平面钢闸门设计

合集下载

钢结构平面钢闸门设计

钢结构平面钢闸门设计

钢结构平面钢闸门设计一、引言钢结构平面钢闸门是一种广泛应用于水利工程、市政建设和工业设施中的设备。

它具有结构稳定、安全可靠、使用寿命长等优点,因此受到广大用户和设计师的青睐。

本文将详细介绍钢结构平面钢闸门的设计过程。

二、设计要求1.安全性:钢结构平面钢闸门必须能够承受水的冲击力和重力,确保在极端情况下不会发生变形或损坏。

2.稳定性:闸门在开启和关闭过程中应保持稳定,不能出现晃动或倾斜。

3.耐久性:闸门应能够经受长期使用和环境的侵蚀,保持良好的工作性能。

4.易操作性:闸门的操作应简单、方便,便于工作人员进行操作和维护。

三、设计步骤1.确定尺寸和规格:根据实际应用需求,确定钢结构平面钢闸门的尺寸和规格。

2.选择材料:根据设计要求和使用环境,选择合适的钢材。

通常选用高质量的碳钢或不锈钢,以满足强度和耐久性的要求。

3.结构设计:根据尺寸和规格,进行钢结构平面钢闸门的结构设计。

主要考虑以下几点:a. 门叶结构:门叶是闸门的核心部分,需要考虑强度、刚度和稳定性。

可采用钢板焊接或型材拼接的方式,形成稳定的结构。

b. 支撑和固定结构:为了确保闸门的稳定性和安全性,需要设计合理的支撑和固定结构。

可采用柱式支撑、悬臂支撑或地脚螺栓固定等方式。

c. 止水装置:为防止闸门在关闭时出现漏水现象,需要设计可靠的止水装置。

可采用橡胶止水带或金属止水片等方式。

d. 操作装置:为方便工作人员进行操作和维护,需要设计简便的操作装置。

可采用手动操作杆、电动操作器或液压驱动器等方式。

4. 应力分析:利用有限元分析软件对钢结构平面钢闸门进行应力分析,确保在设计工况下,各部件的应力和变形都在允许范围内。

5.校核与优化:根据分析结果,对钢结构平面钢闸门的设计进行校核和优化,确保其满足各项设计要求。

6.绘制施工图:根据最终设计方案,绘制详细的施工图纸,包括各部件的详细尺寸、材料要求、制造工艺等。

7.制造与检验:按照施工图纸进行制造和加工,对每个环节进行严格的质量检验,确保最终产品符合设计要求。

水工钢结构课程设计-平面钢闸门的设计

水工钢结构课程设计-平面钢闸门的设计

水工钢结构课程设计-平面钢闸门的设计### 一、概述平面钢闸门是水工钢结构及水利iooocxx中常用结构形式之一,它由类似重锤头的重门板、加强附件、主动节、水密密封铰链等零部件组成,可用于水坝、桥涵、泵站等水工工程的闸门及安装在水厂总池等建筑物边缘上的用途。

本次课程设计旨在研究平面钢闸门的结构原理,设计符合工程要求的应用实例,分析闸门的性能以及可能的故障现象,采取有效的解决方案以满足工程规范要求。

### 二、研究内容1. 结构原理:分析平面钢闸门结构原理,了解它从几个方面来保证性能和工作效果,要求运行及操作方便,安装牢固可靠,抗压、抗拉能力强,止水性能优越。

2. 工程实例:根据工程要求,考虑抗震、抗风、抗滑水等等要求,确定合理的规范尺寸,计算支撑力、稳定力及固定的力值,设计应用实例并做出相应的图纸。

3. 性能分析:分析闸门的型式(例如:滑动闸门、转轴闸门)、使用频率(例如:经常开关或者严格控制)、耐久性(使用寿命、耐腐蚀性)、导流性能(抗决口、水位差)、防泄漏能力(密封性能)等等要求性能,完成性能的综合分析,基于此完善闸门的结构构件。

