石家庄市赵县2019-2020学年九年级上期中数学试卷及答案
河北省部分学校2019-2020学年九年级(上)期中数学试卷(含解析)

2019-2020学年河北省部分学校九年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=13.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<15.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或28.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=829.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第象限.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585 19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.2019-2020学年河北省部分学校九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、是中心对称图形,也是轴对称图形,故本选项不符合题意;故选:A.【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记定义的内容是解此题的关键.2.下列方程中是一元二次方程的是()A.2x+1=0B.x2+y=1C.x2+2=0D.=1【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选:C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于()A.B.0C.0或﹣1D.﹣1【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(﹣2)2﹣4×k ×(﹣1)≥0,然后求出两不等式的公共部分后找出非正整数即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4×k×(﹣1)≥0,解得k≥﹣1且k≠0,∵k为非正整数,∴k=﹣1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.x<﹣3或x>1C.x<﹣4或x>1D.﹣3<x<1【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线与x轴的交点;根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象,求出另一个交点是解决问题的关键.5.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选:C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°【分析】连接OC,由CE为圆O的切线,利用切线的性质得到OC垂直于CE,由OA =OC,利用等边对等角得到一对角相等,再利用外角性质求出∠COE的度数,即可求出∠E的度数.【解答】解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.【点评】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:4★5=42﹣3×4+5,若x★2=6,则实数x的值是()A.﹣4或﹣1B.4或﹣1C.4或﹣2D.﹣4或2【分析】先根据新定义得到x2﹣3x+2=6,整理得x2﹣3x﹣4=0,再把方程左边分解,原方程化为x﹣4=0或x+1=0,然后解一次方程即可.【解答】解:∵x★2=6,∴x2﹣3x+2=6,整理得x2﹣3x﹣4=0,∴(x﹣4)(x+1)=0,∴x﹣4=0或x+1=0,∴x1=4,x2=﹣1.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=82【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.【点评】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.【点评】本题考查了概率,熟练掌握概率公式是解题的关键.10.如图为函数y=ax2+bx+c与y=x的图象,下列结论:(1)b2﹣4ac>0;(2)3b+c+6=0;(3)当1<x<3时,x2+(b﹣1)x+c<0;(4).其中正确的个数为()A.1B.2C.3D.4【分析】由函数y=ax2+bx+c与x轴无交点,可得b2﹣4ac<0;当x=3时,y=9+3b+c =3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案,把b=﹣3,c=3代入代数式即可求得.【解答】解:由图象知,二次函数过(3,3)(0,3),(1,1),∴,解得:,∴y=x2+bx+c,∵函数y=ax2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;故②正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故③正确;∵函数y=x2﹣3x+3,∴.故④正确;故选:C.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.二次函数y=(x+2)2+3的顶点坐标是(﹣2,3).【分析】根据顶点式直接解答即可.【解答】解:二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故答案为(﹣2,3)【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x﹣h)2+k (a≠0)的顶点坐标为(h,k),注意符号问题.12.