The log term of Szego Kernel

合集下载

mcelog用法详解

mcelog用法详解

mcelog用法详解全文共四篇示例,供读者参考第一篇示例:mcelog是一个用于记录和处理机器检查错误(MCE)的工具,它能够帮助用户诊断系统中的硬件故障。

在Linux系统中,MCE是一种硬件故障,通常与处理器或内存有关。

当系统检测到MCE时,mcelog会记录相关的错误信息,用户可以根据这些信息进行故障排查和修复。

mcelog的使用非常简单,下面我们来详细介绍一下它的用法。

1.安装mcelog大多数Linux发行版都默认安装了mcelog工具,如果你的系统没有安装mcelog,可以通过包管理工具进行安装。

在Ubuntu系统中,可以使用以下命令安装mcelog:```shellsudo apt-get install mcelog```安装完成后,可以通过以下命令来运行mcelog:运行mcelog后,它会读取系统中的MCE错误信息并显示在终端上。

如果系统中存在MCE错误,mcelog会将相关信息记录到/var/log/mcelog文件中。

可以使用以下命令来查看mcelog记录的错误信息:mcelog记录的信息包括错误类型、错误地址、错误码、错误处理方式等。

通过查看这些信息,我们可以了解系统中发生的硬件错误类型及原因。

mcelog可以通过配置文件进行自定义配置。

配置文件通常位于/etc/mcelog.conf。

用户可以根据自己的需求修改配置文件中的参数,比如设置错误记录级别、错误处理方式、错误通知等。

为了及时发现系统中的硬件故障,建议用户定期检查mcelog记录的错误信息。

可以设置一个定时任务,比如每天执行一次mcelog命令并将输出结果发送到管理员的邮箱。

总结通过mcelog工具,用户可以方便地记录和处理系统中的硬件故障,帮助我们及时发现并解决问题。

建议用户在系统中安装并配置mcelog,以保证系统的稳定性和可靠性。

希望以上内容对您有所帮助,谢谢!第二篇示例:mcelog是一个常用的工具,用于检测和记录机器检测到的内存错误信息。

一个内核报错日志分析与解决

一个内核报错日志分析与解决

⼀个内核报错⽇志分析与解决问题今天检查jira服务器挂了的时候,查看了该服务器/var/log/messages⽇志,发现报错如下:Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: AER: Corrected error received: id=00e6Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: PCIe Bus Error: severity=Corrected, type=Physical Layer, id=00e6(Receiver ID) Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: device [8086:a116] error status/mask=00000001/00002000Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: [ 0] Receiver ErrorDec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: AER: Corrected error received: id=00e6Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: PCIe Bus Error: severity=Corrected, type=Physical Layer, id=00e6(Receiver ID) Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: device [8086:a116] error status/mask=00000001/00002000Dec 4 13:50:26 localhost kernel: pcieport 0000:00:1c.6: [ 0] Receiver ErrorDec 4 13:50:27 localhost kernel: pcieport 0000:00:1c.6: AER: Corrected error received: id=00e6Dec 4 13:50:27 localhost kernel: pcieport 0000:00:1c.6: PCIe Bus Error: severity=Corrected, type=Physical Layer, id=00e6(Receiver ID) Dec 4 13:50:27 localhost kernel: pcieport 0000:00:1c.6: device [8086:a116] error status/mask=00000001/00002000Dec 4 13:50:27 localhost kernel: pcieport 0000:00:1c.6: [ 0] Receiver Error这种报错可能是由于活动状态电源管理正在将链路转换为较低的电源状态,可能导致设备触发这些错误。