4. 故障分析:分析可能出现的故障现象(例如:闸板断裂、节点受力大、闸板渗漏等等),从成因及原因来考虑闸门的设计,采取有效的解决方案。

### 三、实施方案1. 计算平面闸门的基本参数,如质量、支撑力及稳定力,根据水力学及结构力学原理,分析平面钢闸门的合理配置及设计标准;2. 对工程实例进行尺寸估算、考虑抗震、抗风、抗滑水等要求,修正钢闸门的结构图纸及构件;3. 分析关于平面闸门性能的各个要求,并进行性能综合分析,完善自身结构,确保抗压、抗拉能力强;4. 对可能出现的故障现象进行科学的分析,采取有效的措施,使闸门的操作及运行安全可靠。

本次课程设计旨在对平面钢闸门的设计进行研究,掌握平面钢闸门的结构原理、了解使用频率、耐久性及性能要求等,以及分析可能出现的故障现象并采取适当措施。

钢结构设计(平板钢闸门)

钢结构设计(平板钢闸门)

漏顶式平面钢闸门设计一、设计资料闸门形式:溢洪道漏顶式平面钢闸门孔口净宽:10m设计龙头:5.8m结构资料:3号钢(Q235)焊条:E43型止水橡皮:侧止水为P型橡皮,底止水为条形橡皮行走支承:采用双滚轮式,采用压合胶木定轮轴套,滚轮采用国家定型产品钢筋混凝土强度等级:C20二、闸门结构的形式及布置1、闸门尺寸的确定闸门高度:不考虑风浪所产生的水位超高,H=5.8m;闸门的荷载跨度为两侧止水的间距:L1=10m;闸门的计算跨度:L=L0+2d=10+2×0.2=10.4m,其中,d为行走支承中心线到闸墩侧壁的距离。

2、主梁的形式主梁的形式应根据木头和跨度大小而定,本闸门属于中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

3、主梁的布置由于L>1.5H,所以采用双主梁式。

为使两个主梁在合计水位时所受的水压力相等,两个主梁的位置应对称与水压力合力的作用线y'=H/3=1.93m,并要求下悬臂a≥0.12H,且a≥0.4m,同时满足于上悬臂c≤0.45H,且a≤3.6m,今取a=0.7m≈0.12H=0.696m;主梁间距:2b=2(y'-a)=2×(1.93-0.7)=2.46m;则c=H-2b-a=5.8-2.46-0.7=2.64m≈0.45H=2.61m,且c<3.6m,满足要求;闸门的主要尺寸如图所示.4、梁格的布置和形式梁格采用复式布置和等高连接,水平次梁穿过横隔板上的小孔并被横隔板所支承,水平次梁为连续梁,其间距上疏下密,使面板各区格需要的厚度大致相等,梁格布置的具体尺寸见图2所示。

5、联结系的布置和形式(1)横向联结系根据主梁的跨度,决定布置三道横隔板,其间距为10.4/4=2.6m,横隔板兼做竖直次梁。

(2)纵向联结系设在两个主梁下翼缘的竖平面内,采用斜杠式桁架。

6、边梁采用双复板式,行走支承采用双滚轮式;滚轮安装于边梁双腹板中间,为减小滚动摩擦力,采用压合胶木定轮轴套;滚轮采用国家定型产品。

水工钢结构平面钢闸门设计计算书

水工钢结构平面钢闸门设计计算书

水工钢结构平面钢闸门设计计算书一、设计资料及有关规定:1.闸门形式:潜孔式平面钢闸门。

2. 孔的性质:深孔形式。

3. 材料:钢材:Q235焊条:E43;手工电焊;普通方法检查。

止水:侧止水用P型橡皮,底止水用条型橡皮。

行走支承:采用胶木滑道,压合胶布用MCS—2。

砼强度等级:C20。

启闭机械:卷扬式启闭机。

4.规范:水利水电工程刚闸门设计规范(SL74-95),中国水利水电出版社1998.8二、闸门结构的形式及布置(一)闸门尺寸的确定(图1示)1.闸门孔口尺寸:孔口净跨(L):3.50m。

