2014年山东省烟台市高考数学二模试卷(文科)

合集下载

2014烟台市高三一模文科数学

2014烟台市高三一模文科数学

绝密★启用并使用完毕前文 科 数 学本试卷,分第Ⅰ卷和第Ⅱ卷两部分.共4页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数12ii -(i 为虚数单位)的虚部是 A.15iB. 15-C. 15i -D.152.设{}{}2623A x x B x a x a B A =≤≤=≤≤+⊆,,若,则实数a 的取值范围是A. []13,B. [)3+∞,C. [)1+∞,D. ()13,3.已知,a b为非零向量,则“a b ⊥ ”是“函数()()()f x xa b xb a =+⋅- 为一次函数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数()2ln x f x x=的大致图象为5.已知等差数列{}n a 的前n 项和为{}913,18,52,n n S S S b =-=-为等比数列,且557715,b a b a b ==,则的值为A.64B.128C. 64-D. 128-6.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞单调递增.若实数a 满足()()212log log 21f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是A.[]1,2B.10,2⎛⎤ ⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D. (]0,27.若执行如右图所示的程序框图,那么输出a 的值是 A.-1 B.2 C.12-D.128.在ABC ∆中,角A,B,C 所对的边分别为,,,a b c S 表示ABC ∆的面积,若()2221cos cos sin ,4a Bb Ac C S b c a B +==+-∠=,则 A.30B. 45C. 60D. 909.一个几何体的三视图如图所示,则这个几何体的体积为 ABCD10.设0,0,0a b c >>>,下列不等关系不恒成立的是 A. 321114c c c c ++>+-B. a b a c b c -≤-+-C.若1141 6.8a b a b+=+>,则D. ()20ax bx c x R ++≥∈二、填空题:本大题共5小题,每小题5分,共20分.把正确答案填在题中横线上.11.已知在3,60,ABC AB A A ∆=∠=∠中的平分线AD 交边于点D ,且()13A D A C AB λλ=+∈R ,则AD 的长为____________12.设20,240240x y z kx y x y x y x y +-≥⎧⎪=+-+≥⎨⎪--≤⎩,其中实数满足若z 的最大值为12,则实数k=_______13.若函数xy e ax =+,有大于零的极值点,则实数a 的取值范围是______.14.已知F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O是双曲线C 的中心,直线y =是双曲线C 的一条渐近线.以线段OF 为边作正三角形MOF ,若点M 在双曲线C 上,则m 的值为________. 15.设函数()(){}()211231,012n n n f x a a x a x a x f a f -=+++⋅⋅⋅⋅⋅⋅+==,数列满足 ()2*n n a n N ∈,则数列{}n a 的前n 项和n S 等于______________.三、解答题(本大题共6个小题,满分75分,解答时要求写出必要的文字说明、证明过程或推演步骤.) 16.(本小题满分12分)已知函数()()22c o s 13c o s s i n 01fx x xx ωωωω=-+<<,直线()3x f x π=是图像的一条对称轴.(1)试求ω的值;(2)已知函数()y g x =的图象是()()y g x y f x ==由图象上的各点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到,若62,0,352g ππαα⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭求sin α的值。

2014年高考数学二模试卷(文科)

2014年高考数学二模试卷(文科)

