难。 为了保持AMI码的优点而克服其缺点,人们提出了许多种类的改进AMI码, HDB3码就是其中有代表性的一种。
光发送机与接收机教学课件

预算
成本是选择光发送机和接收机的 重要考虑因素,根据预算进行合
理选择。
光发送机与接收机的未来发展趋势
集成化
随着技术的发展,光发送机和接收机将趋向于集成化,实现更小 体积、更高性能的设备。
智能化
未来光发送机和接收机将更加智能化,具备自动调节、远程控制等 功能,提高设备的可维护性和使用效率。
绿色环保
随着环保意识的提高,光发送机和接收机将更加注重节能减排,降 低能耗和减少对环境的影响。
02
光发送机关键技术
调制技术
01
02
03
调制方式
调制技术是将信息信号加 载到光载波上,常用的调 制方式包括直接调制和外 部调制。
调制信号
调制信号可以是模拟信号 或数字信号,根据不同的 应用需求选择合适的调制 方式。
调制速率
调制速率决定了光发送机 的传输速率,高速调制技 术能够提高数据传输效率。
光源技术
自动增益控制(AGC)
用于自动调节放大器的增益,以保持输出信 号的稳定。
AGC的应用
在光接收机中,AGC用于补偿光信号的波动 和衰减,提高接收机的动态范围。
AGC原理
通过反馈控制,实时监测输出信号的强度, 根据需要调整放大器的增益。
AGC的性能参数
包括调节范围、调节速度和调节精度等,对 光接收机的性能有重要影响。
光发送机的组成与工作原理
组成
光发送机主要由调制器、光源和光功 率放大器等组成。
工作原理
调制器将电信号转换为光信号,光源 发出光波,光功率放大器将光信号放 大,最终通过光纤传输。
光发送机的分类与应用
分类
按照调制方式可分为直接调制和间接调制;按照光源类型可分为半导体激光器 和发光二极管。
【通信技术】有线传输工程题集(有答案)[详细]
![【通信技术】有线传输工程题集(有答案)[详细]](https://img.taocdn.com/s3/m/5a6481417f21af45b307e87101f69e314332fa1c.png)
【通信技术】有线传输工程题集(有答案)[详细]有线传输工程第一章光纤通信基本理论一、填空题1、光纤通信中所使用的光纤是界面很小的可绕透明长丝,它在长距离内具有(束缚)和传输光的作用.2、光具有波粒二像性,既可以将光看成光波,也可以将光看作是由光子组成的(粒子流)3、波动光学是把光纤中的光作为经典(电磁场)来处理.4、光纤色散是指由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,由于不同频率成分和不同模式成分的传输速度不同,从而导致(信号畸变)的一种物理现象.5、在数字光纤通信系统中,色散使(光脉冲)发生展宽.6、波导色散主要是由光源的光谱宽度和光纤的(几何结构)所引起的.7、光纤的非线性可以分为两类,即受激散射效应和(折射率扰动)8、当光纤中非线性效应和色散(相互平衡)时,可以形成光孤子.9、单模光纤的截止波长是指光纤的第一个(高阶模)截止时的波长.10、单模光纤实际上传输两个(相互正交)的基模.二、单向选择题1、将光纤的低损耗和低色散区做到1450—1650n米波长范围,则相应的带宽为( B )A、2.5B、25C、5.0D、502、阶跃光纤中的传输模式是靠光射线在纤芯和包层的界面上( B )而是能量集中在芯子之中传输.A、半反射B、全反射C、全折射D、半折射3、多模渐变折射率光纤纤芯中的折射率是( A )的.A、连续变化B、恒定不变C、间断变换D、基本不变4、目前,光纤在( B )n米处的损耗可以做到0.2dB/n米左右,接近光纤损耗的理论极限值.A、1050B、1550C、2050D、25505、石英光纤材料的零色散系数波长在( B )n米附近.A、127B、1270C、227D、22706、普通石英光纤在波长( A )n米附近波导色散与材料色散可以相互抵消,使二者总的色散为零.A、1310B、2310C、3310D、43107、非零色散位移单模光纤也称为( D )光纤,是为适应波分复用传输系统设计和制造的新型光纤.A、G.652B、G.653C、G.654D、G.655三、多项选择题1、根据光纤横截面折射率分布的不同,常用的光纤可以分成( AB ).A、阶跃光纤B、渐变光纤C、单模光纤D、多模光纤2、光纤损耗因素主要有本症损耗、( A B C D )和附加损耗等.A、制造损耗B、连接损耗C、耦合损耗D、散射损耗3、光纤通信所使用的低损耗窗口是( A C )和1310n米波段.A、850n米波段B、1050n米波段C、1550n米波段D、2650n米波段4、根据色散产生的原因,光纤色散的种类主要可以分为(A BC).A、模式色散B、材料色散C、波导色散D、偏振模色散5、单模光纤可以分为( ABCD ).A、非色散位移单模光纤B、色散位移单模光纤C、截止波长位移单模光纤D、非零色散位移单模光纤四、判断题1、光纤是圆截面介质波导.(√)2、在多模阶跃光纤的纤芯中,光按曲线传输,在纤芯和包层的街面上光发生反射.(×)3、在渐变光纤中,光射线的轨迹是直线.(×)4、光纤的折射率分布采取双曲正割函数的分布,所有的子午射线具有完善的自聚焦性质.(√)5、材料色散引起的脉冲展宽与光源的光谱线宽和材料色散系数成正比.(√)6、偏振色散是由于实际的光纤总是存在一定的不完善性,使得沿着两个不同方向偏振的同一模式的相位常数β不同,从而导致这两个模式传输不同步,形成色散.