孔口净高:3.50m。

闸门高度(H):3.66m。

闸门宽度:4.20m。

荷载跨度(H1):3.66m。

2.计算水头:50.00m。

(二)主梁的布置1.主梁的数目及形式主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。

因为闸门跨度L=3.50m,闸门高度h=3.66m,L<h。

所以闸门采用4根主梁。

本闸门属中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

2.主梁的布置本闸门为高水头的深孔闸门,孔口尺寸较小,门顶与门底的水压强度差值相对较小。

所以,主梁的位置按等间距来布置。

设计时按最下面的那根受力最大的主梁来设计,各主梁采用相同的截面尺寸。

3.梁格的布置及形式梁格采用复式布置与等高连接,水平次梁穿过横隔板所支承。

水平梁为连续梁,间距应上疏下密,使面板个区格需要的厚度大致相等,布置图2示三、面板设计根据《钢闸门设计规范SDJ—78(试行)》关于面板的设计,先估算面板厚度,在主梁截面选择以后再验算面板的局部弯曲与主梁整体弯曲的折算应力。

1.估算面板厚度假定梁格布置尺寸如图2所示。

面板厚度按下式计算kpt=aa[]9.0当b/a ≤3时,a=1.65,则t=a16065.19.0⨯⨯kp=0.065kp a当b/a >3时,a=1.55,则t=a 16055.19.0⨯⨯kp=0.067现列表1计算如下:2.面板与梁格的连接计算已知面板厚度t=14mm ,并且近似地取板中最大弯应力σmax=[σ]=160N/mm 2,则p=0.07х14х160=156.8.2N/mm ,面板与主梁连接焊缝方向单位长度内地应力:T =02I VS =,/39837767700002272141000107903mm N =⨯⨯⨯⨯⨯ 面板与主梁连接的焊缝厚度:mm T P h w t f 51137.0/398][7.0/22=⨯=⨯+=τ, 面板与梁格连接焊缝厚度取起最小厚度mm h f 6=。

水工钢结构课程设计任务书(平面钢闸门)

水工钢结构课程设计任务书(平面钢闸门)

