椭圆中的最值问题与定点、定值问题
高中数学椭圆中的最值问题与定点、定值问题

椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 12222>>=+b a by a x 上的任意一点,左焦点为)0,(1c F -,2201)(||y c x PF ++=,由 1220220=+b y a x 得)1(22020ax b y -=,将其代入 20201)(||y c x PF ++=并化简得a x acPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+⋅=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a acPF -=+-⋅=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 1222=+y x 上两个 不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x my +-=1。
联立⎪⎩⎪⎨⎧+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x my +-=1与椭圆 1222=+y x 有两个不同的交点, 所以042222>++-=∆m b 。
椭圆中的定点、定值问题

解析几何中的椭圆是高考中的热点,常见的有求最值、过定点、定值等,这类题型中以直线与椭圆相交为基本模型,处理问题的方法可以是设直线,运用韦达定理求出坐标之间的关系,过椭圆上一点的直线与椭圆相交是可以解出另一个交点的,而过椭圆外一点的直线与椭圆相交只能找到两个交点坐标的关系,不适宜解,再运用题目中的条件整体化简。
也可以是设点的坐标,运用坐标在椭圆上或直线上整体代入化简,到底设什么需要根据题目的条件,因题而异。
例1、(2017盐城高三三模18)已知A 、F 分别是椭圆2222:1(0)x y C a b a b+=>>的左顶点、右焦点,点P 为椭圆C 上一动点,当PF x ⊥轴时,2AF PF =.(1)求椭圆C 的离心率;(2)若椭圆C 存在点Q ,使得四边形AOPQ 是平行四边形(点P 在第一象限),求直线AP 与OQ 的斜率之积;(3)记圆2222:abO x y a b +=+为椭圆C 的“关联圆”. 若3b =P 作椭圆C 的“关联圆”的两条切线,切点为M 、N ,直线MN 的横、纵截距分别为m 、n ,求证:2234m n+为定值.学科*网解:(1)由PF x ⊥轴,知P x c =,代入椭圆C 的方程,得22221P y c a b +=,解得2P b y a =±. 又2AF PF =,所以22b a c a +=,解得12e =. (2)因为四边形AOPQ 是平行四边形,所以PQ a =且//PF x 轴,所以2P ax =,代入椭圆C 的方程,解得32P y b =±, 因为点P 在第一象限,所以3P y =,同理可得2Q ax =-,3Q y = 所以223322()22AP OQb bb k k a a a a =⋅=----,由(1)知12c e a ==,得2234b a =,所以34AP OQ k k =-.(3)由(1)知12c e a ==,又3b =2a =,所以椭圆C 方程为22143x y +=, 圆O 的方程为22237x y +=①. 连接,OM ON ,由题意可知,OM PM ⊥, ON PN ⊥, 所以四边形OMPN 的外接圆是以OP 为直径的圆,设00(,)P x y ,则四边形OMPN 的外接圆方程为222200001()()()224x y x y x y -+-=+, 即22000x xx y yy -+-= ②.(注:以OP 为直径的圆的方程可以直接写出0))(0())(0(00=--+--y y y x x x )由①-②,得直线MN 的方程为0023xx yy +=, 令0y =,则0237m x =;令0x =,则0237n y =. 所以2200223449()43x y m n +=+, 因为点P 在椭圆C 上,所以2200143x y +=,所以223449m n+=. 例2、(2018苏锡常镇高三二模)如图,椭圆22221(0)x y a b a b +=>>的离心率为22,焦点到相应准线的距离为1,点A ,B ,C 分别为椭圆的左顶点、右顶点和上顶点,过点C 的直线l 交椭圆于点D ,交x 轴于点1(0)M x ,,直线AC 与直线BD 交于点22()N x y ,. (1)求椭圆的标准方程;(2)若2CM MD =u u u u r u u u u r,求直线l 的方程;(3)求证:12x x ⋅为定值. 