内核问题解决方法记录

内核问题解决方法记录

内核问题解决方法记录
一、问题描述
问题概述:在此部分,您应详细描述遇到的问题,包括现象、影响和潜在的后果。

对问题的描述应尽可能的具体和清晰。

二、受影响的版本
列出受此问题影响的软件版本。

这可能包括内核版本、驱动程序版本、固件版本等。

三、问题分析
在此部分,您应分析问题的可能原因。

这可能包括对错误日志的分析、对问题复现和影响的深入理解等。

四、解决方案
在此部分,您应详细描述解决问题的方法和步骤。

这可能包括更新软件、修改配置、重新安装组件等。

对于任何可能涉及的数据丢失或系统风险的操作,应特别强调。

五、相关文档
在此部分,您应列出与这个问题解决过程相关的所有文档和资源。

这可能包括错误日志、问题报告、修复脚本等。

六、注意事项
在此部分,您应列出在实施解决方案时需要注意的事项。

这可能包括对系统状态的监控、对数据备份的要求、对操作顺序的安排等。

七、案例记录
在此部分,您应记录已解决问题的实际案例。

这应包括问题的详细描述、问题的解决过程、解决方案的效果等。

每个案例都应具有独立性,但可以按照时间顺序排列,以便于追踪和观察问题解决的效果。

八、结论
在此部分,您应对整个问题解决过程进行总结,并概述所得到的经验教训。

这可以包括对解决方案有效性的评估、对未来类似问题的建议等。

crashkernel参数

crashkernel参数

crashkernel参数(原创实用版)目录1.介绍 crashkernel 参数2.crashkernel 参数的作用3.使用 crashkernel 参数的方法4.crashkernel 参数的示例5.结论正文1.介绍 crashkernel 参数crashkernel 参数是 Linux 内核中的一个重要参数,主要用于在系统崩溃时进行内核转储,以便于对系统崩溃的原因进行分析和调试。

crashkernel 参数通常在系统启动时由内核自动设置,也可以通过手动编辑内核配置文件进行设置。

2.crashkernel 参数的作用crashkernel 参数的主要作用是在系统发生异常时,将内核的当前状态保存到一个文件中,以便于系统管理员或开发人员进行分析。

通过分析crashkernel 参数保存的内核状态,可以找到系统崩溃的原因,进而对系统进行调试和优化。

3.使用 crashkernel 参数的方法要使用 crashkernel 参数,首先需要确保系统内核已经启用了crashkernel 支持。

接下来,可以通过以下两种方法使用 crashkernel 参数:(1)使用命令行工具:可以使用“crash”命令将 crashkernel 参数保存到一个文件中。

例如:```crash /path/to/crashkernel```(2)手动编辑内核配置文件:可以手动编辑内核配置文件(通常位于 /usr/src/linux/.config 或 /usr/src/linux-xx.xx/.config),将CRASH_DUMP_ON_ZERO_PANIC设置为y,并配置一个用于存储crashkernel 文件的路径。

例如:```CONFIG_CRASH_DUMP_ON_ZERO_PANIC=yCONFIG_CRASH_DUMP_DIR=/path/to/crashdumps```4.crashkernel 参数的示例以下是一个 crashkernel 参数的示例:```$ crash /path/to/crashkernel```上述命令将把系统当前的状态保存到/path/to/crashkernel文件中。

linux 服务挂掉时,生成core文件和释放资源的处理逻辑

linux 服务挂掉时,生成core文件和释放资源的处理逻辑

linux 服务挂掉时,生成core文件和释放资源的处理逻辑
1.清理资源:当服务挂掉时,系统会自动尝试清理该服务所占用的所有资源,
包括内存、文件句柄、网络连接等。