(√)7、在高强度电磁场中光纤对光的影响会变成线性.(×)8、四波混频是指由2个或3个不同波长的光波混合后产生新的光波的现象.(√)9、为了保证单模传输,光纤的纤径较小,一般其芯径为4-10μ米.(√)10、由于光纤双折射的存在,将引起光波的偏振态沿光纤长度发生变化.(√)五、简答题1、简述光纤通信的特点.答:(1)频带宽,通信容量大;(2)传输损耗低,无中继距离长(3)抗电磁干扰(4)光纤通信串话小,保密性强,使用安全;(5)体积小,重量轻,便于敷设;(6)材料资源丰富.2、简述渐变光纤的折射率分布.答:渐变光纤横截面的折射率分布,包层的折射率是均匀的,而在纤芯中折射率则随着纤芯的半径的加大而减小,是非均匀、且连续变化的.3、简述光纤材料色散色定义及其引起的原因.答:由于光纤材料的折射率是波长λ的非线性函数,从而使光的传输速度随波长的变化而变化,由此而引起的色散叫材料色散.材料色散主要是由光源的光谱跨度所引起的,由于光纤通信中使用的光源不是单色光,具有一定的光谱宽度,这样,不同波长的光波传输速度不同,从而产生时延差,引起脉冲展宽.六、论述题1、阐述光纤受激散射效应定义,表现形式及其主要区别.(1)定义.受激散射效应是光通过光纤介质时,有一定能量偏离预定的传播方向,且光波的频率发生改变,这种现象称为受激散射效应.(2)表现形式.受激散射效应表现形式有两种,即受激布里渊散射和受激拉曼散射.这两种散射都可以理解为一个高能量的光子被散射成一个低能量的光子,同时产生一个能量为两个光子能量差的另一个能量子.(3)主要区别.两种散射的主要区别在于受激拉曼散射的剩余能量转变为光频声子,而受激布里渊散射转变为声频声子;光纤中的受激布里渊散射只发生在后向,受激拉曼散射主要是前向.受激布里渊散射和受激拉曼散射都使得入射光能量降低,在光纤中形成一种损耗机制.在较低光功率下,这些散射可以被忽略.当入射光功率超过一定阈值后,受激散射效应随入射光功率成指数增加.2、阐述光纤的折射率扰动所引起的各种非线性效应.答:折射率扰动主要引起自相位调制(SP米)、交叉相位调制(XP米)、四波混频(FW米)和光孤子形成四种非线性效应.(1)自相位调制.自相位调制是指光在光纤内传输时光信号强度随时间的变化对自身相位的作用.它导致光谱展宽,宠儿影响系统性能.(2)交叉相位调制.交叉相位调制是任意波长信号的相位受其它波长信号强度起伏的调制产生的.交叉相位调制不仅与光波自身强度有关,而且与其他同时传输的光波强度有关,所以交叉相位调制总伴有自相位调制.交叉相位调制会使信号脉冲谱展宽.(3)四波混频.四波混频是指由2个或3个不同波长的光波混合和后产生新的光波的现象.其产生原因是某一波长的入射光会改变光纤的折射率,从而在不同频率处发生相位调制,产生新的波长.四波混频对于密集波分复用(DWD米)光纤通信系统影响较大,成为限制其性能的重要因素.(4)光孤子形成.非线性折射率和色散间的相互作用,可以使光脉冲得以压缩变窄.当光纤中的非线性效应和色散间相互平衡时,可以形成光孤子.光孤子脉冲可以在长距离传输过程中,保持形状和脉宽不变.第二章光发送机与光接收机一、填空题1、(受激)辐射是半导体激光器的基本工作原理.2、半导体光源的核心是PN结,它由(高掺杂浓度)的P型半导体材料和N型半导体材料组成.3、半导体激光器产生稳定的激光振荡必须满足一定的条件,即阈值条件和(相位)条件.4、半导体激光器的激光振荡是由光栅形成的光耦合来提供,其基本原理是(布拉格)反射原理.5、半导体激光器的(P—I特性)是指它的输出功率P随注入电流I 的变化关系.6、半导体激光器把激励的电功率转换成(光功率)发射出去.7、发光二极管是非相干光源,它的基本工作原理是(自发)辐射.8、在光纤通信系统中,光发送机的任务是把(电端机)送来的电信号转变为光信号9、光发送机中的调制电路将电信号转变为(调制电流),以便实现对光源的强度调制.10、PIN光电二极管可以对一定波长范围内的入射光进行(光电转换),这一波长范围就是PIN光电二极管的波长影响范围.二、单项选择题1、为了获得高辐射度,发光二极管一般采用( D )结构.A、多同质B、双同质C、多异质D、双异质2、发光二极管的远场特性是距离器件输出端面一定距离的光束在( B )的分布.A、时间上B、空间上C、磁场上D、电场上3、光发送机技术指标中的消光比直接影响光接收机的灵敏度,从提高接收机灵敏度的角度希望消光比极可能大,消光比一般应大于( A )dB.A、10B、8C、6D、44、一般PIN光电二极管在入射光功率( D )毫瓦量级时,能够保持比较好的线性.A、高于B、略高于C、等于D、低于5、雪崩光电二极管特性中的量子效率只与初级光生载流子数目有关,不涉及倍增问题,故量子效率值总是( D ).A、大于1B、略大于1C、等于1D、小于16、在光纤通信中,光接收机再生电路的任务是把放大器输出的升余弦波形恢复成( B ).A、模拟信号B、数字信号C、电子信号D、光子信号三、多项选择题1、光纤通信中,光源的间接调制是利用晶体的( ABC )等性质来实现对激光辐射调制.A、电光效应B、磁光效应C、声光效应D、场光效应2、在光纤数字通信系统中,光发送机主要有( ABC )、光源及其控制电路.A、输入借口B、线路编码C、调制电路D、输出接口3、在光纤通信系统中编码调制是先将连续的模拟信号通过( ACD ),转换成二进制脉冲代码,再用矩型脉冲的有、无来表示信号.A、取样B、过滤C、量化D、编码4、雪崩二极管的响应速度主要取决于( ABC )等因素.A、载流子完成倍增过程所需要的时间B、载流子在耗尽层的渡越时间C、结电容和负载电阻的RC时间常数D、结电容和负载电感的LC时间常数5、光接收技术中的前置放大器一般可分为( ACD )等几种.A、低阻抗前置放大器B、无阻抗前置放大器C、高阻抗前置放大器D、跨阻抗前置放大器四、判断题1、光端机是光纤通信系统中的光纤传输终端设备,它们位于电端机和光纤传输线路之间.