解:(1)由椭圆的离心率为2,焦点到对应准线的距离为1. 得 2221c a a c c⎧=⎪⎪⎨⎪-=⎪⎩,,解得21a c ⎧=⎪⎨=⎪⎩,,所以,椭圆的标准方程为2212x y +=.(3)设D 坐标为(x 3,y 3),由(0,1)C ,M (x 1,0)可得直线CM 的方程111y x x =-+,DMCBAy xO联立椭圆方程得:1221112y x x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,,解得132142x x x =+,2132122x y x -=+由B ,得直线BD的方程:2y x =①直线AC方程为1y x =+ ② 联立①②得212x x =, 即12x x =2 法2:设D 坐标为(x 3,y 3), 由C ,M ,D 三点共线得31311y x x x =--,所以3131x x y =- ① 由B ,D ,N221y +代入可得2x =②①和②相乘得,31231x x x y =-33332)2x y x ==-+-.例3、(2018苏北四市高三一模18)如图,在平面直角坐标系xOy 中,已知椭圆)0(12222>>=+b a by a x 的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点.(1)求椭圆的标准方程; (2)若AF FC =,求BFFD的值; (3)设直线AB ,CD 的斜率分别为21,k k ,是否存在实数m ,使得12mk k =,若存在,求出m 的值;若不存在,请说明理由.解:(1)设椭圆方程为22221(0)x ya b a b +=>>, 由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩解得:2a b =⎧⎪⎨=⎪⎩2243x y +=(2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --, 此时直线BF 方程为3430x y --=由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去)故1(1)713317BF FD --==-(3)设00,)A x y (,则00(,)B x y --,直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=, 因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,003)52y x +, 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. 例4、(2016泰州高三期末19)如图,在平面直角坐标系xOy 中, 已知圆:O 224x y +=,椭圆:C 2214x y +=, A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于,B C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中6(,0)5D -.设直线,AB AC 的斜率分别为12,k k .(1)求12k k 的值;(2)记直线,PQ BC 的斜率分别为,PQ BC k k ,是否存在常数λ,使得PQ BC k k λ=若存在,求λ值;若不存在,说明理由;(3)求证:直线AC 必过点Q .解:(1)设00(,)B x y ,则00(,)C x y --,220014x y += 所以22000012220000111422424x y y y k k x x x x -=⋅===--+--.(2)联立122(2)4y k x x y =-⎧⎨+=⎩得2222111(1)44(1)0k x k x k +-+-=,解得21112211 2(1)4,(2)11P P Pkkx y k xk k--==-=++,联立122(2)14y k xxy⎧=-⎪⎨+=⎪⎩得2222111(14)164(41)0k x k x k+-+-=,解得211122112(41)4,(2)1414B B Bk kx y k xk k--==-=++,所以121241BBCBy kkx k-==-,121122112141562(1)641515PPQPky k kkk kxk-+-===--+++,所以52PQ BCk k=,故存在常数52λ=,使得52PQ BCk k=.