这些资源将被系统回收并重新分配给其他进程使用。

2.生成core 文件:如果程序出现了严重错误,系统会自动生成core 文件。

core 文件包含了程序崩溃时的内存快照和堆栈跟踪信息,可以帮助开发人员快速定位问题所在。

3.日志记录:系统会将服务挂掉的事件记录在日志文件中,以便后续分析和
排查问题。

日志文件的位置通常由一系列配置文件指定。

4.重启服务:在某些情况下,系统会自动尝试重启服务,以确保系统的稳定
性和可用性。

重启服务的逻辑通常由服务自身的监控机制实现,而不是由操作系统提供。

centOs期末考试试题及答案

centOs期末考试试题及答案

centOs期末考试试题及答案# CentOs期末考试试题及答案一、选择题(每题2分,共20分)1. CentOS的全称是什么?A. Community Enterprise Operating SystemB. Centralized Enterprise Operating SystemC. Corporate Enterprise Operating SystemD. Centralized Enterprise Operating System答案:A2. CentOS的默认防火墙是什么?A. iptablesB. ufwC. firewalldD. ipf答案:C3. 在CentOS中,以下哪个命令用于查看当前系统版本?A. uname -aB. cat /etc/os-releaseC. lsb_release -aD. rpm -q centos-release答案:B4. 在CentOS系统中,以下哪个命令用于安装软件包?A. yum installB. apt-get installC. dnf installD. yum add答案:C5. CentOS系统中,哪个服务负责网络服务的启动和停止?A. NetworkManagerB. systemdC. initD. service答案:B...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 解释什么是YUM(Yellowdog Updater Modified)?答案:YUM是一个在基于RPM的Linux发行版中用于管理软件包的高级包管理器。

它允许用户安装、更新、删除和管理软件包。

YUM可以自动解决依赖问题,并可以配置为从多个源下载软件包。

2. 描述如何使用SSH在CentOS服务器上进行远程登录。

答案:首先,确保SSH服务在服务器上已安装并启动。

然后,在客户端机器上打开终端,使用ssh命令连接到服务器,命令格式如下:```ssh 用户名@服务器IP地址```输入密码后,即可成功登录到服务器。

自适应Fourier分解思想在再生核W_(2)^(1)[a,b]空间的应用

自适应Fourier分解思想在再生核W_(2)^(1)[a,b]空间的应用

doi: 10.12052/gdutxb.200094自适应Fourier 分解思想在再生核W 2 1[a ,b ]空间的应用蒋文超,谭立辉(广东工业大学 应用数学学院,广东 广州 510520)W 12[a ,b ]n W 12[a ,b ]n n 摘要: 在再生核空间中研究自适应正交贪婪分解算法, 利用能量下降最快的原理自适应性地构造出最佳项逼近函数, 并从理论上证明其收敛性成立。

最后, 实验验证了在再生核空间中, 利用正交贪婪原理构造的项数值原函数比用等分结点构造出的最佳项数值原函数收敛效果更优。

关键词: 最佳数值原函数;正交贪婪分解算法;自适应Fourier 分解;数值逼近中图分类号: O242.2 文献标志码: A 文章编号: 1007–7162(2021)03–0065–07Application of the Principle of Adaptive Fourier Decomposition in Reproducing Kernel W 2 1[a ,b ] SpaceJiang Wen-chao, Tan Li-hui(School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China)W 12[a ,b ]W 12[a ,b ]Abstract: Te adaptive orthogonal greedy decomposition algorithm in the reproducing kernel -space isstudied. The optimal n -term approximation function is adaptively constructed based on the principle of the fastest energy descent, and the convergence of this algorithm is proved theoretically. Finally, an experiment is used toverify that in the reproducing kernel -space, the best n -term numerical original function constructed by theorthogonal greedy principle has a better convergence effect than the best n -term numerical original function constructed with equal division nodes.Key words: optimal numerical primitive function; orthogonal greedy algorithm; adaptive Fourierdecomposition; numerical approximationf (t )在信号处理领域,为了实现信号的分类、存储、识别等目的,通常需要将信号分解为不同的原子,研究它们的不同表示形式。