2014年高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)已知复数,则z的虚部为()3.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PC与底面垂直,若该四棱锥的正视图和侧视图都是腰长为1的等腰直角三角形,则该四棱锥中最长的棱的长度为()C D4.(5分)函数f(x)=﹣的零点所在区间为()),),5.(5分)执行如图所示的程序框图,若输入的p=5,q=6,则输出的a,i的值分别为()6.(5分)已知,则sin2α的值为().C D.7.(5分)若f (x )=2cos (ωx+φ)+m ,对任意实数t 都有f (t+)=f (﹣t ),且f ()=﹣1则实数m 的值等8.(5分)(2013•三门峡模拟)设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,.CD .9.(5分)已知函数f (x )=a x ﹣2,g (x )=log a |x|(a >0,且a ≠1),且f (2011)•g (﹣2012)<0,则y=f (x ),y=g.C D .. π C π D .11.(5分)(2012•菏泽一模)直线4kx ﹣4y ﹣k=0与抛物线y 2=x 交于A 、B 两点,若|AB|=4,则弦AB 的中点到直线x+=0的距离等于( ) .D 12.(5分)已知函数f (x )=e x+alnx 的定义域为D ,关于函数f (x )给出下列命题: ①对于任意函数a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意函数a ∈(﹣∞,0),函数f (x )存在最小值; ③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0. 二、填空题:本大题共4小题,每小题5分. 13.(5分)利用独立性检验来判断两个分类变量X 和Y 是否有关系时,通过查阅下表来确定X 和Y 有关系可信度,214.(5分)已知实数x ,y 满足不等式组若目标函数z=y ﹣ax (a ∈R )取最大值时的唯一最优解是(1,3),则实数a 的取值范围是 _________ .15.(5分)已知向量,的夹角为60°,且||=2,||=1,则向量与+2的夹角为_________.16.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,已知,b=1,△ABC的面积为,则的值为_________.三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}满足a1=1,a n>0,S n是数列{a n}的前n项和,对任意的n∈N*,有2S n=2a n2+a n﹣1.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.18.(12分)如图所示,在△ABC中,AC=1,AB=3,∠ACB=,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.(1)求证:AD∥平面PCE;(2)求三棱锥P﹣ACE的高.19.(12分)(2013•郑州一模)某高校组织自主招生考试,共有2000名优秀学生参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(I)估计所有参加笔试的2000名学生中,参加面试的学生人数;(II)面试时,每位考生抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A类资格;其它情况下获B类资格.现已知某中学有三人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为,求恰有一位同学获得该高校B类资格的概率.20.(12分)已知椭圆C:(a>b>0)的上、下焦点分别为F1,F2,在x轴上的两个端点分别为A,B.且四边形F1AF2B是边长为1的正方形.(1)求椭圆C的离心率及其标准方程;(2)若直线l与y轴交于点P(0,m),与椭圆C交于相异的两点MN,且=3,求实数m的取值范围.21.(12分)已知a∈R,函数(1)判断函数f(x)在(0,e]上的单调性;(2)是否存在实数x0∈(0,+∞),使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.四、解答题(请考生在第22,23,24题中任选一题做答,如果多做,则按所选的第一题记分)22.(10分)(2012•泰州二模)选修4﹣1:几何证明选讲如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.23.(2011•大同一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,﹣5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.24.(2012•长春模拟)选修4﹣5;不等式选讲已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.2014年高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)已知复数,则z的虚部为()=复数的虚部为﹣3.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PC与底面垂直,若该四棱锥的正视图和侧视图都是腰长为1的等腰直角三角形,则该四棱锥中最长的棱的长度为()C DAC=PA=4.(5分)函数f(x)=﹣的零点所在区间为()),),))的符号,结合函数零点的存在性定理和函数=(=(==,是单调递减函数,是单调减函数,故存在唯一零点5.(5分)执行如图所示的程序框图,若输入的p=5,q=6,则输出的a,i的值分别为()6.(5分)已知,则sin2α的值为().C D.)))×+1=,7.(5分)若f(x)=2cos(ωx+φ)+m,对任意实数t都有f(t+)=f(﹣t),且f()=﹣1则实数m的值等t+)(t+))8.(5分)(2013•三门峡模拟)设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,.CD .分别是双曲线离心率9.(5分)已知函数f (x )=a x ﹣2,g (x )=log a |x|(a >0,且a ≠1),且f (2011)•g (﹣2012)<0,则y=f (x ),y=g . C D ..πCπD.,所以O===11.(5分)(2012•菏泽一模)直线4kx﹣4y﹣k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于().D,故可知直线恒过定点(的焦点坐标为(=x+=0=12.(5分)已知函数f(x)=e x+alnx的定义域为D,关于函数f(x)给出下列命题:①对于任意函数a∈(0,+∞),函数f(x)是D上的减函数;②对于任意函数a∈(﹣∞,0),函数f(x)存在最小值;③存在a∈(0,+∞),使得对于任意的x∈D,都有f(x)>0.=二、填空题:本大题共4小题,每小题5分.13.(5分)利用独立性检验来判断两个分类变量X和Y是否有关系时,通过查阅下表来确定X和Y有关系可信度,214.(5分)已知实数x,y满足不等式组若目标函数z=y﹣ax(a∈R)取最大值时的唯一最优解是(1,3),则实数a的取值范围是(1,+∞).15.(5分)已知向量,的夹角为60°,且||=2,||=1,则向量与+2的夹角为.的值,由此求得|两个向量的夹角公式求得向量与+2向量,||=2||=1,则=|||×=+4|=2与+2的夹角为=,16.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,已知,b=1,△ABC的面积为,则的值为2.,c=解:∵2A+=,可得的面积为S=bcsinA=,即×c=根据正弦定理,得=三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}满足a1=1,a n>0,S n是数列{a n}的前n项和,对任意的n∈N*,有2S n=2a n2+a n﹣1.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.的通项公式代入∴为首项,∴)由为首项为.公比为的等比数列.∴18.(12分)如图所示,在△ABC中,AC=1,AB=3,∠ACB=,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.(1)求证:AD∥平面PCE;(2)求三棱锥P﹣ACE的高.ACB=,BC=PC=,,sinA=,的面积为CE=2,,等积法得.的高为19.(12分)(2013•郑州一模)某高校组织自主招生考试,共有2000名优秀学生参加笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(I)估计所有参加笔试的2000名学生中,参加面试的学生人数;(II)面试时,每位考生抽取三个问题,若三个问题全答错,则不能取得该校的自主招生资格;若三个问题均回答正确且笔试成绩在270分以上,则获A类资格;其它情况下获B类资格.现已知某中学有三人获得面试资格,且仅有一人笔试成绩为270分以上,在回答两个面试问题时,两人对每一个问题正确回答的概率均为,求恰有一位同学获得该高校B类资格的概率.分以上的同学的概率,类资格的概率为20.(12分)已知椭圆C:(a>b>0)的上、下焦点分别为F1,F2,在x轴上的两个端点分别为A,B.且四边形F1AF2B是边长为1的正方形.(1)求椭圆C的离心率及其标准方程;(2)若直线l与y轴交于点P(0,m),与椭圆C交于相异的两点MN,且=3,求实数m的取值范围.=3构造关于(b=c==,其标准方程为,=∵=3)•时,∵=3<﹣,或<,﹣21.(12分)已知a∈R,函数(1)判断函数f(x)在(0,e]上的单调性;(2)是否存在实数x0∈(0,+∞),使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.,函数)∵+=()时,.又四、解答题(请考生在第22,23,24题中任选一题做答,如果多做,则按所选的第一题记分)22.(10分)(2012•泰州二模)选修4﹣1:几何证明选讲如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.23.(2011•大同一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,﹣5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.的参数方程为)因为化为普通方程为,24.(2012•长春模拟)选修4﹣5;不等式选讲已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.。

