初中数学一次函数教学设计与反思

合集下载

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。

2、直线y = — 2X — 2 不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

沪科版八年级数学上册12.2一次函数(第1课时)教学设计

沪科版八年级数学上册12.2一次函数(第1课时)教学设计
-每组代表进行汇报,教师对学生的发现进行点评,总结小组讨论的成果。
(四)课堂练习
1.教学活动设计:
-设计具有梯度的一次函数题目,涵盖本节课所学的知识点。
-学生独立完成练习,教师巡回指导,解答学生的疑问。
2.教学过程:
-布置练习题目,要求学生在规定时间内完成。
-教师观察学生的解题过程,了解他们的掌握情况,并进行个别指导。
沪科版八年级数学上册12.2一次函数(第1课时)教学设计
一、教学目标
(一)知识与技能
1.理解并掌握一次函数的定义,能够准确表述一次函数的一般形式,即y = kx + b(k、b为常数,k≠0)。
2.能够根据给定的一次函数解析式,判断其图像的性质,如斜率k的正负、图像的增减性等。
3.学会利用一次函数的图像解决实际问题,如通过图像读取信息,解决线性方程和不等式问题。
-引导学生进行拓展思考,如一次函数与其他数学领域的联系,如何解决更复杂的问题等。
-设计意图:培养学生的创新思维和解决问题的能力,提高数学素养。
5.总结反馈:
-在课堂结束时,邀请学生对本节课的学习内容进行总结,分享自己的收获和感悟。
-教师针对学生的反馈,进行有针对性的点评,强调重点,解答疑惑。
-设计意图:巩固所学知识,提高学生的自我反思能力。
-思考解题方法,尝试一题多解,提高解题能力。
2.设计一道开放性问题,要求学生结合生活实际,发现并提出一个一次函数问题,然后自己解决。例如:“假设你的妈妈给你一定的零花钱,你可以用它来买书或者看电影。请问如何分配这些零花钱,才能使你的总满意度最高?”
-鼓励学生运用一次函数知识,分析问题、建立模型、求解答案;
-设计意图:让学生感受到数学与生活的紧密联系,增强学习动机。

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思

初中数学《一次函数》教案基于学科核心素养的教学设计及教学反思
学生学情分析
经过前面的学习,学生已经掌握了函数的概念并且具有了一些分析实际问题中量与量之间的关系的能力,所以在这节课中,学生会用到前面所学。
教学过程设计
教师活动
预设学生活动
设计意图
1、提问:1.什么是函数?2.函数有哪几种表示方法?
2、提问:能否说出x的一次式的一般形式是什么样的?
3、思考:k≠0这个条件能否省略不写
4、提问:正比例函数与一次函数有怎样的关系?
1、学生回答并举例子
2、学生讨论回答
3、学生思考后回答
4、思考后回答教师的提问
1、了解函数的概念
2、理解一次函数定义
3、了解k≠0的意义
4、理解正比例函数是一次函数的特例
板书设计
自主探究,做一做:
1.某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.
(1)完成下表:
路程x/km
0
50
100
150
200
300
余油量y/L
(2)你能写出y与x之间的关系吗?
教学反思
我在这节课中通过分析变量间的关系,发展学生的数学思维;经历利用一次函数解决实际问题的过程,发展学生的数学应用能力;通过一次函数概念的引入,使学生进一步认识数学是来源于生活并用于生活,同时渗透热爱自然和生活的教育,在学生掌握了函数的概念的基础上,进一步的分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫,我觉得我对这节课的引入是这节课的亮点,通过举例子让学生更加清楚地学习了一次函数的概念和使用。我这节课值得总结的就是所举的例子回让一些学生觉得抽象,在以后的教学中我会尽量杜绝这种勤快的再次发生的。

八年级数学一次函数的图像和性质教学反思

八年级数学一次函数的图像和性质教学反思

一次函数的图像
01
一次函数的图像是一条直线。当 $k > 0$时,直线从左向右上升; 当$k < 0$时,直线从左向右下降 。
02
一次函数图像上的点都满足一次 函数的解析式。通过描点法可以 画出一次函数的图像。
一次函数的性质
增减性
当$k > 0$时,函数值随自变量的增 大而增大;当$k < 0$时,函数值随 自变量的增大而减小。
REPORTING
教学内容的优化
强化一次函数基本概念
在后续教学中,应进一步强调一次函数的基本概念,包括 定义、表达式、斜率和截距等,确保学生能够准确理解和 运用。
增加实际应用案例
为了提高学生对一次函数图像和性质的理解,可以增加更 多与现实生活相关的应用案例,如行程问题、价格问题等 ,让学生感受到数学的实际应用价值。
注重实践与应用
在教学中,应注重实践与应用环节的设计,让学生通过实际操作和问 题解决来巩固所学知识,提高解决问题的能力。
对未来教学的展望
01
深化对一次函数图像和性质的理解
在未来的教学中,可以进一步深化学生对一次函数图像和性质的理解,
通过更多的探究活动和案例分析,提高学生的思维能力和创新能力。
02
拓展与其他学科的联系
XXX
八年级数学一次函数
的图像和性质教学反

汇报人:XXX
2024-01-27
REPORTING
• 引言 • 教学目标与要求 • 教学内容与过程 • 教学效果与反思 • 学生学习情况分析 • 教学改进与展望
目录
XXX
PART 01
引言
REPORTING
反思目的和背景
反思目的

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇篇一:一次函数的优秀教学设计篇一课题:14.2.2 一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.篇二:一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

初中数学_一次函数教学设计学情分析教材分析课后反思

初中数学_一次函数教学设计学情分析教材分析课后反思

初中数学七年级上册第六章第二节《一次函数》教学设计一、教材分析(1)教材的内容、地位和作用本节内容是教育出版社出版的义务教育教科书《数学》七年级上册第六章第二节,一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数。

在此之前,学生已经学习了函数,这为过渡到本节的学习起着铺垫作用。

本节课是在学生掌握了函数的概念的基础上,进一步地分析情境中量与量之间的关系,从而抽象出函数关系,让学生认识理解一次函数和正比例函数的概念以及它们之间的关系,为后面进一步学习一次函数的图像和性质以及一次函数的应用做铺垫。

它是整个函数中起承上启下作用的核心知识之一。

本节内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材。

因此,在初中数学“函数与分析”中,起着重要的地位。

(2)教材的比较、分析与整合旧教材在讲几个具体的函数时,是按先讲正、反比例函数,后讲一次、二次函数顺序编排的。

这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接。

新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数。

为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。

第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

二、学情分析(1)从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一次函数教学设计与反思
一、教学目标:
1、知道一次函数与正比例函数的定义.
2、理解掌握一次函数的图象的特征和相关的性质;
3、弄清一次函数与正比例函数的区别与联系.
4、掌握直线的平移法则简单应用.
5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:
重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数
正比例函数:对于y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;
而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:
1. 写出一个图象经过点(1,- 3)的函数解析式为:。

2.直线y = - 2X - 2 不经过第象限,y随x的增大而。

3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4.已知正比例函数y =(3k-1)x,,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)
当x1<x2时,y1>y2,则m的取值范围是:。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于
点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

四、教学反思:
教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。

课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问题的答案做出来,尽量要一题多解。

再由小组长组织小组成员汇编,在汇编过程中要去粗取精。

课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可
以成果共享,在这个舞台上学生收获着自己的收获。

台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。

那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

相关文档
最新文档