法二:设直线AC方程:)2(411--=xky与圆:O224x y+=联立方程组,运用韦达定理解出'Q坐标,证明'Q在直线PD上,即可说明AC必过点Q(请同学们自己去尝试)注:对于任意的椭圆2222:1(0)x yC a ba b+=>>,过原点的任意一直线与椭圆交于BA,两点,P为椭圆上任意一动点,假设直线PBPA,斜率都存在,则有22abkkBPAP-=⋅证明:设),(11yxA,则),(11yxB--,),(yxP,因为PBA、、在椭圆上所以1221221=+byax①,122220=+byax②由①-②得0))(())((2010120101=+-++-by y y y a x x x x ,化简得22a b k k BPAP -=⋅例5、(2017苏锡常镇高三一模18)已知椭圆1222=+y x 右顶点为A .过点)2,2(-D 作直线PQ 交椭圆于两个不同点Q P 、求证:直线AQ AP ,的斜率之和为定值.分析:法一:先考虑过D 的直线斜率不存在满不满足题意。
椭圆曲线中的定点定值问题的四种方法

椭圆曲线中的定点定值问题的四种方法
椭圆曲线密码学是现代密码学领域中的一个重要分支,其核心是解决椭圆曲线上的定点定值问题。
本文将介绍椭圆曲线中的定点定值问题及其四种常用解决方法。
定点定值问题是指给定一个椭圆曲线上的点P和整数k,求kP 的值。
下面将介绍四种方法来解决这个问题:
1. 变形重复平方算法(Double-and-Add Algorithm):这是最简单和直观的方法,通过将k表示为二进制形式,并根据位的值来迭代地进行计算。
当某一位为1时,将点P加到结果上;当某一位为0时,将点P进行加法运算。
该算法的时间复杂度为O(log(k))。
2. NAF (Non-Adjacent Form)方法:在变形重复平方算法的基础上,在k表示为二进制时可以选择使用加1或减1的方式,使得连续1的位数尽可能少。
这样可以减少加法运算的次数,进而提高效率。
3. 有穷域上的运算法则:将椭圆曲线上的点坐标和系数限定在一个有限域中,通过定义该有限域上的加法和乘法运算法则来求解定点定值问题。
这种方法在实际应用中经常使用,可以利用有限域运算的高效性。
4. 同态映射方法:根据椭圆曲线的同态性质,将定点定值问题转化为其他更容易求解的问题,并利用同态映射的特性进行计算。
这种方法具有较高的复杂性和灵活性,适用于特定的情况。
通过掌握这四种方法,我们可以更好地理解和应用椭圆曲线密码学中的定点定值问题。
根据实际情况选择合适的方法可以提高计算效率和保证系统的安全性。
怎样利用定义求解与椭圆有关的最值问题

椭圆是一种重要的圆锥曲线,与椭圆有关的最值问题在高中数学试卷中比较常见,定义法是解答此类问题的重要方法.椭圆的定义除了第一定义,还有第二定义、第三定义.下面,我们重点谈一谈如何运用椭圆的这三个定义来解答与椭圆有关的最值问题.一、利用椭圆的第一定义求解椭圆的第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.在运用椭圆的第一定义解题时,要先确定两个定点的位置,然后建立关于动点M的关系式:MF1+MF2=2a.这样便可根据该关系式来寻找取得最小值的点M的位置,进而求得最值.例1.已知P()-2,3,F2为椭圆x225+y216=1的右焦点,点M在椭圆上移动.求MP+MF2的最大值和最小值.分析:所求的最值与MF2有关,可利用椭圆的第一定义建立关系式MF1+MF2=2a,将求MP+MF2的最值转化为求MP-MF1的最值,根据三角形三边之间的关系和性质便可求得问题的答案.解:如图1所示,连接PF1,延长PF1交椭圆于点M1,延长F1P交椭圆于点M2.由椭圆的第一定义知MF1+MF2=2a,所以MP+MF2=MP+2a-MF1,由三角形三边之间的关系知-PF1≤MP-MF1≤PF1,当且仅当M与图中M1合时取右边的等号,M与图中M2重合时取左边的等号.因为2a=10,PF1=2,所以MP+MF2的最大值为12,所以MP+MF2的最小值为8.图1一般地,若椭圆的方程为x2a2+y2b2=1(a>b>0),F1,F2分别是椭圆的左右焦点,P()x0,y0为平面内的一个定点,M为椭圆上的任意一点,当定点在椭圆的内部时,2a-PF1≤MF2+MP≤2a+PF1;当定点在椭圆的外部时,PF2≤MF2+MP≤2a+PF1.二、利用椭圆的第二定义求解圆锥曲线的第二定义:到定点的距离与到定直线的距离的比是e的点的轨迹.在运用椭圆的第二定义解题时,我们先要明确定点(即焦点F)和定直线(准线x=a2c)的位置,然后建立关于动点P(x0,y0)的关系式MP=e||||||x0-a2c,利用其关系或关系式来解题.例2.已知F1是椭圆5x2+9y2=45的左焦点,P是椭圆上动点,点A(1,1)是一个定点,求PA+32PF1的最小值.