关于x的方程x2﹣x﹣n=0没有实数根,则抛物线y=x2﹣x﹣n的顶点在第一象限.【分析】求出抛物线y=x2﹣x﹣n的对称轴x=,可知顶点在y轴的右侧,根据x2﹣x﹣n =0在实数范围内没有实数根,可知开口向上的y=x2﹣x﹣n与x轴没有交点,据此即可判断抛物线在第一象限.【解答】解:∵抛物线y=x2﹣x﹣n的对称轴x=﹣=,∴可知抛物线的顶点在y轴的右侧.又∵关于x的一元二次方程x2﹣x﹣n=0没有实数根,∴开口向上的y=x2﹣x﹣n与x轴没有交点.∴抛物线y=x2﹣x﹣n的顶点在第一象限.故答案为:一.【点评】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟练掌握二次函数的性质是解题的关键.13.AB是⊙O的直径,C,D在⊙O上且分布在AB两侧,C是直径AB所对弧的一个三等分点,则∠BDC=30°或60°.【分析】此题分两种情况进行计算,点C有两种位置,分别根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半进行计算即可.【解答】解:如图所示:连接CO,∵C是直径AB所对弧的一个三等分点,∴∠COB=120°,∴∠CDB=60°,连接C1O,∵C1是直径AB所对弧的一个三等分点,∴∠C1OB=60°,∴∠C1DB=30°,故答案为:30°或60°.【点评】此题主要考查了圆周角定理以及圆心角度数的计算,关键是分两种情况讨论.14.如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=8,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.【分析】连接OE,作OH⊥BE于H,根据平行四边形的性质得到AB=CD=8,∠ABC =180°﹣∠C=30°,根据扇形面积公式、三角形的面积公式计算即可.【解答】解:连接OE,作OH⊥BE于H,∵四边形ABCD是平行四边形,∴AB=CD=8,∠ABC=180°﹣∠C=30°,∵OE=OB=4,∴∠OEB=∠OBE=30°,∴OH=OB=2,∠BOE=120°,由勾股定理得,BH===2,∴阴影部分的面积=﹣=﹣4,故答案为:﹣4.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点评】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题:共75.解答应写出文字说明、证明过程或演算步骤.16.解方程:(1)x2﹣6x+9=0(2)x2+x=2(x+1)【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵(x﹣3)2=0,∴x﹣3=0,即x1=x2=3(2)∵x(x+1)=2(x+1),∴(x+1)(x﹣2)=0∴x+1=0或x﹣2=0∴x1=﹣1,x2=2【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.关于x的一元二次方程x2﹣mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一根大于3,求m的取值范围.【分析】(1)根据判别式△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0即可得;(2)因式分解法得出x1=1,x2=m﹣1,由方程有一个根大于3知m﹣1>3,解之可得.【解答】(1)证明:依题意,得△=(﹣m)2﹣4(m﹣1)=(m﹣2)2≥0,∵(m﹣2)2≥0,∴方程总有两个实数根;(2)x2﹣mx+m﹣1=0,(x﹣1)(x﹣m+1)=0,∴x1=1,x2=m﹣1,∵方程有一个根大于3,∴m﹣1>3,∴m>4.∴m的取值范围是m>4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)测试成绩(分)2325262830人数(人)4181585【分析】(1)用总人数乘以成绩为25分的学生人数所占的比例即可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【解答】解:(1)(人),答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人;(2)画树状图如下图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.19.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC的面积最小.【分析】设经过x秒,四边形APQC的面积最小,根据题意列出△PBQ的面积关于x的解析式,根据二次函数的性质求出△PBQ的面积的最大值,得到答案.【解答】解:设经过x秒,四边形APQC的面积最小由题意得,AP=2x,BQ=4x,则PB=12﹣2x,△PBQ的面积=×BQ×PB=×(12﹣2x)×4x=﹣4(x﹣3)2+36,当x=3s时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小.【点评】本题考查的是二次函数的应用,掌握二次函数的性质是解题的关键.20.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.【分析】(1)连接OC,根据平行线的性质得到∠1=∠ACB,由圆周角定理得到∠1=∠ACB=90°,根据线段垂直平分线的性质得到DB=DC,求得∠DBE=∠DCE,根据切线的性质得到∠DBO=90°,求得OC⊥DC,于是得到结论;(2)解直角三角形即可得到结论.【解答】(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.【点评】本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.22.