水工钢结构课程设计任务书(平面钢闸门设计)班级:农业水利工程12-1、2一、设计任务为某水库溢洪道设计平面钢闸门一面,作为主要工作闸门。

二、设计资料1、 孔口净宽:12米。

2、 计算水头:6米。

3、 材料:门叶结构 Q235,侧止水用P -60A 型橡皮,底止水用I110—16条型橡皮,焊条 E43型,砼等级C20,采用普通螺栓。

4、参考资料:《水工钢结构》范崇仁主编,《水利水电工程钢闸门设计规范》。

三、设计要求1、 编写设计书,参照“设计计算参考提纲”的内容,对原则问题应有简略的论证并附必要的简图。

用A4打印,用铅笔绘制简图。

2、 手工绘制施工图,图幅为A2图2张(或A3图4张)。

图中包括:门叶结构总图、侧视图、俯视图、必要的大样图,闸槽尺寸及埋固构件。

比例根据布图需要自定。

3、 作出闸门的材料表附在设计图上。

四、设计参考提纲1、 根据闸门工作条件,初步拟出闸门的构造形式及其总体布置⑴ 选择闸门的基本尺寸门高:6+0.3(门的超高,高出孔口净高)=6.3m。

门宽:为了布置侧止水和行走支承闸门宽度等于孔口净宽+2×0.3m。

⑵ 选择梁格布置方案主梁根数和布置,为简化设计和制造方便,又能保持闸门的整体刚度。

对与跨度远大于门高平面闸门,宜采用双主梁的复式梁格。

主梁位置按等水压力的原则布置,上下主梁应放置在离水压合力作用线相等的位置,并要求门的下悬臂≥0.12门高,上悬臂≤0.45门高。

水平次梁的间距,根据水压力的变化,应布置上疏下密,使各区格的面板厚度大致相同。

次梁可采用槽钢(包括顶梁和底梁)。

底梁不到底,布置底止水。

设置横隔板三道,等间距。

边梁采用单腹式。

⑶ 梁格采用齐平连接水平次梁穿过横隔板成连续梁。

纵向联结系,两主梁的下翼缘设斜杆,形成纵向桁架。

将所选择的梁格布置方式、行走支承的位置绘出简图。

2、 面板设计根据梁格布置,进行面板设计。

列表估算面板厚度,结合构造要求选择面板厚度。

对底梁下的面板悬出段,应按悬臂板进行验算。

S第八章 平面钢闸门

S第八章  平面钢闸门

(二) 埋固构件
⑴ 主轮或主滑道的轨道,简称主轨; ⑵ 侧轮和反轮的轨道,简称侧轨和反轨; ⑶ 止水埋件,顶止水埋件简称门楣,底止水埋件简称底坎; ⑷ 门槽护角、护面和底槛,用以保护混凝土不受漂浮物的撞击、 泥砂磨损和气蚀剥落。 水平次梁 水平水压力 面板
(齐平连接时)
竖立次梁
主梁
边梁
主轮(或主滑块)
⑴简式梁格 在主梁之间不设次梁,面板直接支承在主梁上,面 板上的水压力直接通过主梁传给两侧的边梁。
⑵普通式梁格 由水平主梁、竖立次梁和边梁组成。 ⑶复式梁格 由水平主梁、竖立次梁、水平次梁和边梁组成。
(三)梁格连接型式
⑴齐平连接 即水平次梁、竖立次梁和主梁的前翼缘表面齐 平,都直接与面板相连,又称为等高连接。
一 闸门的类型
闸门的类型较多,一般可按闸门的工作性质、设臵部位及 结构形式等加以分类。 1 按闸门的工作性质可分为:

工作闸门:正常运行时使用的闸门,一般在动水条 件下操作。 事故闸门:在发生事故时,能够在动水中关闭,事 故消除后在静水中开启。 检修闸门:用于检修期间挡水的闸门,在静水中启闭。 施工期导流闸门:用于封闭施工导流孔的闸门,一般 在动水中关闭。

钢面板厚度的计算需与水平次梁间距的布置同时进行, 最终应使各区格之间板厚大致相等。钢面板宜选用较薄 的钢板,一般不应小于6mm,通常可取(8-16)mm。
(二)面板参加主(次)梁整体弯曲时的强度计算
在主(次)梁截面选定后,考虑到面板本身在局部弯曲的同时 还随主(次)梁受整体弯曲的作用,则面板为双向受力状态。 故应按第四强度理论验算面板的折算应力强度。 ⑴ 当面板的边长比b/a>1.5,且长边b沿主梁轴线方向时,只 需按下式验算面板A点在上游面的折算应力:

钢结构 第8章 平面钢闸门

钢结构 第8章 平面钢闸门

河海大学钢结构课件
一、水工钢结构的主要种类 4.压力管道
Steel Structure
Chapter Eight
河海大学钢结构课件
一、水工钢结构的主要种类 5.海上平台
Steel Structure
Chapter Eight
河海大学钢结构课件
二、闸门的类型 1.按闸门的工作性质分
工作闸门 事故闸门 检修闸门 施工期导流闸门 2.按闸门设置的部位分 (1) 露顶式闸门
平面钢闸门的承重结构,一般由钢面板、梁格及纵、横 向联结系组成。
Steel Structure
Chapter Eight
河海大学钢结构课件
一、平面钢闸门的组成 1.门叶结构的组成 (1) 平面钢闸门的承重结构
面板
用来挡水,直接承受水压并传给梁格,通常设在 闸门的上游面,可以避免梁格和行走支承浸没于水中 而积聚污物和减小因门底过水而产生的振动。
(2) 弧形闸门
挡水面板形状为圆弧形的钢闸门。又可分为绕横轴转动的弧形 闸门(如正向弧形闸门、反向弧形闸门和下沉式弧形闸门)和 绕竖轴转动的立轴式弧形闸门(如船闸中的三角门)等。
Steel Structure
Chapter Eight
河海大学钢结构课件
二、闸门的类型
人 字 形
Steel Structure
河海大学钢结构课件
第八章 平面钢闸门
第一节 概述
一、水工钢结构的主要种类
1.钢闸门
用来关闭、开启或局部开启水工建筑物 中过水孔口的活动结构;
2.拦污栅
Chapter Eight
Steel Structure
河海大学钢结构课件
一、水工钢结构的主要种类 3.升船机