2014年(全国卷II)(含答案)高考文科数学

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

山东省烟台市2014届高三上学期期末考试 文科数学Word版含答案

山东省烟台市2014届高三上学期期末考试 文科数学Word版含答案

高三期末自主练习数学(文)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集{|6}U x N x *=∈<,集合{1,3},{3,5,}A B ==,则()U C A B 等于( )A .{}1,4B .{}1,5C .{}2,5D .{}2,4 2、若0.6333,log 0.6,0.6a b c ===,则( )A .a c b >>B .a b c >>C .c b a >>D .b c a >> 3、下列四个函数中,最小正周期为π,且图象关于直线12x π=对称的是( )A .sin()23x y π=+B .sin()3y x π=-C .sin(2)3y x π=-D .sin(2)3y x π=+ 4、设平面向量(1,2),(2,)a b y ==-,若//a b ,则2a b -等于( )A .4B .5C .D .5、在ABC ∆中,若1lg()lg()lg lga c a cb b c+--=-+,则A =( ) A .90 B .60 C .120 D .150 6、函数()321()2x f x x -=-零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,47、已知直线l ⊥平面α,直线m ⊆平面β,则下列四个结论: ①若//αβ,则l m ⊥ ②若αβ⊥,则//l m ③若//l m ,则αβ⊥ ④若l m ⊥,则//αβ 其中正确的结论的序号是:( )A .①④B .②④C .①③D .②③8、函数(01)x xa y a x=<<的大致形状是( )9、设变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则2z x y =-的取值范围是( )A .3[,1]2-- B .[1,4]- C .3[,4]2- D .[2,4]- 10、一个几何体的三视图如图所示,则这个几何体的体积为( ) A..9 C..2711、若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+相切,则此双曲线的离心率等于( )A .2B .3 C.912、已知函数()f x 满足()()1f x f x +=-,且()f x 是偶函数,当[]0,1x ∈时,()2f x x =,若在区间[]1,3-内,函数()()g x f x kx k =--有三个零点,则实数k 的取值范围是( ) A .1(0,)4 B .1(0,]2 C .11(,)42 D .11[,]43第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上。

【2014烟台二模】山东省烟台市2014届高三5月适应性测试(一)文综参考答案

【2014烟台二模】山东省烟台市2014届高三5月适应性测试(一)文综参考答案

文科综合能力参考答案及评分标准(一)一、选择题(每小题4分,共140分)1.B2.C3.D4.A5.D6.C7.C8.D9.B 10.D 11.A 12.B13. D 14.A 15.B 16.A 17.B 18.D 19. C 20. B 21. D 22. B 23.C24.D 25.C 26.D 27.B 28.A 29.C 30.A 31.C 32.B 33.B 34.D 35.A二、非选择题36. (20分)(1)河流短小;河网密集;向四周分流;含沙量小;水量季节变化小;无结冰期(10分)(2)林地、草场面积大,耕地面积小;温带海洋性气候为主,全年温和多雨,光热不足,不利于种植业的发展;国土面积狭小。

(6分)(3)该地处于中纬西风带,风力强劲;为防风,建筑结构小,房屋深入山体。

(4分)37.(22分)(1)西藏宁夏(4分);自然条件差,经济落后,就业机会少。

(2分)(2)正效应:增加就业机会,促进区域经济发展(2分)负效应:环境污染加剧和生态破坏(2分)(3)资源密集型与劳动密集型工业的工作机会减少;高新技术产业与第三产业的工作机会增加。

(6分)(4)实施教育科研战略,加强与科研、院所联系;积极引进人才,提升科技水平;加大投入,改善生态环境;合理规划,建设高新技术创业区,出台优惠政策,“腾笼换鸟”;加强道路建设,缓解交通拥堵状况等。

(答出3点即可,其它合理也可。

6分)38.(1)实现了从井田制向土地私有制的转变,自给自足的小农经济成为主要生产方式;完成了从分封制到中央集权的统一国家的转变,郡县制成为我国古代的基本地方行政制度;儒道法思想孕育着道德、哲学、变革思想,形成中华民族传统文化的基准。

(9分 )(2)指商品经济。

(2分 )表现:城市经济功能增强;城市经济繁荣、“市”打破时间、空间的限制;城郊和乡村间允许置市贸易;出现了最早的纸币“交子”;海外贸易发展迅速,外贸港口走向繁荣。

(答出任意四点即可得8分,其他言之成理亦可得分,但总分不得超过8分。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