分析:明确题目中的数量关系后可以发现,所求目标中的32是椭圆离心率的倒数,联系第二定义:椭圆上的点到左焦点和到左准线的距离d之比为离心率e,可得PF1d=23,即d=32PF1,不难得到PA+32PF1=PA+d,所以PA+32PF1的最小值为椭圆上的P点到A点和到左准线的距离和的最小值,只需过点A,D作左准线的垂线即可.解:由题意可知,椭圆5x2+9y2=45的长半轴a=3,短半轴b=5,半焦距c=2,离心率e=23,右焦点F2()2,0,左准线x=-92.如图2所示,过点A,D作左准线的垂线,垂足为D1、D2.设P点到左准线的距离为d.由椭圆的第二定义可知PF1=ed,所以PA+32PF1=PA+32ed=PA+d,则PA+d的最小值就是点A到左准线x=-92的距离AD1=1+92=112,当且仅当点P在P1处PA+d取最小值,故PA+d的最小值为112.图2探索与研究颜琴55当与椭圆有关的最值问题涉及定点、定直线时,就要利用椭圆的第二定义,把与动点有关的最值问题转化为与定点、定直线之间的距离来求解.三、利用椭圆的第三定义求解椭圆的第三定义是指平面内动点到两定点A (a ,0)和B (-a ,0)的斜率的乘积等于常数e 2-1的点的轨迹.这也就是说,A ,B 是椭圆C :x 2a 2+y 2b2=1()a >b >0上的两个顶点,P 是椭圆上异于A ,B 的一个动点,若k PA ,k PB 的斜率都存在,则k PA ∙k PB =e 2-1=-b 2a2.运用椭圆的第三定义,可以快速找到过椭圆上两个顶点的直线的斜率之间的关系.例3.已知椭圆C :x 2a 2+y2b2=1()a >b >0的长轴长,短轴长和焦距成等差数列,若A ,B 是椭圆长轴的两个端点,M ,N 是关于x 轴对称的两点,直线AM ,BN 的斜率分别是k 1,k 2(k 1∙k 2≠0),则||k 1+||k 2的最小值为_______.分析:由长轴长、短轴长和焦距成之间的关系得到椭圆的离心率,由A ,B ,M ,N 的位置可联想到椭圆的第三定义,求得k 1∙k 2的值,再利用基本不等式就可以使问题得解.解:由椭圆的长轴长,短轴长和焦距成等差数列,得2a +2c =4b ,又b 2=a 2-c 2,可得e =c a =35,由椭圆的第三定义可得k 1∙k 2=e 2-1=-1625,而M ,N 是关于x 轴对称的两点,则k 1=-k 2,可得k 1∙k 2=1625,所以||k 1+||k 2≥2k 1k 2=85,当且仅当k 1=k 2时取等号.由以上几个题目可以看出,与椭圆有关的最值问题一般都会涉及椭圆上的定点、定直线.如果问题中的定点为焦点,就要考虑利用椭圆的第一定义来解题;如果问题中涉及的定点、定直线分别为焦点、准线,就要考虑用椭圆的第二定义来解题;如果问题中涉及了椭圆的顶点以及过顶点的直线的斜率,就要考虑采用椭圆的第三定义解题.(作者单位:江西省余干第一中学)探索与研究在学习中,我们经常会遇到抽象函数问题,此类问题一般侧重于考查同学们的直观想象能力和抽象思维能力.抽象函数一般没有具体的函数解析式,与x a 、sin x ()cos x 、ln x 、e x 的乘积构成的函数解析式也不明确,我们很难快速解出.而运用构造法,借助构造的新函数的性质、图象,则能快速破解此类问题.例1.已知定义在R 上的函数f ()x 为奇函数,当x ≤0时,恒有xf ′(x )≥3f ()-x ,则不等式8xf ()2x >()1-3x 3x 2f ()1-3x 的解集为_____.解:∵f ()x 是定义在R 上的奇函数,∴f ()-x =-f ()x ,当x ≤0时,由xf ′()x ≥3f ()-x 可得x 3f ′()x +f ()x ≥0,令g ()x =x 3f ()x ,∴当x ≤0时,g '()x =2x 2f ()x +x 3f ′()x =3x 2éëùûf ()x +x 3f '()x ≥0,∴g ()x 在(]-∞,0上单调递增,∵g ()-x =-x 3f ()-x =x 3f ()x =g ()x ,g ()x 是偶函数,∴g ()x 在[)0,+∞上单调递减,不等式8xf ()2x >()1-3x 3x2f ()1-3x 等价于8x 3f ()2x >()1-3x 3f ()1-3x ,即g ()2x >g ()1-3x ,等价于||2x <||1-3x ,解得x <15或x >1,∴不等式的解集为æèöø-∞,15⋃()1,+∞.56。
高中数学椭圆定值、最值大题解题方法汇总

解:(Ⅰ)设椭圆的半焦距为 c
c
,依题意
a
6, 3
a 3,
b 1,所求椭圆方程为 x2 y2 1. 3
(Ⅱ)设 A(x1,y1) , B(x2,y2 ) .(1)当 AB⊥ x 轴时, AB 3 .