[教材] 平面钢闸门 结构设计&零部件设计

[教材] 平面钢闸门 结构设计&零部件设计

根据此截面模量和满足刚度要求的最小梁高hmin,选合适型钢。
⑶截面验算
M max [] Wmin V S [] I tw ql 4 [w] 100EI
w max
计算截面取值:当次梁直接焊接于面板时,焊缝两侧的面板 在一定的宽度(有效宽度)内可以兼作次梁的翼缘参加次梁的抗 弯工作。面板参加次梁工作的有效宽度B可按下面两式计算的较 小值取用:
三、主梁设计
(一)主梁的形式
主梁是平面钢闸门中的主要受力构件,可采用实腹式或桁架式。

跨度小水头低的闸门,可采用制造方便的型钢梁; 对于中等跨度的闸门(5-10m)常采用实腹式组合梁; 对于大跨度的闸门,则宜采用桁架式主梁。
(二)主梁的荷载和计算简图
主梁为支承在闸门边梁上的单跨简支梁。主梁承受面板传来的 分布水压力和竖直次梁传来的集中荷载。
2、梁格为齐平连接时次梁的荷载和计算简图
水平次梁和竖立次梁同时支承着面板。面板传给梁格的水压力, 按梁格夹角的平分线来划分各梁所负担的水压力作用范围。

水平次梁的计算简图:
⑴当水平次梁在竖立次梁处断开后再连接于竖立次梁时,水平 次梁为简支梁;
⑵当采用实腹隔板兼作竖立次梁时,水平次梁为连续穿过实腹 隔板预留的切孔并被支承在隔板上的连续梁。
第四节
平面钢闸门的零部件设计
一、行走支承
(一)胶木滑道
(二)滚轮支承
(三)平面钢闸门的导向装置------侧轮和反轮
二、 止水装置
式中 bl -为主梁的上翼缘宽度,b--为每根主梁承受荷载面的宽度。
B b l 2 30 t 235 f y
⑶主梁的刚度、整体稳定和局部稳定的验算见第五章内容。
四、横向联结系和纵向联结系的设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢结构课程设计题目:平面钢闸门设计专业:水利水水电工程姓名:班级:学号:指导老师:二〇一六年11月20日平面钢闸门设计一、设计资料闸门形式:平面钢闸门;孔口净宽:10.00m设计水头:5.40m结构材料:Q235FA-;焊条:焊条采用E43型手工焊;止水橡皮:侧止水用P型橡皮,底止水用条形橡皮;行走支承:采用胶木滑道,压合胶木为2MCS;-启闭方式:电动固定式启闭机;制造条件:金属结构制造厂制造,手工电弧焊,满足Ⅲ级焊缝质量检验标准;执行规范:《水利水电工程钢闸门设计规范》(1995SL)。

74--。

二、闸门结构的形式及布置(1)闸门尺寸的确定(见下图)。

1)闸门高度:考虑到风浪产生的水位超高为0.2m,故闸门高度= 5.54+ 0.2 = 5.6(m);2)闸门的荷载跨度为两侧止水的间距:L1 = 10m;3)闸门的计算跨度:L = L0 + 2d = 10+2⨯0.2 =10.4 (m);(2)主梁的形式。

主梁的形式应根据水头的大小和跨度的大小而定,本闸门属于中等跨度,为了方便制造和维护,决定采用实腹式组合梁。

(3)主梁的布置。

根据闸门的高跨比,决定采用双主梁。

为使两个主梁设计水位时所受的水压力相等,两个主梁的位置应对称于水压力的合力作用线y = H/3 ≈1.867, 并要求下臂梁H a 12.0≥和≥a 0.4。

上臂梁 H c 45.0≤,今取a 0.12H=0.672(m)主梁间距2b=2(y-a)=2(1.867-0.672)=2.39(m)则 c=H-2b-a=5.5-2.46-0.6=2.538(m)(满足要求)(4)梁格的布置和形式。

梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔冰被横隔板所支承。

水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置具体尺寸如下图所示。

(5)连接系的布置和形式。

1)横向连接系,根据主梁的跨度,决定布置道横隔板,其间距为 2.6 m,横隔板兼作竖直次梁。

2)纵向连接系,设在两个主梁下的翼缘的竖平面内。

采用斜杆式桁架。

(6)边梁与行走支承。

边梁采用单复式,行走支承采用胶木滑道。

三、面板设计根据《水利水电工程钢闸门设计规范》(SL 74-95),关于面板的计算,先估算面板的厚度,在主梁截面选择之后再验算面板的局部弯曲与主梁弯曲的折算应力。