山东省烟台市2014-2015学年高二上学期期末考试数学文试题 扫描版含答案

山东省烟台市2014-2015学年高二上学期期末考试数学文试题 扫描版含答案

2014-2015学年度第一学期高二期末检测文科数学答案一.选择题:BBDAB CDACB二.填空题11. 20x y ±= 12. 12e-13. 280x y +-= 14. 3π- 15. 12 三.解答题16.解: 若p 为真,则01a <<; ………2分 若q 为真,则1012a <-<,所以1322a <<. ………5分 若p 真q 假,则102a <≤; ………8分 若p 假q 真,则312a ≤<, ………11分 综上,102a <≤或312a ≤<. ………12分 17.解: 由128x <<,得03x <<, ………2分因为p ⌝是q ⌝的必要条件,所以p 是q 的充分条件,…………5分 所以不等式240x mx -+≥对()0 3x ∀∈,恒成立, 所以244x m x x x+≤=+对()0 3x ∀∈,恒成立. ……………9分因为4x x +≥,当且仅当2x =时等号成立,所以4m ≤. ……12分 18.解:(1)依题意,(3)0f '=,解得6m =-, ………2分由已知可设32()69f x x x x n =-++,因为(0)0f =,所以0n =,则32()69f x x x x =-+, 2()3129f x x x '=-+. ………5分 列表:由上表可知()f x 在1x =处取得极大值为(1)4f =,()f x 在3x =处取得极小值为(3)0f =. ………………8分(2)当(]0 1x ∈,时,直线OM 斜率322()69(3)f x x x x k x x x-+===-, 因为01x <≤,所以332x -<-≤-,则24(3)9x ≤-<,即直线OM 斜率的最小值为4. ………12分19.解:(1)建立如图的直角坐标系,则(10 2)P ,, 设椭圆方程为2222+1x y a b=. 将33b h =-=与点P 代入方程,得a =,2l a ==. ………5分(2) 要使隧道上方半椭圆部分的土方工程量最小,只需半椭圆面积最小即可.由2222+1x y a b =,得2222102+1a b=. 因为22221022102+a b ab⨯⨯≥,即40ab ≥, 所以半椭圆面积202abS ππ=≥,当S 最小时,有22221021==2a b,得a =,b = ………10分此时2l a ==33h b =+=,隧道上方半椭圆部分的土方工程量最小. ………………12分20. 解:(1)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c . 依题意121c a a c ⎧=⎪⎨⎪-=⎩ ,解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ……………4分(2)不存在实数m ,使||||OA OB OA OB +=-. ……………5分证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. ……………7分 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>.设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. ……9分 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=.即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=,整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+,整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. …………13分21.解:(1))(x f 定义域为()0 +∞,, …………1分21ln ()x f x x -'∴=, 1()f =-e e ,21()2e ek f '==, ………3分 ∴函数)(x f y =在1x =e处的切线方程为: 21e 2e ()ey x +=-,即22e 3e y x =-. ……5分 (2)令()0f x '=,得e x =,当(0 e)x ∈,时,()0f x '>,)(x f 在(0 e),上为增函数,当(e )x ∈+∞,时,()0f x '<,在(e )+∞,上为减函数, ………7分 max 1()(e)ef x f ∴==. ……………8分 (3) 0>a ,由(2)知:)(x F 在(0 e),上单调递增,在(e )+∞,上单调递减,∴)(x F 在[] 2a a ,上的最小值min ()min{()(2)}F x F a F a =,. ……10分 1()(2)ln 22a F a F a -=, …………11分 ∴当20≤<a 时,()(2)0F a F a -≤,=)(min x f ()ln F a a =, 当2a >时,()(2)0F a F a ->,min ()f x =1(2)ln 22F a a =. ………14分。