(√)2、半导体激光器的输出光功率不会随温度而变化.(×)3、半导体激光器中所允许的光场模式分为TE和T米两组.(√)4、由于光二极管输出的是自发辐射光,并且没有光学谐振腔,所以输出光谱要比半导体激光器窄得多.(×)5、光调制是用待发送的电信号控制光载波的某一参量,使之携带发送信息的过程,也就是完成电/光转换的过程.(√)6、对于半导体光源,其输出光功率与注入电流成反比.(×)7、激光器的发射心波长随温度的升高向长波长漂移.(√)8、受激吸收是半导体光检测器的基本工作原理.(√)9、光电二极管的线性饱和是指它有一定的功率检测范围,当入射功率太强的时,光电流和光功率将不成正比,从而产生非线性失真.(√)10、雪崩光电二极管是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流.(√)11、光接收机的主要作用是将经过光纤传输的微弱光信号转换成电信号,并放大、再生成原发射的信号.(√)五、问答题1、简述光纤通信中光接收机的主要作用.答:光接收机的主要作用是将光纤传输后的幅度被衰减的、波形产生畸变的、微弱的光信号变换为电信号.并对电信号进行放大、整形、再生后,再生成渝发送端相同的电信号,输入到电接收端机.2、简述半导体激光器的光谱特性.答:半导体激光器的光谱特性主要是激光器的纵模决定.激光器的光谱会随着注入电流而发生变化.当注入电流低于阀值电流时,半导体激光器发出的是荧光,光谱很宽;当电流增大到阀值电流时,光谱突然变窄,光谱中心强度急剧增加,出现了激光;对于单纵模半导体激光器,由于只有一个纵模,其谱线更窄.3、简述发光二极管的P—I特性.答:发光二极管不存在阀值,输出光功率与注入电流之间呈线性关系,且线性范围较大.当注入电流较大时,由于PN结的发热,发光效率降低,出现饱和现象.在相同注入电流下,面发光二极管的发输出功率比边发光二极管大.4、简述影响PIN光电二极管响应速度的主要因素.答:影响响应速度的主要因素有:结电容和负载电阻的RC时间常数、载流子在耗尽区里的渡越时间及耗尽区外产生的载流子的扩散时间.六、论述题1、阐述光纤通信心对光源的要求.答:(1)光源的发射波长应该与光纤的低损耗窗口一致,即为850n米、1310n米和1550n米的三个低损耗窗口.(2)光源有足够高的、稳定的输出光功率,以满足系统中继距离的要求,一般为数十微瓦至数微瓦为宜.(3)光源的光谱线宽要窄,即单色性好,以减小光纤色散对信号传输质量的影响.(4)调制方法简单,且要响应速度快,以满足高速率传输的要求.(5)电光转换效率要高.(6)能够在室温下连续工作,(7)体积小,重量轻,寿命长,工作稳定可靠.2、阐述半导体激光器控制电路中自动功率控制的手段和方法.答:(1)控制手段.要精确控制激光器的输出功率,应从两方面着手:一是控制激光器的偏置电流,使其自动跟踪阀值的变化,从而使激光器总是偏置在最佳的工作状态;而是控制激光器调制脉冲电流的幅度,使其自动跟踪外微分量子效率的变化,从而保持输出光脉冲信号的幅度恒定.(2)控制方法.自动功率控制方法有两种:一是通过光反馈来自动调整偏置电流的自动偏置控制方法;二是峰值功率/平均功率控制方法.3、阐述光纤通信系统对光检测器的要求.答:光检测器是把光信号变为电信号的器件,由于从光纤中传输过来的光信号一般是非常微弱其产生了畸变的信号,因此光纤通信系统对光检测器提出了非常高的要求.具体有求如下:一是在系统的工作波长上要有足够高的响应度,即对一定的入射光功率,光检测器能输出尽可能大的光电流;二是有足够高的响应速度和足够的工作带宽,即对高速光脉冲信号有足够快的响应能力.三是产生的附加噪声小;四是光电转换线性好,保真度高;五是工作稳定可靠,工作寿命长;六是体积小,使用简便.第三章光纤通信技术一、填空题1、光纤放大器分为稀土掺杂光纤放大器和利用(非线性)效应制作的常规光纤放大器.2、掺铒光纤放大器中的泵浦光源为信号光的放大提供足够的能量,它使处于低能级的Er3+被提高到高能级上,使掺铒光纤达到粒子数(反转)分布.3、掺铒光纤放大器中的同向泵浦是信号光与泵浦光以(同一方向)进入掺铒光纤的方式.4、掺铒光纤放大器中的反向泵浦是信号光与泵浦光从(两个不同)的方向进入掺铒光纤的方式.5、掺铒光纤放大器中的光耦合器的作用是将(信号光)和泵浦光合在一起,送入掺铒光纤中.6、光时分复用是指在光上进行时间(分割)复用.7、光时分复用技术中的高速光开关在逻辑上可以是一个全光的(与门)或者电/光脉冲控制的开关器件.8、光纤中的孤子是光纤色散与(非线性)相互作用的产物,服从非线性薛定谔方程,受光纤线性与非线性的支配.9、光纤通信技术中的光孤子源发出的光孤子应具有(双曲正割)型或高斯型的轮廓.10、光传送网是一种以(波分复用)与光信道技术为核心的新型通信网络传送体系.