(2)当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y kx m .
由已知 m 3 ,得 m2 3 (k 2 1) .
3(m2 4k 2 ) 3 4k 2
.
Q 以 AB 为直径的圆过椭圆的右顶点 D(2, 0), kAD kBD 1 ,
y1 x1
2
y2 x2
2
1,
y1 y2
x1x2
2( x1
x2 )
4
0,
3(m2 4k 2 ) 3 4k 2
4(m2 3) 3 4k 2
16mk 3 4k 2
4
且∠AOB 为锐角(其中 O 为坐标原点),求直线 l 的斜率 k 的
取值范围.
解:(Ⅰ)易知 a 2 , b 1, c 3 .
∴ F1( 3,0) , F2( 3,0) .设 P(x, y) (x 0, y 0) .则
uuur uuuur PF1 PF2 (
3 x, y)(
3 x, y) x2 y2 3 5 , 4
又
x2 4
y2Βιβλιοθήκη 1,联立x2 x2
4
y2 y2
7 4
1
x2
,解得
y
2
1 3
4
x y
1 3
2
,
P(1, 3 ) 2.
山东省青岛第二中学
(Ⅱ)显然 x 0 不满足题设条件.可设 l 的方程为 y kx 2 ,
椭圆综合题中定值定点、范围问题总结

椭 圆一、直线与椭圆问题的常规解题方法:1.设直线与方程;〔提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别〕2.设交点坐标;〔提醒:之所以要设是因为不去求出它,即“设而不求〞〕3.联立方程组;4.消元韦达定理;〔提醒:抛物线时经常是把抛物线方程代入直线方程反而简单〕5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0〞〔提醒:需讨论K 是否存在〕⇔OA OB ⊥⇔121K K •=-⇔0OA OB •=⇔12120x x y y +=②“点在圆、圆上、圆外问题〞⇔“直角、锐角、钝角问题〞⇔“向量的数量积大于、等于、小于0问题〞⇔12120x x y y +>>0;③“等角、角平分、角互补问题〞⇔斜率关系〔120K K +=或12K K =〕; ④“共线问题〞〔如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法〕; 〔如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等〕; ⑤“点、线对称问题〞⇔坐标与斜率关系;⑥“弦长、面积问题〞⇔转化为坐标与弦长公式问题〔提醒:注意两个面积公式 的 合理选择〕; 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、根本解题思想:1、“常规求值〞问题:需要找等式,“求围〞问题需要找不等式;2、“是否存在〞问题:当作存在去求,假设不存在那么计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。
4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法〔转化为二次函数的最值〕、 三角代换法〔转化为三角函数的最值〕、利用切线的方法、利用均值不等 式的方法等再解决;6、转化思想:有些题思路易成,但难以实施。
椭圆中的常见最值问题

椭圆中的常见最值问题1、椭圆上的点P到二焦点的距离之积取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆上一点到它的二焦点的距离之积为,则取得的最大值时,P点的坐标是。
P(0,3)或(0,-3)例2、已知椭圆方程()p为椭圆上一点,是椭圆的二焦点,求的取值范围。
分析:,当时,=,当时,即2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线xx或反向xx与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知,、是椭圆的左右焦点,P为椭圆上一动点,则的最大值是,此时P点坐标为。
的最小值是,此时P点坐标为。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的xx或反向xx与椭圆的交点。
例4、已知,是椭圆的左焦点,P为椭圆上一动点,则的最小值是,此时P点坐标为。
的最大值是,此时P点坐标为。
分析:,当P是的xx与椭圆的交点时取等号。
,当P是的反向xx与椭圆的交点时取等号。
4、椭圆上的点P到定点A的距离与它到椭圆的一个焦点F的距离的倍的和的最小值(为椭圆的离心率),可通过转化为(为P到相应准线的距离)最小值,取得最小值的点是A到准线的垂线与椭圆的交点。
例5、已知定点,点F为椭圆的右焦点,点M在该椭圆上移动,求的最小值,并求此时M点的坐标。
例6、已知点椭圆及点,为椭圆上一个动点,则的最小值是。
5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。
例7、过椭圆()的中心的直线交椭圆于两点,右焦点,则的最大面积是。
例8、已知F是椭圆的一个焦点,PQ是过原点的一条弦,求面积的最大值。
6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。
例9、P为椭圆()一点,左、右焦点为,则的最大面积是。
7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。