山东省烟台市2014二模数学文含答案

山东省烟台市2014二模数学文含答案

山东省烟台2014届高三第二次模拟考试文科数学注意事项:1.本试题满分150分,考试时间为120分钟.2.使用答题纸时,必须使用0.5毫米的黑色墨水签字笔书写,作图时,可用2B 铅笔.要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸,试题卷上答题无效. 3.答卷前将密封线内的项目填写清楚.一、选择题:本大题共10小题;每小题5分,共50分.每小题给出四个选项,只有一个选项符合题目要求,把正确选项的代号涂在答题卡上. 1.设复数+=1z i2(其中i 为虚数单位),则3z z +的虚部为 A .4i B .4 C .4i - D .4-(02)a ≤≤的最大值为A .0BC .32D .943.下列有关命题的说法正确的是A .命题“若1,12==x x 则”的否命题为:“若1,12≠=x x 则”;B .“1-=x ”是“0652=--x x ”的必要不充分条件;C .命题“∈∃x R ,使得012<-+x x ”的否定是:“∈∀x R ,均有012>-+x x ”; D .命题“若y x y x sin sin ,==则”的逆否命题为真命题. 4.已知()2παπ∈ , ,3sin()45πα+=,则sin α=A .10B C . D .5.已知向量a )2,1(-=x ,b ),4(y =且a ⊥b ,则93x y +的最小值为A ..6 C .12 D .6.若双曲线C :224(0)x y λλ-=>与抛物线24y x =的准线交于,A B 两点,且AB =,则λ的值是A. 1B.2C. 4D. 13 7. 如果在一次试验中,测得(,x y )的四组数值分别是A . 6.9B . 7.1C . 7.04D .7.28.已知函数()g x 是R 上的奇函数,且当0x <时()ln(1)g x x =--,设函数3(0)()()(0)x x f x g x x ⎧≤=⎨>⎩ ,若2(2)f x ->()f x ,则实数x 的取值范围是A . (,1)(2,)-∞+∞ B .(,2)(1,)-∞-+∞C .(1,2)D .(2,1)-9.已知空间几何体的三视图如图所示,则该几何体的体积是A. 34B. 38C. 4D. 810.已知函数22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++,集合{}()0,S x f x x ==∈R , {}()0,T x g x x ==∈R ,记card ,card S T 分别为集合,S T 中的元素个数,那么下列结论不正确的是A .card 1,card 0S T ==B .card 1,card 1S T ==C .card 2,card 2S T ==D .card 2,card 3S T ==二、填空题:本大题共有5个小题,每小题5分,共25分.把正确答案填在答题卡的相应位置. 11. 执行如右图所示程序框图,若输入A 的值为2,则输出的=P12.如上左图,目标函数z ax y =-的可行域为四边形OACB (含边界) ,若点(3,2)C 是该目标函数取最小值时的最优解,则a 的取值范围是13.在圆22260x y x y +--=内,过点(0,1)E 的最长弦与最短弦分别为AC 与BD ,则四边形ABCD 的面积为14.一艘海轮从A 处出发,以每小时20海里的速度沿南偏东40°方向直线航行.30分钟后到达B 处.在C处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是15.已知函数)(x f 的定义域[-1,5],部分对应值如表,)(x f 的导函数)('x f y =的图象如图所示,下列关于函数)(x f 的命题: ①函数)(x f 的值域为[1,2];②函数)(x f 在[0,2]上是减函数;③当21<<a 时,函数a x f y -=)(最多有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最大值为4. 其中正确命题的序号是(写出所有正确命题的序号)三、解答题:本大题共6个小题,共75分.解答时写出必要的文字说明、证明过程或推理步骤. 16.(本小题满分12分)某数学兴趣小组有男女生各5名.以下茎叶图记录了该 小组同学在一次数学测试中的成绩(单位:分).已知男生数 据的中位数为125,女生数据的平均数为8.126. (1)求x ,y 的值; (2)现从成绩高于125分的同学中随机抽取两名同学,求抽 取的两名同学恰好为一男一女的概率. 17.(本小题满分12分)设函数2()sin(2)2sin 6f x x x πωω=++(0ω>),其图象的两个相邻对称中心的距离为2π. (1)求函数)(x f 的解析式;(2)若△ABC 的内角为C B A ,,所对的边分别为c b a ,,(其中c b <),且()2f A =,7=a ,ABC ∆面积为323,求c b ,的值. 18.(本小题满分12分)如图,四边形PCBM 是直角梯形,o90=∠PCB ,BC PM //,1=PM ,2=BC .又1=AC ,o 120=∠ACB ,PC AB ⊥,直线AM 与直线PC 所成的角为60°.(1)求证:AC PC ⊥; (2)求三棱锥B MAC V -的体积.19.(本小题满分12分)在数列}{n a 中,已知411=a ,411=+n n a a ,1423log ()n n b a n *+=∈N . (1)求数列}{n a 的通项公式;(2)设数列n n n n b a c c +=满足}{,求{}n c 的前n 项和n S .20.(本小题满分13分)AP CBM已知向量()x =a ,()1 0,b =,且()()0⋅=a a .(1)求点()Q x y ,的轨迹C 的方程;(2)设曲线C 与直线y kx m =+相交于不同的两点M N 、,又点()0 1A -,,当AM AN =时,求实数m 的取值范围.21.(本小题满分14分)已知2()ln (f x x ax x a =+-∈R ).(1)若0=a 时,求函数()y f x =在点))1(,1(f 处的切线方程; (2)若函数()f x 在[]2,1上是减函数,求实数a 的取值范围;(3)令2()(),g x f x x =-是否存在实数a ,当(0,e](e x ∈是自然对数的底)时,函数()g x 的最小值是3.若存在,求出a 的值;若不存在,说明理由.参考答案一、选择题: BCDBB ABDBD 二、填空题:11.4 12.223a -≤≤-13. 14. 15. ① ② ③ 三、解答题:16.解:(1) 男生成绩为119 ,122,x +120 ,134 ,137其中位数为125,故5=x .………………………… 3分女生成绩为119 ,125,y +120 ,128 ,134平均数为=8.1265134128120125119+++++y ,解之得8=y ………………………… 6分(2) 设成绩高于125的男生分别为1a 、2a ,记1341=a ,1372=a设成绩高于125的女生分别为1b 、2b 、3b ,记1281=b ,1282=b ,1343=b 从高于125分同学中取两人的所有取法:),(21a a , ),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a ,),(21b b ),(31b b ),(32b b 共10种,……………… 8分其中恰好为一男一女的取法:),(11b a ,),(21b a ,),(31b a ,),(12b a ,),(22b a ,),(32b a 共6种,……………… 10分因为53106= 故抽取的两名同学恰好为一男一女的概率为53. …………………………… 12分17.