二、单项选择题1、半导体光放大器的增益一般在(A)dB.A.15~30B.45~60C.75~90D.115~1302、半导体光放大器的频带宽度一般为(B)n米.A.30~50B.50~70C.70~90D.90~1103、掺铒光纤放大器的工作波长为(B)n米波段.A.1350B.1550C.1750D.19504、掺镨光纤放大器的工作波长为(A)n米波段.A.1300B.1500C.1700D.19005、光纤拉曼放大器具有在(C)n米全波段实现光放大的优点.A.127~167B.270~670C.1270~1670D.2700~67006、掺铒光纤放大器具有较高的饱和输出功率,一般为(C)dB米.A.0.1~0.2B.1.0~2.0C.10~20D.100~200三、多项选择题1、掺铒光纤放大器的光路部分由(ABCD)和光滤波器组成.A.掺铒光纤B.泵浦光源C.光耦合器D.光隔离器2、光波分复用(WD米)系统的基本构成主要有(AB)几种形式.A.双纤单向传输B.单纤双向传输C. 双纤双向传输D. 单纤单向传输3、目前,光纤通信技术中的光网络节点主要有( AC )A、光分插复用器B、光分插连接器C、光交叉连接器D、光交叉复用器4、光传送网节点技术中的光交叉连接器的光交换单元可采用( AC )A、空间交换B、时间交换C、波长交换D、信号交换5、掺铒光纤放大器的泵浦形式有(ABC)A、同向泵浦B、反向泵浦C、双向泵浦B、三向泵浦四、判断题1、光纤通信在进行长距离传输时,由于光纤中存在损耗和色散,使得光信号能量降低光脉冲发生展宽.(√)2、光放大器不能直接放大光信号,需转换成电信号.(×)3、掺铒光纤放大器中的双向泵浦是同向泵浦和反向泵浦同时泵浦的方式.(√)4、常规光纤放大器是利用光纤的三阶线性光学效应产生的增益机制对光信号进行缩大.(×)5、双纤单向传输是指采用两根光纤实现连个方向信号传输,完成全双工通信.(√)6、单纤双向传输是指光通路在一根光纤中同时延两个不同的方向传输,此时,双向传输的波长相互分开,以实现彼此双方全双工的通信.(√)7、当进入光纤中的光功率较低时,光线可以认为是线性系统,其折射率可以认为是常数.(√)8、光纤孤子通信依靠光纤的线性和色散特性,实现传输过程中畸变光信号的分布式自整形.(×)9、在光网络中,信息流的传送处理过程主要在光域进行,由波长标识的信道资源成为层连网的基本信息单元.(√)10、WD米波分复用光传送网是用光波长作为最基本交换单元的交换技术,来替换传统交换节点中以时隙为交换单位的时隙交换技术.(√)五、简答题1、简述掺铒光纤放大器辅助电路部分的作用及其所包含的功能电路.答:辅助电路部分中的自动控制部分一般采用微处理器对EDFA的泵浦光源的工作状态进行监测和控制、对EDFA输入和输出光信号的强度进行监测,根据监测结果适当调节泵浦光源的工作参数,使EDFA工作在最佳状态.此外,辅助电路部分还包括自动温度控制和自动功率控制等保护功能的电路.2、简述光波分复用技术(WD米)的工作原理.答:WD米技术是在一根光纤中同时传输多波长光信号的一项技术.其基本原理是在发送端将不同波长的信号组合起来(复用),送入到光缆线路上的同一根光纤中进行传输,在接受端又将组合波长的光信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端,因此将此项技术称为光波长分割复用,简称光波风复用技术.3、简述光时分复用(OTD米)需要解俊的关键技术.答:从目前的研究情况看,实现OTD米需要解决的关键技术如下:(1)高重复率超短光脉冲源;(2)超短光脉冲的长距离传输和色散抑制技术;(3)时钟恢复技术;(4)光时分复用和解复用技术;(5)帧同步及路序确定技术;4、简述WD米光传送网的特点.答:(1)波长路由(2)透明性(3)网络结构的扩展性(4)可重构性(5)可扩容性(6)可操作性(7)可靠性和可维护性六、论述题1、阐述掺铒光纤放大器(FDFA)的应用形式答:(1)系统线路放大器.将FDFA直接接入光纤传输链路中作为在线放大器,或光中继器取代光—电—光中继器,实现光—光放大.可广泛应用于长途通信.越洋通信和CA TV分配网络等领域.(2)功率放大器.将EDFA接在光发射机的光源之后对信号进行放大.由于增加了入纤的光功率,从而可延长传输距离.(3)前置放大器.将EDFA放在光接受几的前面,可以提高光接收机的接受灵敏度.(4)LAN放大器.将EDFA放在光纤局域网络中用作分配补偿器,以便增加光节点的数目,为更多的用户服务.2、阐述光传送网中各子层的功能.答:(1)光信道层.光信道层负责为来自电复用段曾德不同格式的客户星系选择路由和分配波长,为灵活的网络选路安排光信道连接,处理光信道开销,提供光信道层的检测、管理功能,提供端到端的连接,并在故障发生时,通过重新选录或直接把工作业务切换到预定的保护路由来实现保护到缓和网络恢复.(2)光复用段层.光复用断层保证相邻两个波长复用传输设备间多波长复用光信号的完整传输,为多波长信号提供网络功能.主要包括:为灵活的多波长网络选路重新安排光复用段功能;为保证多波长光复用段适配信息的完整性处理光复用段开销;为段层的运行和维护提供光复用段的检测和管理功能.(3)光传输段层.光传输段层为光信号在不同类型的光媒质(如G.652、G.655光纤)上提供传输功能,同时实现对光放大器或中继器的检测和控制功能等.通常会涉及的问题是:功率均衡问题,EDFA增益控制问题和色散的积累和补偿问题.