Kernel panic常见原因

Kernel panic常见原因

kernel panic错误表现kernel panic 主要有以下几个出错提示:Kernel panic-not syncing fatal exception in interruptkernel panic - not syncing: Attempted to kill the idle task!kernel panic - not syncing: killing interrupt handler!Kernel Panic - not syncing:Attempted to kill init !kernel错误分析查看了一下 linux的源码文件,找到相关位置kernel/panic.cNORET_TYPE void panic(const char * fmt, ...){static char buf[1024];va_list args;bust_spinlocks(1);va_start(args, fmt);vsnprintf(buf, sizeof(buf), fmt, args);va_end(args);printk(KERN_EMERG "Kernel panic - not syncing: %s/n",buf);bust_spinlocks(0);kernel/exit.cif (unlikely(in_interrupt()))panic("Aiee, killing interrupt handler!"); #中断处理if (unlikely(!tsk->pid))panic("Attempted to kill the idle task!"); #空任务if (unlikely(tsk->pid == 1))panic("Attempted to kill init!"); #初始化从其他源文件和相关文档看到应该有几种原因:1、硬件问题使用了 SCSI-device 并且使用了未知命令#WDIOS_TEMPPANIC Kernel panic on temperature trip## The SETOPTIONS call can be used to enable and disable the card# and to ask the driver to call panic if the system overheats.## If one uses a SCSI-device of unsupported type/commands, one# immediately runs into a kernel-panic caused by Command Error. To better # understand which SCSI-command caused the problem, I extended this# specific panic-message slightly.##read/write causes a command error from# the subsystem and this causes kernel-panic2、系统过热如果系统过热会调用panci,系统挂起#WDIOS_TEMPPANIC Kernel panic on temperature trip## The SETOPTIONS call can be used to enable and disable the card# and to ask the driver to call panic if the system overheats.3、文件系统引起#A variety of panics and hangs with /tmp on a reiserfs filesystem#Any other panic, hang, or strange behavior## It turns out that there's a limit of six environment variables on the# kernel command line. When that limit is reached or exceeded, argument # processing stops, which means that the 'root=' argument that UML# usually adds is not seen. So, the filesystem has no idea what the# root device is, so it panics.# The fix is to put less stuff on the command line. Glomming all your# setup variables into one is probably the best way to go.Linux内核命令行有6个环境变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
a paramatrix s(x, y, t) ∼
∞ k =0
tn−k sk (x, y ),
where sk (x, y ) (k ∈ Z+ ) are smooth functions on X × X and t ∈ R, such that (1.1) Π(x, y ) =
0 ∞
eitψ(x,y) s(x, y, t)dt
Date : October 24, 2001. 1991 Mathematics Subject Classification. Primary: 32Q20; Secondary: 53C55. Key words and phrases. Szeg¨ o kernel, asymptotic expansion, ample line bundle, Ramadanov Conjecture. The first author is supported by NSF grant DMS 0204667 and the Alfred P. Sloan Fellowship. The second author is supported by an NSF grant.
1. Introductions Prescribing geometric structures of a complex manifold often introduces interesting and important partial differential equations. A typical example of this kind is the problem of finding the K¨ ahler metrics with constant scalar curvature on a K¨ ahler manifold. Such a problem defines a fourth order elliptic partial differential equation. The study of these partial differential equations, including the K¨ ahler-Einstein equations, forms one of the richest topics in complex geometry. In this paper, we introduce a new set of equations coming from the Szeg¨ o kernel (Bergman kernel, resp.) of a unit circle (unit disk, resp) bundle. We prove that these equations, which generalize the equation of finding K¨ ahler metrics with constant scalar curvature, are all elliptic. As an application of the result, we relate the Ramadanov Conjecture to these equations and prove a local rigidity theorem concerning the log term of the Szeg¨ o kernel. Our basic setting is as follows: let (L, h) → M be a positive Hermitian line bundle over the compact complex manifold M of dimension n. The pair (M, L) is called a polarised manifold. The K¨ ahler metric ω of M is defined to be the curvature of the Hermitian metric h. Let L∗ be the dual bundle of L. The unit circle bundle X of L∗ is a strictly pseudoconvex manifold, with the natural measure defined by the S 1 action and the polarization of M . That is, the measure ∂ 1 ∗ n 1 is dV = n ! π (ω ) ∧ dθ , where ∂θ is the infinitesimal S action on the unit circle bundle. The 2 Szeg¨ o projection Π is a linear map from L (X ) to the Hardy space H 2 (X undary functions of holomorphic functions of the unit disk bundle D . Let Π(x, y ) be the Szeg¨ o kernel of X , i.e., Π(x, y ) is the function on X × X such that for any f ∈ L2 (X ), 2 X Π(x, y )f (y )dy ∈ H (X ), where dy = dV is the measure defined above. Then by [5], there is