解:(1)()sin(2)1cos 26f x x x πωω=++-12cos 212sin 23+-=x x ωω1)62sin(+-=πωx ………… 3分由题意知π=T , 所以πωπ=22,1=ω 1)62sin()(+-=πx x f …………………………… 6分(2)由()2f A =,得1)62sin(=-πA , π<<A 0,所以3π=A ,∴bc bc S ABC 433sin 21233===Λπ即6=bc , ……………… 8分 又A bc c b a cos 2222-+= ,将7=a ,3π=A 代入得1322=+c b ,………………………… 10分又c b <解⎩⎨⎧=+=13622c b bc 得⎩⎨⎧==32c b ………………………… 12分18. (1)证明:∵BC PC ⊥,AB PC ⊥,又B BC AB =⋂∴ PC ⊥平面ABC ,AC ⊂平面ABC , ∴AC PC ⊥……………… 5分 (2)过M 做BC MN ⊥,连接AN ,则1==PM CN ,MN ⊥平面ABC ,o60=∠AMN ……………… 7分在ACN ∆中,由余弦定理得, 3120c o s 2222=⋅-+=oCN AC CN AC AN 在AMN Rt ∆中, ∴1=MN ∴点M 到平面而13sin12022ACB S AC CB ∆=⋅=………… 10分.∴136B ACM M ACB ACB V V S MN --∆==⋅=………… 12分 19. 解:(1)∵411=+n n a a , ∴数列}{n a 是首项为41,公比为41的等比数列,∴*)()41(N n a nn ∈=.…………………………………………… 6分(2)由(1)知,23,)41(-==n b a n nn ,∴,)41()23(nn n c +-= ……………………………………………………8分∴+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+++=32417414411n S …nn n n ⎪⎭⎫⎝⎛+-+⎪⎭⎫⎝⎛+-+-41)23(41)53(1[])23()53(741-+-+⋅⋅⋅+++=n n ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛++-nn 4141414112………………………………………………………………………………10分n n n n n n )41(313123411])41(1[412)231(2⋅-+-=--+-+=……………………12分20.解:(1)由题意得()=xa,()=xa ,∵()()0+⋅=a a,∴(0x x =,化简得2213x y +=,∴Q 点的轨迹C 的方程为2213x y +=. ………4分 (2)由2213y kx m x y =+⎧⎪⎨+=⎪⎩得()()222316310k x mkx m +++-=, 由于直线与椭圆有两个不同的交点,∴0∆>,即2231m k <+. ①……6分(i)当0k ≠时,设弦MN 的中点为()P P P x y ,,M N x x 、分别为点M N 、的横坐标,则23231M N P x x mkx k +==-+, 从而2=31P P m y kx m k +=+,21313P AP P y m k k x mk+++==-, …………8分 又AM AN =,∴AP MN ⊥.则23113m k mk k++-=-,即2231m k =+, ②将②代入①得22m m >,解得02m <<,由②得22103m k -=>,解得12m >, 故所求的m 的取值范围是⎝⎛⎭⎫12,2. …………10分 (ii)当=0k 时,AM AN =,∴AP MN ⊥,2231m k <+,解得11m -<<. …………12分综上,当0k ≠时,m 的取值范围是⎝⎛⎭⎫12,2, 当=0k 时,m 的取值范围是()1 1-,. ……13分 21.解:(1)当0a =时,2()ln f x x x =-……… 1分(1)1,(1)1f f '∴==,函数()y f x =在点(1,(1))f 处的切线方程为0x y -= … 3分(2)函数()f x 在[]2,1上是减函数在[1,2]上恒成立 …………… 4分令2()21h x x ax =+-,有(1)0(2)0h h ≤⎧⎨≤⎩得………………………………… 6分……………………………………………………………………………… 7分 (3)假设存在实数a ,使()ln g x ax x =-在(0,]x e ∈上的最小值是3……………………………………………………………… 8分 当0a ≤时,()0g x '<,()g x ∴在(0,]e 上单调递减,min ()()13g x g e ae ==-=10分 (0,]e 上恒成立,()g x ∴在(0,]e 上单调递减11分;()0g x '>13分综上所述,存在实数2a e =,使()ln g x ax x =-在(0,]x e ∈上的最小值是3.…… 14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年山东省烟台市高考数学二模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.设复数z=1+(其中i为虚数单位),则z+3的虚部为()A.4iB.4C.-4iD.-4【答案】B【解析】解:∵z=1+,∴.则=.即的虚部为:4.故选:B.由复数z求出z的共轭复数,然后代入z+3化简求值即可得到答案.本题考查了复数代数形式的除法运算,考查了共轭复数的求法,是基础的计算题.2.(0≤a≤2)的最大值为()A.0B.C.D.【答案】C【解析】解;=显然当a=时取最大值,最大值为,故选:C.直接利用配方法求出函数的最值.本题属于求表达式的最值问题,利用配方法求最值是众多方法之一,本题是一道基础题.3.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【答案】D【解析】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=-1”是“x2-5x-6=0”的必要不充分条件.因为x=-1⇒x2-5x-6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故答案选择D.对于A:因为否命题是条件和结果都做否定,即“若x2≠1,则x≠1”,故错误.对于B:因为x=-1⇒x2-5x-6=0,应为充分条件,故错误.对于C:因为命题的否定形式只否定结果,应为∀x∈R,均有x2+x+1≥0.故错误.由排除法即可得到答案.此题主要考查命题的否定形式,以及必要条件、充分条件与充要条件的判断,对于命题的否命题和否定形式要注意区分,是易错点.4.已知α∈(,π),sin(α+)=,则sinα=()A. B. C.或 D.【答案】B【解析】解:∵α∈(,π),sin(α+)=,∴α+∈(,π),∴cos(α+)=-,∴sinα=sin[(α+)-]=sin(α+)cos-cos(α+)sin=+=,故选:B.根据角的范围利用同角三角函数的基本关系求出cos(α+)的值,再根据sinα=sin[(α+)-],利用两角差的正弦公式计算求得结果.本题主要考查两角和差的正弦公式,同角三角函数的基本关系,属于中档题.5.已知向量=(x-1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2B.C.6D.9【答案】C【解析】解:∵⊥,∴(x-1,2)•(4,y)=0,化为4(x-1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.本题考查了⊥⇔=0、基本不等式的性质,属于基础题.6.若双曲线C:4x2-y2=λ(λ>0)与抛物线y2=4x的准线交于A,B两点,且|AB|=2,则λ的值是()A.1B.2C.4D.13【答案】A【解析】解:抛物线y2=4x的准线方程为x=1,代入双曲线C:4x2-y2=λ,可得y=±,∵|AB|=2,∴2=2,∴λ=1.