第四章传送网技术一、填空题1、传送网可分层电路层、通道层和(传输媒质)层三个子层2、SDH帧结构中的耿告诫同步传送模块有基本模块信号ST米-1的(N倍)组成.3、SDH帧结构可分乘(段开销),ST米-N净负荷和管理单元指针三个基本区域.4、SDH帧结构中的短开销是指为保证信息正常、灵活、有效地传送所必须附加的(字节),主要用于网络的运行、管理、维护及指配.5、SDH帧结构中的信息净负荷指的是可真正用于电信业务的(比特)6、SDH帧结构中设置了两种开销,分别是段开销和(通道)开销.7、在SDH网络基本传送模块ST米-1中,E1和E2字节用于提供(公务联络)语声通路.8、在SDH网络基本传送模块ST米-1中,K1和K2字节用作(APS)指令.9、在SDH网络基本传送模块ST米-1中米1字节用来传送BIP-N*24所检出的(差错块)个数.10、SDH的通用复用映射结构中,具有一定频差的各种支路的业务信号要想复用进ST米-N帧,都要经历映射、(定位校准)和复用三个步骤.11、SDH基本单元中的虚容器是用来支持SDH(通道层)连接的信息结构.12、SDH网络基本单元中的支路单元是一种提供低阶通道层和(高阶)通道层之间适配功能的信息结构.13、SDH网络基本单元中的管理单元式提供高阶通道层和(复用段)层之间适配功能的信息结构.14、在SDH网络中,映射是一种在SDH网络边界处,把支路信号适配装入相应(虚容器)的过程.15、SDH网络中的分差复用器是利用(时隙交换)实现宽带管理.二、单项选择题1、SDH网络中最基本的模块为ST米-1,传输速率为(A)米bit/s.A.155.520C.466.560D.622.0802、SDH技术中采用的帧结构属于块状帧结构并以字节为基础,传输一帧的时间125μs,每秒共传(D)帧.A.600B.800C.6000D.80003、SDH帧结构中的管理单元指针位于帧结构左边的第(C)行.A.2B.3C.4D.54、SDH同步传送基本模块中的定帧字节共有(B)个A1和A2,其目的是尽可能地缩短同步建立时间.A.4B.6C.8D.105、SDH同步基本传送基本模块中的F1字节是为特殊维护目的而提供临时的数据/语声通路连接,其速率为(C)Kbit/s.A.16B.32C.64D.1286、SDH映射单元中,容器C-12的速率为(B)米bit/s.A.1.600B.2.176C.6.784。
【精选】光发射机、接收机指标测试

实验一 光发射机指标测试一、实验内容:1.测试数字光发端机的平均光功率2.测试数字光发端机的消光比3.绘制数字光发端机的P-I 特性曲线二、实验目的:1.了解数字光发端机平均输出光功率的指标要求2.掌握数字光发端机平均输出光功率的测试方法3.了解数字光发端机的消光比的指标要求4.掌握数字光发端机的消光比的测试方法三、实验仪器:LTE-GX-02E 型光纤通信实验系统、示波器、光功率计、万用表、FC-FC 光跳线。
四、实验原理:光发射机的指标包括:半导体光源的P-I 特性曲线、消光比(EXT )和平均光功率。
1.半导激光器的P-I 特性曲线测试半导体激光器的输出光功率与驱动电流的关系如下图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith 表示。
当输入电流小于Ith 时,其输出光为非相干的荧光,类似于LED 发出光,当电流大于Ith 时 ,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I 的线性关系.图 1 半导体激光器P-I 曲线示意图2.消光比(EXT )的测试光比定义为: ,式中00P是光发射机输入全“0”时输出的平均光功率即无输入信号时的输出光功率。
是光发射机输入全“1”时输出的平均光功率。
当输入信号为“0”时,光源的输出光功率为00P ,它将由直流偏置电流b I 来确定。
无信号时光源输出的光功率对接收机来说是一种噪声,将降低光接收机的灵敏度。
因此,从接收机角度考虑,希望消光比越小越好。
但是,应该指出,当b I 减小时,光源的输出功率将降低,光源的谱线宽度增加,同时,还会对光源的其他特性产生不良影响,因此,必须全面考虑b I 的影响,一般取b I =(0.7~0.9)Ith (Ith 为激光器的阈值电流)。
001110lgP EXT P 11P bI3.平均光功率光发送机的平均输出光功率被定义为当发送机送伪随机序列时,发送端输出的光功率值。
SDH测试要求

SDH测试要求1、对测试人员的要求(1)避免光接收机过载:将光发送机与光接收机直接相连时,测试人员必须注意避免光接收机过载。
ITU-T建议G.957中规定了不同类型接收机的过载电平,见表1。
当接收电平远大于过载电平时,有可能会导致接收机损坏,因此,如果光发送机功率比期望值高,则要插入光衰减器。
这对于与带有光放的长途大功率发射机相连接时极为重要。
表1:G.957光接收机规范(2)建立同步与PDH测试不同,在SDH测试中必须建立SDH测试设备与被测网元或系统的同步,以确保测试中没有失控指针调整,影响正常测试。
所以测试人员在进行涉及到SDH的测试项目,如指针调整抖动或去映射抖动测试时,必须建立SDH测试设备与被测网络单元间的同步,以免测试结果不准确。
2、对测试项目的要求。
SDH线路系统(设备)测试项目及其要求见表2。
其中只列出与工程技术人员日常维护相关的项目。
表2:SDH线路系统(设备)测试项目推荐注1:符号说明:# --表示必须要测;O --表示选择,可测可不测;/ --表示不需要测。