¨ KERNEL THE LOG TERM OF SZEGO
ZHIQIN LU AND GANG TIAN
arXiv:math/0505587v2 [math.DG] 2 Jun 2005
Contents 1. Introductions 2. Pseudoconvex manifolds with zero log term 3. Order of the coefficients 4. The uniformity of the expansion 5. The general case 6. The cases of complex projective spaces 7. The proof of the main theorem References 1 4 8 13 17 18 23 26
for some suitable complex phase function ψ (x, y ) of X × X . In general, the paramatrix of the Szeg¨ o kernel of a pseudoconvex manifold is quite difficult to compute. However, since the bundle X is S 1 invariant, we may split the Szeg¨ o kernel into ∂ be the infinitesimal S 1 action of X . Define several pieces. More precisely, Let ∂θ √ ∂ 2 Hm (X ) = {f ∈ H 2 (X )| f = −1mf }. ∂θ 2 2 2 (X ) Let Πm be the projection of H (X ) to Hm (X ). Then the kernel Πm (x, y ) of L2 (X ) → Hm is the Fourier coefficient of Π(x, y ): √ 1 Πm (x, y ) = Π(x, rθ y )em −1θ dθ. 2π S 1 Using the paramatrix of the Szeg¨ o kernel, Zelditch (and Catlin [6] independently for the Bergman kernel) was able to prove that there is an asymptotic expansion of Πm (x, x) (cf. Theorem 2.1) a1 (1.2) Πm (x, x) ∼ mn (a0 + + · · · ), m where ak ’s are all smooth functions of M . The expansion is called Tian-Yau-Zelditch expansion. In [19], the first author was able to prove that all ak ’s are polynomials of the curvature and its derivatives. In particular, a0 = 1 and a1 = ρ, the scalar curvature of the K¨ ahler manifold. Thus the equation of finding the metrics such that a1 = const is the equation of finding the K¨ ahler metrics with constant scalar curvature. Because of the work of Donaldson [10], it is natural to study metrics with ak being prescribed for k ≥ 2. Donaldson was interested in modifying hm to a Hermitian metric h′ for some large m such that the metric h′ is balanced. As a corollary of his result, Donaldson was able to give a proof of the uniqueness of the K¨ ahler metrics of constant scalar curvature. Since a1 = 1 2 ρ, where ρ is the scalar curvature, M (a1 − a1 )θ defines the Futaki invariants, where a1 is the average of a1 and θ is the Hamiltonian function of a holomorphic vector field. Nonlinearizing the Futaki invariants we get the Mabuchi’s K energy, whose convexity plays the key role in proving the uniqueness of the metrics of constant sclar curvature (cf. [7]). We wish to study the analogue problems for ak when k > 1. In this paper, among the other results, we prove that for any given k and √ function f , for a fixed metric ω , the equation of 1 finding the function ϕ such that ak (ω − 2− π ∂∂ϕ) = f is an elliptic equation of order 2k + 2. Thus prescribing ak gives an interesting set of new elliptic equations. Since the Bergman potential Πm (x, x) being a constant implies stability(cf. [20], [27]), we are particularly interested in the question of finding metrics such that ak = 0 for k > n. Such a question is related to the Ramadanov Conjecture [22]. The conjecture, in terms of the Bergman kernel, can be stated as follows: Conjecture (Ramadanov [22]). Let Ω be a bounded strongly pseudoconvex domain of Cn . Assume that the log term of the Bergman kernel is zero, then Ω is biholomorphic equivalent to the unit ball of Cn . Not much is known about the Conjecture for n > 1. If Ω is a complete Rienhardt domain of C2 , the conjecture was proved by Nakazawa [21]. The conjecture was proved to be true for
相关文档
最新文档