故选:A.求出抛物线y2=4x的准线方程为x=1,代入双曲线,求出A,B两点的纵坐标,利用|AB|=2,即可求出λ的值.本题考查抛物线、双曲线的性质,考查学生的计算能力,比较基础.根据上表可得回归方程,据此模型预报当x为5时,y的值为()A.6.9 B.7.1 C.7.04 D.7.2【答案】B【解析】解:由题意,==2.5,==4.5∵回归方程=1.04x+,∴4.5=1.04×2.5+,∴=1.9∴=1.04x+1.9,∴当x=5时,=1.04×5+1.9=7.1故选:B.确定样本中心点,利用回归方程=1.04x+,求出,即可求得回归方程,从而可预报x为5时,y的值.本题考查回归方程,考查学生的计算能力,属于基础题.8.已知函数g(x)是R上的奇函数,且当x<0时g(x)=-ln(1-x),函数f(2-x2)>f(x),则实数x的取值范围是()>,若A.(-2,1)B. ,,,C.(-1,2)D.,,,【答案】A【解析】解:∵奇函数g(x)满足当x<0时,g(x)=-ln(1-x),∴当x>0时,g(-x)=-ln(1+x)=-g(x),得当x>0时,g(x)=-g(-x)=ln(1+x)∴f(x)的表达式为>,∵y=x3是(- ,0)上的增函数,y=ln(1+x)是(0,+ )上的增函数,∴f(x)在其定义域上是增函数,由此可得:f(2-x2)>f(x)等价于2-x2>x,解之得-2<x<1故选A根据奇函数g(x)当x<0时g(x)=-ln(1-x),可得当x>0时,g(x)=ln(1+x).结合f(x)表达式可得f(x)在其定义域上是增函数,得f(2-x2)>f(x)等价于2-x2>x,解之即得本题答案.本题给出分段函数,要我们解关于x的不等式,着重考查了基本初等函数的单调性和函数的奇偶性等知识,属于中档题.9.已知空间几何体的三视图如图所示,则该几何体的体积是()A. B. C.4 D.8【答案】B【解析】解:由三视图可知:该几何体是由底面边长为2的正方形,高为2的四棱锥.因此该几何体的体积==.故选B.由三视图可知:该几何体是由底面边长为2的正方形,高为2的四棱锥.据此可求出该几何体的体积.本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.10.设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S=|x|f(x)=0,x∈R|,T=|x|g(x)=0,x∈R|,若card S,card T分别为集合元素S,T的元素个数,则下列结论不可能的是()A.card S=1,card T=0B.card S=1,card T=1C.card S=2,card T=2D.card S=2,card T=3【答案】D【解析】解:∵f(x)=(x+a)(x2+bx+c),当f(x)=0时至少有一个根x=-a当b2-4c=0时,f(x)=0还有一根只要b≠2a,f(x)=0就有2个根;当b=2a,f(x)=0是一个根当b2-4c<0时,f(x)=0只有一个根;当b2-4c>0时,f(x)=0只有二个根或三个根当a=b=c=0时card S=1,card T=0当a>0,b=0,c>0时,card S=1且card T=1当a=c=1,b=-2时,有card S=2且card T=2故选D.根据函数f(x)的解析可知f(x)=0时至少有一个根x=-a,然后讨论△=b2-4c可得根的个数,从而得到g(x)=0的根的个数,即可得到正确选项.本题主要考查了方程根的个数,同时考查了元素与集合的关系,分类讨论是解题的关键,属于基础题.二、填空题(本大题共5小题,共25.0分)11.执行如图所示的程序框图,若输入A的值为2,则输出P的值为______ .【答案】4【解析】解:当P=1时,S=1+;当P=2时,S=1++;当P=3时,S=1+++;当P=4时,S=1++++=;不满足S≤2,退出循环.则输出P的值为4故答案为:4.由已知中的程序框图及已知中输入2,可得:进入循环的条件为S≤2,即P=1,2,3,4,模拟程序的运行结果,即可得到输出的P值.本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.12.如图,目标函数z=ax-y的可行域为四边形OACB(含边界).若点C(3,2)是该目标函数取最小值时的最优解,则a的取值范围是______ .【答案】【解析】解:由可行域可知,直线AC的斜率K AC==-2直线BC的斜率K BC==-,当直线z=ax-y的斜率介于AC与BC之间时,C是该目标函数z=ax-y的最优解,所以a∈[-2,-]故答案为:-2根据约束条件对应的可行域,利用几何意义求最值,z=ax-y表示直线在y轴上的截距的相反数,结合图象可求a的范围本题主要考查了简单的线性规划,以及利用几何意义求最值的方法反求参数的范围,属于基础题.13.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为______ .【答案】10【解析】解:圆x2+y2-2x-6y=0即(x-1)2+(y-3)2=10表示以M(1,3)为圆心,以为半径的圆.由圆的弦的性质可得,最长的弦即圆的直径,AC的长为2.∵点E(0,1),∴ME==.弦长BD最短时,弦BD和ME垂直,且经过点E,此时,BD=2=2=2.故四边形ABCD的面积为=10,故答案为10.根据圆的标准方程求出圆心M的坐标和半径,最长的弦即圆的直径,故AC的长为2,最短的弦BD和ME垂直,且经过点E,由弦长公式求出BD的值,再由ABCD的面积为求出结果.本题主要考查直线和圆的位置关系,两点间的距离公式,弦长公式的应用,体现了数形结合的数学思想,属于中档题.14.一艘海轮从A处出发,以每小时20海里的速度沿南偏东40°方向直线航行.30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是______ .【答案】海里【解析】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=10,从而∠ACB=45°.°=海里.在△ABC中,由正弦定理可得BC=°故答案为:海里.先根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,最后根据正弦定理可得到BC的值.本题主要考查正弦定理的应用,考查对基础知识的掌握程度,属于中档题.15.已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③当1<a<2时,函数y=f(x)-a最多有4个零点;④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4.其中正确命题的序号是______ (写出所有正确命题的序号)【答案】①②③【解析】解:①由图象得:f(0),f(4)是极大值,而f(2)是极小值,f(-1),f(5)是端点值,∴最大值在f(0),f(4),f(-1)中取,最小值在f(2),f(5)中取;结合表格得:①正确.②由图象得:在[0,2]上,f′(x)<0,∴f(x)是减函数,故②正确.③画出函数y=f(x)-a的草图,可以发现,当a=1.5时,有三个零点,当a=2时有两个零点,当1.5<a<2时,有4个零点,故③正确.④由图象得函数f(x)的定义域[-1,5],f(x)的最大值是2,t的最大值是5.故答案为:①②③.通过函数的图象,再结合表格可直接读出.本题考察了函数的单调性,极值,导数的应用,以及读图的能力.三、解答题(本大题共6小题,共75.0分)16.某数学兴趣小组有男女生各5名.以下茎叶图记录了该小组同学在一次数学测试中的成绩(单位:分).已知男生数据的中位数为125,女生数据的平均数为126.8.