(1) 估算面板厚度。

假定梁格布置尺寸 图 2 所示。

面板厚度按式[]σα9.0________kpt ≥计算当b/a ≤ 3 时,a = 1.5 ,则kp a kpa t 68.01604.19.0_________=⨯⨯= 当b/a > 3 时,a = 1.4 ,则kp a kpa t 07.01604.19.0_________=⨯⨯=现列 表 1 进行计算。

表1 面 板 厚 度 的 估 算注 1、面板边长a 、b 都从面板宇梁格的连接焊缝算起,主梁上翼缘宽为140mm (详见后面)2、区格I 、VI 中的系数k 由三边固定一边简支板查得。

根据表1计算,选用面板厚度 t = 8 mm 。

(2)面板与梁格的连接计算。

面板局部绕曲时产生的垂直于焊缝长度方向的横向拉力P 按式σt P 07.0=max 计算,则σt P 07.0=max =0.07⨯8⨯160=89.6(N/mm)面板与主梁连接焊缝方向单位长度内的剪力T=VS/2I 。

=333500⨯580⨯8⨯262/2⨯1003410000=202(N/mm ) 由式[])7.0/(22ωτf f T P h +≥=2.7(mm )面板与梁格连接焊缝取其最小厚度6mm 。

四、水平次梁、顶梁和底梁的设计(1)荷载与内力计算。

水平次梁和顶、底梁都是支承在横隔板上的连续梁,作用在它们上面的水平压力可按式2______下上a a p q +=计算。

列 表2 计算后得表2 水 平 次 梁 、 顶 梁 和 底 梁 均 布 荷 载 的 计 算梁 号梁轴 线处 水压强度()2/m kN p梁间距(m )2_______下上a a +(m )2_______下上a a p q +=(kN/m )备 注1顶梁1.29214.41.24517.931.203上主梁24.51.0527.730.91 4 33.6 0.855 28.730.80540.40.7429.900.686下主梁47.40.6430.330.607底梁 52.9 0.375 19.8根据 表2 计算,水平次梁计算荷载取30.10kN/m,水平次梁为四跨连续梁,跨度为2.35m (如上图)。

水平次梁弯曲时的边跨中弯矩为M 次中=0.077ql ²=0.077⨯29.90⨯2.35²=12.71(kN •m)A B C D EA B C D Eq=29.90kN/m次中M 次支M支座B 处的弯矩为M 次B =0.107ql ²=0.107⨯29.90⨯2.35²=17.67(kN •m)(2) 截面选择。

W=M/[ƃ]=176.7⨯10²⨯10³/160=1104375mm ³) 考虑到利用面板作为次梁截面的一部分,初选 [ 16 a 由附表 6.3查的:A=25693mm ;Wx=141400mm ³;Ix=12727000mm4;b=68mm ;d=7mm ;面板参加次梁翼缘工作的有效宽度16068608548()B b t mm ≤+=+⨯=12()B b B bεε==对跨间正弯矩段(对支座负弯矩段)(其中()2/21b b b +=)计算,然后取其其中较小值。