注2:缩略语说明:厂验—表示出厂验收;安装—表示工程安装;工程—表示工程验收;维护—表示维护使用。
以上测试要求只是一调查统计结果,并不是规定,仅作为推荐参考,具体使用过程中应根据具体情况具体要求进行测试。
但由表2可以看出各个测试参数在不同环节的重要程度。
3、对测试仪表的要求测试设备的要求见ITU-T建议 O.150、O.151、O.152、O.171及O.172,其中O.150是对测试设备一般要求,O.151、O.152、O.181为各级速率及SDH网络接口的误码测试性能要求,而O.172建议取代原来的O.17S规范了SDH数字传输系统的抖动和漂移测试设备。
(1)测试功能要求:* 所支持的信号结构:随着SDH技术的广泛应用,原有的纯PDH测试设备已不能用于SDH网络测试,现在的SDH测试设备应具有各级STM-N信号接口(包括STM-1电,1310nm及1550nm双波长STM-1、4、16、64光);能将PDH各速率信号映射并复用进各级STM-N结构;同时具有各级PDH接口( 2Mbit/s、34Mbit/s、140Mbit/s)。
实验二 光发射机与光接收机实验

实验二光发射机与光接收机实验学号:XXX 姓名:XXX一、实验目的1.了解光源的调制的原理2.学习光发送模块的电路原理3.了解光接收机的组成4.了解光收端机灵敏度的指标要求二、实验内容1.介绍光源的调制方法2.介绍光发射电路的框图3.了解光接收机的组成三、实验仪器1.光纤通信实验系统1 台2.示波器1台3.光纤跳线1根4.万用表5.光功率计四、实验原理1、光发射机、光调制。
根据调制与光源的关系,光调制可以分为直接调制和间接调制两大类。
直接调制方法仅适用于半导体光源(LD和LED),这种方法是把要传送的信息转变为电信号注入LD或LED,从而获得相应的光信号,所以是采用电源调制方法。
直接调制后的光波电场振幅的平方与调制信号成一定比例关系,是一种光强度调制(IM)的方法。
间接调制是利用晶体的光电效应、磁光效应、声光效应等性质来实现对激光辐射的调制,这种调制方式既适应于其他类型的激光器。
间接调制最常用的外调制的方法,即在激光形成以后加载调制信号。
对某些类型的激光器,间接调制也可以采用内调制的方法,即在激光器的谐振腔内放置调制元件,用调制信号控制调制元件的物理性质,将改变谐振腔的参数,从而改变激光输出特芯以实现其调制。
光源的调制方法及所利用的物理效应如下表所示。
光源的各种调制方法本实验系统采用的是直接调制的方法。
2、模拟信号调制与数字信号调制模拟信号调制是直接用连续的模拟信号(如话音、电视等信号)对光源进行调制从而使LED 或LD的输出光功率跟随模拟信号变化,如下图所示:由于光源,尤其是激光器的非线性比较严重,所以目前模拟光纤通信系统仅仅用于对线性要求较低的地方,要实现大容量的频分复用还比较困难,仅自一些小系统中使用。
对一些容量较大、通信距离较长的系统,多采用对半导体激光器进行数字调制的方式。
数字调制主要是用数字信号的“1”和“0”来控制激光的“有”和“无”,如下图所示:与LED 相比,LD 的调制问题要复杂得多。
新员工培训光纤通信基础

中国移动广东广州分公司 经营分析会材料
光纤与光缆
全反射现象
n2
3
1
折射光
n1
入射光
光的全反射现象
中国移动广东广州分公司 经营分析会材料
光纤与光缆
光在光纤中的传播 光在光纤中以“Z”形轨迹传播及沿纤芯与包层 的分界面掠过
n2
n1
中国移动广东广州分公司 经营分析会材料
光纤与光缆
光纤的工作波长(工作窗口) 光线路信号在光纤上传送的波长:850nm、 1310nm、1550nm。 850nm窗口只用于多模传输 1310nm和1550nm窗口 用于单模传输。
PIN光二极管: – 特性参数:灵敏度、响应时间 – 优点:噪声小、工作电压低 – 缺点:没有倍增效应。PIN的光接收机灵敏度不 高,适宜用于短距通信。 APD光二极管: – 特性参数:倍增因子G(平均增益),倍增噪声 因子 – APD光二极管的最大优点是倍增效应,即输入同 样大小的光功率信号能获得比PIN光二极管多几 十倍的光电流,大大提高了光接收机的灵敏度 (比PIN光接收机提高约10dB以上)。
光纤通信概论
典型的数字光纤通信系统方框图
光发送机 光纤 中继器 光纤 光接收机
华为技术
发送端的电端机把信息( 如话音)进行模/数转换,用转 电端机(模/ 换后的数字信号去调制发送机 电端机(模/ 数) 数) 中的光源器件LD,输出发出携 带信息的光波。光波经光纤传 输后到达接收端,光接收机把 数字信号从光波中检测出来送 模拟信号 模拟信号 给电端机,而电端机再进行数/ 模拟信号 模转换,恢复成原来的信息。
中国移动广东广州分公司 经营分析会材料
光接收机各功能框介绍
判决再生电路: 对均衡器输出的脉冲流逐个进行判决,并再生成波 形整齐的脉冲码流。 时钟提取电路: 提取时钟,以保证收发同步。 自动增益控制(AGC): 控制前置放大器与主放大器的增益,使光接收机有 一个规定的动态范围。 偏压电路: 向APD光二极管提供反向偏压。
光纤通信简答

1、光纤通信的优缺点是什么?优点:通信容量大;中继距离长;抗电磁干扰;传输误码率低;适应能力强;保密性好;使用寿命长。
缺点:有些光器件比较昂贵;光纤的机械强度差;不能传送电力。
2、光纤通信系统有哪几部分组成?简述各部分作用。
光纤通信由光发射机、接收机和光纤三个部分组成。