椭圆中的最值问题与定点、定值问题

椭圆中的最值问题与定点、定值问题解决与椭圆有关的最值问题的常用方法(1)利用定义转化为几何问题处理;(2)利用数形结合,挖掘数学表达式的几何特征进而求解;(3)利用函数最值得探求方法,将其转化为区间上的二次函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;(4)利用三角替代(换元法)转化为三角函数的最值问题处理。
一、椭圆上一动点与焦点的距离的最值问题椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a-c (近日点)。
推导:设点),(00y x P 为椭圆)0(12222>>=+b a b y a x 上的任意一点,左焦点为)0,(1c F -,20201)(||y c x PF ++=,由1220220=+b y ax 得)1(22020a x b y -=,将其代入20201)(||y c x PF ++=并化简得a x a cPF +=01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a acPF +=+×=max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a a cPF -=+-×=)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1.(2015浙江卷)如图,已知椭圆1222=+y x 上两个不同的点A 、B 关于直线21+=mx y 对称。
(1)求实数m 的取值范围;(2)求AOB D 面积的最大值(O 为坐标原点)。
解:(1)由题意知0¹m ,可设直线AB 的方程为b x my +-=1。
联立ïîïíì+-==+bx m y y x 11222,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x m y +-=1与椭圆1222=+y x 有两个不同的交点,所以042222>++-=D mb 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆中的最值问题与定点、定值问题
解决与椭圆有关的最值问题的常用方法 (1)利用定义转化为几何问题处理;
(2)利用数形结合,挖掘数学表达式的几何特征进而求解; (3)利用函数最值得探求方法,将其转化为区间上的二次 函数的最值来处理,此时应注意椭圆中x 、y 的取值范围;
(4)利用三角替代(换元法)转化为 三角函数的最值问题处理。
一 、椭圆上一动点与焦点的距离的最值问题 椭圆上一动点与焦点的距离称为焦半径,椭圆上一动点与长轴的两端点重合时,动点与焦点取得最大值a+c (远日点)、最小值a -c (近日点)。
推导:设点),(00y x P 为椭圆)0( 122
22>>=+b a b
y a x 上的任意一点,左焦点为)0,(1c F -,
2
2
01)(||y c x PF ++=,由 1
220220=+b y a x 得)1(2202
0a
x b y -=,将其代入 2
0201)(||y c x PF ++=并化简得a x a
c
PF +=
01||。
所以,当点),(00y x P 为长轴的右端点)0,(2a A 重合时,a c a a a
c
PF +=+⋅=
max 1||;当点),(00y x P 为长轴的左端点)0,(1a A -重合时。
c a a a a
c
PF -=+-⋅=
)(||min 1。
当焦点为右焦点)0,(2c F 时,可类似推出。
1. (2015浙江卷)如图,已知椭圆 12
22
=+y x 上两个 不同的点A 、B 关于直线2
1
+
=mx y 对称。
(1)求实数m 的取值范围;
(2)求AOB ∆面积的最大值(O 为坐标原点)。
解:(1)由题意知0≠m ,可设直线AB 的方程为b x m
y +-
=1。
联立⎪⎩
⎪⎨⎧+-==+b
x m y y x 1122
2,消y 去,得012)121(222=-+-+b x m b x m 。
因为直线b x m
y +-=1
与椭圆 1222=+y x 有两个不同的交点, 所以04
222
2
>+
+-=∆m b 。
-------① 设),(),,(2211y x B y x A ,线段AB 的中点 ),(M M y x M ,则2
4221+=
+m mb
x x ,
B
A
O
x
y
所以⎪⎪⎩⎪⎪⎨⎧+=
+-=+=+=21 22222221m b m b x m y m mb x x x M M M 。
将线段AB 的中点)2,22(2
22++m b m m mb M 代入直线2
1
+=mx y ,解得2
222m m b +-=。
------② 由①②得3
636>-
<m m 或。
(2)令)2
6,0()0,26(1 -∈=
m t , 则[]
2122124)()1(1||x x x x m AB -+⋅⎥⎦⎤⎢⎣
⎡-+=
=2
1
232212242
+
++-⋅+t t t t ,
且O 到直线AB 的距离为1
2122++
=
t t d 。
设AOB ∆的面积为)(t S ,所以2)21(221||21)(22+--=⋅=
t d AB t S 2
2≤, 当且仅当2
1
2
=
t 时,等号成立。
故AOB ∆面积的最大值为22。
2.已知椭圆4x 2+y 2=1及直线y =x +m .