(1)求x,y的值;(2)现从成绩高于125分的同学中随机抽取两名同学,求抽取的两名同学恰好为一男一女的概率.【答案】解:(1)男生成绩为119,122,120+x,134,137,其中位数为125,故x=5.…(3分)女生成绩为119,125,120+y,128,134,平均数为126.8=,解之得y=8…(6分)(2)设成绩高于125的男生分别为a1、a2,记a1=134,a2=137,设成绩高于125的女生分别为b1、b2、b3,记b1=128,b2=128,b3=134,从高于12(5分)同学中取两人的所有取法:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10种,…(8分)其中恰好为一男一女的取法:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3)共6种,…(10分)∵故抽取的两名同学恰好为一男一女的概率为.…(12分)【解析】(1)由已知中男生数据的中位数为125,可知120+x=125,由女生数据的平均数为126.8,可知126.8=,解方程可得x,y的值;(2)分别计算从成绩高于125分的同学中随机抽取两名同学的取法种数,和抽取的两名同学恰好为一男一女的取法种数,代入古典概型概率公式,可得答案.此题考查了古典概型概率计算公式,茎叶图,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.17.设函数f(x)=sin(2ωx+)+2sin2ωx(ω>0),其图象的两个相邻对称中心的距离为.(1)求函数f(x)的解析式;(2)若△ABC的内角为A,B,C,所对的边分别为a,b,c(其中b<c),且f(A)=2,a=,△ABC面积为,求b,c的值.【答案】解:(1)==…(3分)由题意知T=π,∴,ω=1,∴函数的解析式为:…(6分)(2)由f(A)=2,得,0<A<π,∴,∴即bc=6,…(8分)又a2=b2+c2-2bccos A,将,代入得b2+c2=13,…(10分)又b<c解得…(12分)【解析】(1)通过两角和与差的三角函数化简函数的表达式为一个角的一个三角函数的形式,图象的两个相邻对称中心的距离为.求出函数的周期,然后求函数f(x)的解析式;(2)利用解析式通过f(A)=2,求出A,通过a=,△ABC面积为,以及余弦定理即可求b,c的值.本题考查两角和与差的三角函数,函数的解析式的求法,余弦定理的应用,三角形的面积的求法,考查计算能力.18.如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(Ⅰ)求证:PC⊥AC;(Ⅱ)求三棱锥V B-MAC的体积.【答案】(I)证明:∵PC⊥BC,PC⊥AB,BC∩AB=B,∴PC⊥平面ABC,∵AC⊂平面ABC,∴PC⊥AC.(II)解:∵PC⊥平面ABC,PC⊂平面PCBM,∴平面PCBM⊥平面ABC,如图,在平面ABC中过A作AD垂直于BC的延长线与D,则AD⊥平面PCBM,则AD为三棱锥A-MBC的高,∵∠ACB=120°,∴∠ACD=60°,在直角三角形ADC中,AD=AC sin60°=1×.又S△BMC=S四边形PCBM-S△MPC=(PM+BC)•PC-PM•PC=(1+2)×1-×1×1=1∴V B-MAC=V A-MBC==∴三棱锥B-MAC的体积为.【解析】(Ⅰ)利用线面垂直的判定定理,证明PC⊥平面ABC,然后证明PC⊥AC;(Ⅱ)由PC⊥平面ABC,根据面面垂直的判定可得面ABC⊥面PVBM,再由两面垂直的性质定理可得三棱锥A-MBC的高,解直角三角形求出三棱锥A-MBC的高,则体积可求.本题主要考查了直线与平面、平面与平面垂直的判定和性质,考查三棱锥B-MAC的体积的计算,考查考查空间想象能力、运算能力和推理论证能力,属于中档题.19.在数列{a n}中,已知a1=,,b n+2=3a n(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设数列{c n}满足c n=a n•b n,求{c n}的前n项和S n.【答案】解:(1)∵a1=,,∴数列{a n}是公比为的等比数列,∴,又,故b n=3n-2(n∈N*).(2)由(1)知,,,∴,,∴,于是.两式相减,得=.∴【解析】(1)由条件建立方程组即可求出数列{a n}、{b n}的通项公式;(2)根据错位相减法即可求{c n}的前n项和S n.本题主要考查等差数列和等比数列的通项公式的计算,以及利用错位相减法进行求和的内容,考查学生的计算能力.20.已知向量=(x,y),=(1,0),且(+)•(-)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围.【答案】解:(1)由题意向量=(x,y),=(1,0),且(+)•(-)=0,∴,化简得,∴Q点的轨迹C的方程为.…(4分)(2)由得(3k2+1)x2+6mkx+3(m2-1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(6分)(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…(8分)又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得>,解得>,故所求的m的取值范围是(,2).…(10分)(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得-1<m<1.…(12分)综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(-1,1).…(13分)【解析】(1)利用向量的数量积公式,结合(+)•(-)=0,即可求点Q(x,y)的轨迹C的方程;(2)直线方程代入椭圆方程,分类讨论,设弦MN的中点为P,利用|AM|=|AN|,AP⊥MN,即可求出实数m的取值范围.本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.21.已知函数f(x)=x2+ax-lnx,a∈R.(Ⅰ)若a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(Ⅲ)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】解:(I)a=0时,曲线y=f(x)=x2-lnx,∴f′(x)=2x-,∴g′(1)=1,又f(1)=1曲线y=f(x)在点(1,f(1))处的切线方程x-y=0.(II)′在[1,2]上恒成立,令h(x)=2x2+ax-1,有得,得(II)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,′=①当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去),②当<<时,g(x)在,上单调递减,在,上单调递增∴,a=e2,满足条件.③当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,(舍去),综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.【解析】(I)欲求在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围.(III)先假设存在,然后对函数g(x)进行求导,再对a的值分情况讨论函数g(x)在(0,e]上的单调性和最小值取得,可知当a=e2能够保证当x∈(0,e]时g(x)有最小值3.本题主要考查导数的运算和函数的单调性与其导函数的正负之间的关系,当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.。

相关文档
最新文档