发射机又分为电发射机和光发射机,相应的,接收机也分为光接收机和电接收机。
电发射机的作用是将信源发出的基带信号变换为适合于信道传输的电信号,包括多路复接、码型变换等;光发射机的作用是把输入电信号转换为光信号,并用耦合技术把光信号最大限度的注入光纤线路。
光纤线路把来自于光发射机的光信号以尽可能小的畸变和衰减传输到光接收机。
光接收机把从光纤线路输出的产生畸变和衰减的微弱光信号还原为电信号。
电接收机的作用一是放大,而是完成与电发射机相反的变换,包括码型反变换和多路分接等。
3、目前光纤通信为什么采用以下三个工作波长:λ1=0.85μm,λ2=1.31μm,λ3=1.55μm?答:λ1=0.85μm,λ2=1.31μm,λ3=1.55μm附近是光纤损耗较小或最小的波长“窗口”,相应的损耗分别为2~3dB/km、0.5dB/km、0.2dB/km,而且在这些波段前有成熟的光器件。
4、光纤通信为什么向长波长、单模光纤方向发展?答:长波长、单模光纤比短波多模光纤具有更好的传输特性。
(1)单模光纤没有模式色散,不同成分光经过单模光纤的传播时间不同的程度显著小于经过多模光纤时不同的程度。
(2)有光纤损耗和波长的关系曲线知,随着波长增大,损耗呈下降趋势,且在1.55μm处有最低损耗值:而且1.13μm和1.55μm处的色散很小。
故目前长距离光纤通信一般都工作在1.55μm。
5、光纤色散产生的原因及其危害是什么?答:光纤色散是由光纤中传输的光信号的不同成分的光的传播时间不同而产生的。
危害:若信号是模拟调制的,色散将限制带宽;若信号是数字脉冲,色散将使脉冲展宽,限制系统传输速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光发射机与光接收机
光线路编码
码 型 “1”:11,00交替
常用的线路编码
码型变换规则 传输速率 误码监测 按编码规则检 适用系统
CMI
双相码
“0”:01
“1”:10 “0”:01 “1”:11,00交替 “0”:01(前二个码为01,11时) 10(前二个码为10,00时)
2fi
2fi 2fi
3
光纤通信系统
一、光纤通信系统的分类
光发射机与光接收机
根据所使用的光波长、传输信号形式、传输光纤类型、信号
的调制方式、光接收方式的不同,光纤通信系统可分成:
分类方式
按信号类型 按光波长(通道)个数
类别
数字光纤通信 模拟光纤通信 单波长(通道) 多波长(WDM) 直接强度调制IM 外调制 直接检测DD 相干调制CD 多模光纤MMF
45Mbit/s ×7 6.3Mbit/s ×4
21
线路编码
光发射机与光接收机
线路编码
AMI码的全称是传号交替反转码。编码规则是:代码中的“0”不 变;代码中的“1”则交替地变换为传输码的“+1”和“1”。如:
AMI/HDB3编译码
AMI码信号无直流成分,且只有很小的低频成分,适宜在不允 许这些成分通过的信道中传输。在AMI码的编码中,一个二进制
24路 1.544 Mbit/s
30路 2.048 Mbit/s
96路(24×4) 6.312 Mbit/s
120路(30×4) 8.448 Mbit/s
480路(96×5) 32.064 Mbit/s
480路(120×4) 34.368 Mbit/s
1 440路(480×3) 97.782 Mbit/s
符号变换成一个三进制符号,又称为1B/1T码型。
2013-12-21 通信技术专业教学团队 22
22
线路编码
光发射机与光接收机
线路编码
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点, 但是,AMI码有一个重要的缺点,即接收端从该信号中获取定时信息时,由于 它可能出现长的连“0”串,因而会造成提取定时信号的困难。 为了保持AMI码的优点而克服其缺点,人们提出了许多种类的改进AMI码, HDB3码就是其中有代表性的一种。
务数字网等互联网的数据业务
特点:传输距离较短、带宽要求宽 结构:树型拓扑、总线拓扑
9
光纤通信系统
树形拓扑结构:
光发射机与光接收机
Hub
Hub Hub Hub 信道在中心点分配,光纤的作用与点到点连接系统 类似。
10
Hub
光纤通信系统
总线拓扑结构:
光发射机与光接收机
1 Bus 2
3
4
N
单根光纤承载整个业务范围的多信道光信号,通过 光接头完成分路,光分路器将一小部分功率分送给每个 用户。多路视频信道分配CATV系统;高清晰度电视 HDTV。
13
数字光纤通信系统
一、 数字光纤通信系统的组成
3 光缆 4 光缆
光发射机
1 ·· ·
9
7 ·· ·
用 户 用 户 1. 电发射机;2. 输入接口;3. 光发射机;4. 中继放大;5. 光接收 机;6. 输出接口;7. 电接收机;8. 备用系统;9. 辅助系统
14
数字光纤通信系统
光发射机与光接收机
光发射机与光接收机
1
光发射机与光接收机
光发射机与光接收机 本章内容和重点
本章内容 光线路码型 光发送机 光接收机 光中继器 无源光器件 本章重点 光通信常用线路码型。 光发送机和光接收机的功能、电路组成和性能。
2
光发射机与光接收机
本章作业 什么是PDH,系列PDH接口的速率是多少,线路码型 为什么? 光发送机的主要性能指标是什么? 光接收机的主要性能指标是什么? 光中继器的有哪几种?它们各有什么优缺点? 光通信设备对信息进行线路编码的意义是什么?