(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.
解 (1)由⎩⎪⎨⎪⎧
4x 2+y 2=1,
y =x +m
得5x 2+2mx +m 2-1=0,
因为直线与椭圆有公共点,
所以Δ=4m 2-20(m 2-1)≥0,解得-
52≤m ≤5
2.
(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知:5x 2+2mx +m 2-1=0,
所以x 1+x 2=-2m 5,x 1x 2=15
(m 2
-1), 所以|AB |=
(x 1-x 2)2+(y 1-y 2)2
=2(x 1-x 2)2=
2[(x 1+x 2)2-4x 1x 2]
=
()
⎥⎦
⎤⎢⎣⎡--154254222m m =
2
5
10-8m 2.
所以当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x .
反思与感悟 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.
跟踪训练2 如图,点A 是椭圆C :x 2a 2+y 2
b
2=1(a >b >0)的短轴位于y 轴下方的端点,过点A
且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →
=9.
(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°,
即△BAP 是等腰直角三角形,|AB →|=2|AP →|.
∵AB
→·AP →=9, ∴|AB →||AP →|cos 45°=2|AP →|2cos 45°=9, ∴|AP
→|=3. (1)∵P (0,1),∴|OP
→|=1,|OA →
|=2,
即b =2,且B (3,1).
∵B 在椭圆上,∴9a 2+1
4=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 2
4=1.
(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .
显然点B 的坐标是(3,t ),将它代入椭圆方程得: 9a 2+t 2(3-t )2=1,解得a 2
=3(3-t )23-2t . ∵a 2>b 2>0,∴
3(3-t )23-2t
>(3-t )2>0.
∴33-2t >1,即33-2t -1=2t
3-2t >0, ∴所求t 的取值范围是0<t <32.
二、椭圆中的定点和定值问题
解决时应用数形结合、分类讨论、几何法等方法。
解决此类问题的方法有两种: (1)进行一般计算、推理求出结果; (2)通过检查特殊位置,探索出“定点”“定值”,然后再进行一般性证明或计算。
2.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1。
(1)求椭圆C 的标准方程;
(2)若直线m kx y l +=:与椭圆C 相交于A 、B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:(1)根据题意可设椭圆方程)0( 12222>>=+b a b
y a x ,
由已知得⎩⎨
⎧=-=+13c a c a ,解得⎩⎨⎧==1
2c a 3122
2=-=∴b ,
所以椭圆的标准方程为13
42
2=+y x 。
(2)设),(),,(2211y x B y x A ,联立⎪⎩⎪⎨⎧=++=134
22y x m kx y 得0)3(48)43(2
22=-+++m mkx x k ,
则由题意得0)3)(43(16642
2
2
2
>-+-=∆m k k m ,
即04322>-+m k ,且⎪⎩
⎪⎨⎧
+-=
⋅+-=+22
2122
143)3(4438k m x x k mk x x , 又))((2121m kx m kx y y ++=⋅=2
21212
)(m x x mk x x k +++=2
2243)
4(3k
k m +-, 设椭圆的右顶点为D 以AB 为直径的圆过椭圆的右顶点)0,2(D
1-=⋅∴BD AD k k ,即
12
22211-=-⋅-x y
x y ,04)(2212121=++-+∴x x x x y y , 04431643)3(443)4(32
22222=++++-++-∴k
mk k m k k m ,化简整理得0416722=++k mk m , 解得7
2,221k m k m -
=-=,且均满足0432
2>-+m k 。
当k m 21-=时。
l 的方程为)2(-=x k y ,直线过定点)0,2(D ,与已知矛盾;
当721k m -
=时,l 的方程为)72(-=x k y ,直线过定点)0,7
2
(。
所以直线l 过定点,定点的坐标为)0,7
2
(。