按5号梁计算,设梁间距()=+=2/21b b b (720+770)/2=745(mm)。

确定式中面板的有效宽度系数 ξ 时,需要知道梁弯矩零点之间的间距0l 与梁间距b 比值。

对于第一跨中正弯矩段取0l =0.8L=1880mm 。

对于支座负弯矩段取0l = 0.4L=940mm 。

表3 面 板 有 效 宽 度 系 数 1ξ 和 2ξ根据b L /0查 表3,得对于b L /0= 1880/700= 2.686,得1ξ= 0.78,则B =0.78*745=581; 对于b L /0= 940/700 = 1.262,得1ξ= 0.364,则B =0.364*745= 271.2 ; 对第一跨中选用B=548mm ,则水平次梁组合截面面积(如图)为 对于第一跨中选用B=548mm ,则水平次梁组合截面面积为2256954886953()A mm =+⨯=组合截面形心到钢槽中心线的距离为 54889459()6953e mm ⨯⨯==跨中组合截面的惯性矩及截面模量为224=127270000+256959+548835=27040000I ⨯⨯⨯次中(mm )2min 27040000181500()149mm =W 对支座B =300mm ,则组合截面面积为A =2569+300⨯8=4969(mm ²)组合截面形心到槽钢中心线的距离为e=8+83-46=45(mm ) 支座处组合截面的惯性矩及截面模量为I 次B=12727000+2569⨯45²+300⨯8⨯49²=23691625(mm4) Wmin=23691625/135=175493(mm³)(3)水平次梁的强度验算。

由支座B (图3)处弯矩最大,而截面模量最小,故只需验算支座B 处的截面的抗弯强度,即Ƃ次=M 次B/Wmin=17790000/175493=101.4<160N/mm ²说明水平次梁选用 [18a 满足要求。

轧成梁的剪应力一般很小,可不必验算。

(4)水平次梁的挠度验算。

受均布荷载的等跨连续梁,最大挠度发生在边跨,由于水平次梁在B 支座处截面的弯矩已经求得 M 次B =26.26kN •m ,则边跨挠度可近似地计算为v/l=5ql ³/384EI 一次M 次Bl/16 EI 次=5⨯30.10⨯2350³/384⨯206000⨯27040000-17190⨯2350/16⨯2060000⨯27040000=0.000912‹【v/l 】=1//250=0.004故水平次梁选用 [18a 满足强度和刚度要求。

(5)顶梁和底梁。

顶梁所受的荷载较小,但考虑水面漂浮物的撞击等影响,必须加强顶梁的刚度,所以也采用 [18a 。

底梁也采用 [18a 。

五、主梁设计 (1)设计资料。

1)主梁跨度(图5);净跨(孔口宽度)()m L 100= ,计算跨度 m L 4.10=,荷载跨度m L 101= ;2)主梁荷载:;q=74.11kN/m 3)横向隔板间距:2.60 ; 4)主梁容许挠度[]600/L =υ。

(2)主梁设计。

主梁设计包括:○1截面选择;○2梁高改变;○3翼缘焊缝;○4腹板局部稳定验算;○5面板局部弯曲与主梁整体弯曲的折算应力验算。

1)截面选择。

○1弯矩与剪力。

弯矩与剪力计算如下 Mmax=747.11⨯10.0⨯(10.4/2-10/4)/2=10085 kN/m Vmax=74.11⨯10.0/2=370.55kN○2需要的截面模量。

已知 Q235 钢的容许应力 []2/160mm N =σ ,考虑钢闸门自重应力引起的附加应力作用,取容许应力为[]2/1441609.0mm N =⨯=σ ,则需要的截面模量为W=Mmax/[ƃ]=100850/14.4=7000(cm3)○3腹板的高度选择。

按高度要求的最小高梁(变截面梁)为 hmin=0.96⨯0.23⨯144000⨯10400/20600000⨯(1/600)=87.1(cm ) 经济梁高ec h =3.1⨯5√5674.03²=98.4(cm )由于钢闸门中的横向隔板重量将随主梁增高而增加,故主梁高度宜选得比ec h 小,但不小于m in h 。

现选用腹板高度h 。

=90cm○4腹板厚度选择。

按经验公式计算:cm h t 86.011/9011/===ϖ,选用cm t 0.1=ϖ。

○5翼缘截面选择。

下翼缘选用cm t 0.21=(符合钢板规格) 需要选用cmb 321=(在cm hh 20~405~5.2= 之间)。

上翼缘的部分截面面积可利用面板,故只需设置较小的上翼缘板同面板相连,选用cm t 0.21=,cm b 121=。

面板兼作主梁上翼缘的有效宽度取为 B=b1+60δ=10+60⨯0.8=58(cm) 上翼缘的面积为A1=10⨯2+58⨯0.8=66.4(cm2)○6弯应力强度验算。

主梁跨中截面的几何特性见表4 。

截面形心矩为Y1=∑Ay1/∑A=8839/200.4=44.1(cm)截面惯性矩I=ϖt h 。

相关文档
最新文档