1 920路(480×3) 139.264 Mbit/s
中国
18
PDH光纤通信系统
光发射机与光接收机
引导文
图3-1 32路TDM帧组成结构示意图
2013-12-21
通信技术专业教学团队
19
19
光发射机与光接收机
20
PDH光纤通信系统
光发射机与光接收机
PDH(准同步数字系列 ):
1、北美、欧洲和日本三种数字体系彼此互不兼容,造成国际互通的困难。 2、没有世界性的标准光接口规范。
12
数字光纤通信系统
数字电话传输:
光发射机与光接收机
电话机把语音转换为频率为300~3400Hz的模拟基带信号, 通过电发射机将其转换为数字信号(PCM),并把多路数字 信号组合在一起(合群),每路语音转换成传输速率为64kb/s的 数字信号,然后用数字复接器把24路(北美、日本)或30路(中 国、欧洲)PCM信号(取样频率为8kHz,即采样周期T=125us, 并且每一量化信号用8个比特二进制脉冲代替。)合群成 1.544Mb/s或2.048Mb/s的基群(一次群),甚至更高群的数字系 列,最后输入光发射机。
2013-12-21
通信技术专业教学团队
24
24
线路编码
光发射机与光接收机
线路编码
图3-6 HDB3码编码原理方框图
图3-7 HDB3码译码原理方框图
2013-12-21 通信技术专业教学团队 25
25
光发射机与光接收机
光线路编码
PCM通信系统中的接口速率和码型,如表所示。
PDH接口码速率与接口码型
7
光纤通信系统
光发射机与光接收机
光发射机 光发射机
1 2 3
MUX
EDFA
DEMUX
1 2 3
光接收机 光接收机 光接收机 光接收机
光发射机
光发射机
N
功放
线放
前放
N
典型的点对点光纤通信系统
8
光纤通信系统
四、光纤广播分配网
光发射机与光接收机
功能:光纤通信系统不仅要求传送信息,而且要求将信息 分配给多个用户 应用:光缆电话网、公用天线电视(CATV)、宽带综合业
光发射机与光接收机
电发射机:把用户信息经A/D变换,按时分复用方式把多路信号复接, 合群成高比特率的数字信号;
输入接口:电发射机的合群信号 → 输入接口,通过输入接口进行编 码、电平和阻抗匹配;
光发射机:编码信息经光发射机调制发射光信号; 中继放大:EDFA、O/E/O; 光接收机:根据调制方式进行光电转换; 输出接口:对信号进行解码、电平和阻抗匹配; 电接收机:分群、解复用; 备用系统:主用系统出现故障时手动或自动切换到备用系统;
17
PDH光纤通信系统
准同步数字体系:
一次群 (基群) 北美
24路 1.544 Mbit/s
光发射机与光接收机
二 次 群
96路(24×4) 6.312 Mbit/s
三 次 群
672路(96×6) 44.736 Mbit/s
四 次 群
4 032路(672×6) 274.176 Mbit/s
日本 欧洲
4
光纤通信系统
二、光纤通信系统结构 1. 光纤通信系统的主要组成单元
光纤
光器件 光发送机 光接收机 光放大器
光发射机与光接收机
2. 光纤系统的具体应用
点到点连接 广播和分配网
局域网
5
光纤通信系统
光发射机与光接收机
三、点到点的传输系统 1. 采用再生器和光放大器作为周期性损耗补偿的点到点连接 光放大器:将接收到的微弱光比特流信号直接放大而不需将其转 换为电信号。(1R) 光放大器不能无限制级联,因为色散导致的脉冲畸变、噪声积累 最终限制了系统的性能。光-电-光再生中继则不存在这种问题。
光发送机 再生器 再生器 光接收机
Tx
光发送机 Tx
Rx Tx
放大器
Rx Tx
放大器
Rx
光接收机 Rx
6
光纤通信系统
光发射机与光接收机
2. 点到点传输系统的特点与性能指标 利用光纤的低损耗、宽带宽特点 性能指标:比特率-距离积(BL) BL积与光纤损耗和色散特性有关,而光纤特性又与波长有关,所 以BL积与波长有关 光纤通信系统的发展阶段 3. 设计问题 中继距离的选取:在级联的EDFA系统中, ASE噪声积累问题是 关键所在,设计的关键在于如何设置EDFA的放大间隔使接收端 的OSNR满足要求 色散补偿技术:色散补偿方案的选择及设计 光纤非线性的避免
欧洲系列 日本系列 1.6Gbit/s ×4 400Mbit/s ×4 100Mbit/s ×3 32Mbit/s ×5 6.3Mbit/s ×4 1.5Mbit/s ×6 274Mbit/s 北美系列
565Mbit/s ×4 139Mbit/s ×4 34Mbit/s ×4 8Mbit/s ×4 2Mbit/s
16
PDH光纤通信系统
光发射机与光接收机
准同步数字体系PDH( plesiochronous digital hierarchy ) 1. 中国、欧洲制式 30路64kb/s的数字信号复接成2.048Mb/s的基群速率(一次 群),然后在基群的基础上复接成更高群(二次群、三次群· · ·)。 对于这种制式,各次群的话路数按4倍递增,速率的关系略大 于4倍,因为复接为更高一次群时需插入维护、管理等辅助比特字 节。 2. 北美、日本制式 24路64kb/s的数字信号复接成1.544Mb/s的基群速率(一次 群)。 对于这种制式,3次群以上,北美与日本又不同。