已知抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2.(1)请结合函数图象确定实数a的取值范围;(2)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.【分析】(1)根据题意,可以求得该抛物线与x轴的两个交点,然后即可画出该函数的图象,从而可以得到a的取值范围;(2)根据题意,可以得到关于k的方程,从而可以求得抛物线y=kx2+(2k+1)x+2所过的定点.【解答】解:(1)令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数.∴k=1∴该抛物线解析式为y=x2+3x+2由图象得到:当y1>y2时,a>1或a<﹣4;(2)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则解得或,所以该抛物线恒过定点(0,2)、(﹣2,0).【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上的点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,将点A的坐标代入C2的表达式,即可求解;(2)作点C关于C1对称轴的对称点C′(﹣1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;(3)S=MH×x C=(﹣x2+4x﹣x)=﹣x2+,即可求解.△MOC【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,则S△MOC∵﹣<0,故x=,最大值为.故当点M(,)时,S△MOC【点评】此题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.。
2019-2020学年河北石家庄九年级上数学期中试卷

2019-2020学年河北石家庄九年级上数学期中试卷一、选择题1. 下列实数中,是方程x2−9=0的根的是()A.x=3B.x=1C.x=4D.x=22. 下列手机功能图标中,是中心对称图形是( )A. B. C. D.3. 如图,将△AOB绕点O逆时针旋转65∘得到△COD,若∠A=100∘,∠AOD=95∘,则∠D的度数是()A.60∘B.45∘C.50∘D.35∘4. 如图,四边形ABCD是⊙O的内接四边形,若∠BCD=110∘,则∠BOD的度数为()A.140∘B.110∘C.70∘D.90∘5. 学习了圆的有关概念之后,老师在手机上给小菁留了几道判断题,如图,请你判断一下,小菁做对了()A.3道 B.1道 C.4道 D.2道6. 将抛物线y=3x2+1绕原点O旋转180∘,则旋转后的抛物线的解析式为( )A.y=−3x2+1B.y=−3x2−1C.y=−13x2+1 D.y=−13x2−17. 如图,将一个一边有刻度的直尺放在一个量角器上,使其一边经过量角器的圆心O,另一边与量角器交于C,D两点,且C,D两点在直上的刻度分别为1、9,在量角器上的刻度分别为50,170,则直尺的宽为()A.2√3B.2C.4√33D.√38. 如图,在5×5的方格纸中,A,B两点在格点上,线段AB绕某点旋转后得到线段A′B′,点A′与A对应,则旋转中心,旋转方向和旋转角分别是()A.O,逆时针旋转90∘B.P,顺时针旋转90∘C.Q,顺时针旋转120∘D.M,顺时针旋转60∘9. 数学老师给腾飞小组留下这样的一道题:“若实数x满足(x2−x)2−4(x2−x)−12=0,求代数式x2−x+ 1的值.”但其中一位组员不小心把墨水洒在答案上了,结果如图所示,请你帮忙做出答案,则答案是()A.7或−1B.7C.−5或3D.−110. 滑雪者从山坡上滑下,其滑行距离s (单位:m )与滑行时间t (单位: s) 之间的关系可以近似地用二次函数刻画,其图象如图所示,当滑行距离为102m 时,滑行时间为( )A.8sB.6sC.4sD.5s11. 点A(−3,6)关于原点的对称点B 的坐标为( ) A.(3,−6) B.(−3,−6)C.(−6,3)D.(3,6)12. 如图,AB ,CD 是⊙O 的两条互相垂直的弦,圆心角∠AOC =130∘,AD ,CB 的延长线相交于点P ,则∠P 的度数为( )A.30∘B.40∘C.50∘D.35∘13.如图,AB ,AC ,BC 都是⊙O 的弦,OD ⊥AB ,OE ⊥BC ,垂足分别为D ,E ,若AC =10,则DE 的长为( )A.5B.2.5C.10D.7.514. 如图,⊙O 的直径AB 垂直于弦CD 于点M ,且M 是半径OB 的中点,若CD =8,则直径AB 的长为( )A.16√3B.16√33C.8√3D.8√3315.已知二次函数y =ax 2+bx +c( a ,b ,c 为常数,且 a ≠0) ,x 与y 的部分对应值如下表:有下列结论:① ac <0;②2a +b =0;③−2是方程ax 2+(b −2)x +c =0的一个根;④当0≤x ≤2时,ax 2+(b −2)x +c ≤0.其中正确结论的个数为( ) A.2 B.4C.1D.316. 如图,△ABC 是边长为6的等边三角形,点D 在边AB 上,AD =2,点E 是BC 上一点,连接DE ,将DE 绕点D 逆时针旋转60∘得DF ,连接CF ,则CF 的最小值为( )A.6−3√3B.2√3−2C.2D.√3二、填空题方程x2−2x+1=0的根是________.在实数范围内定义一种运算“∗”,其运算法则为a∗b=a2−ab. 根据这个法则,计算:(1)若y=(x+3)∗1,则y=_________(写成一般式);(2)写出(1)中y的顶点坐标__________.如图,在⊙O中,直径AB=12,BC是弦,∠ABC=30∘,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)当PQ // AB时,则PQ=__________;(2)当点P在BC上移动时,则PQ长的最大值为________.三、解答题回答下列问题:(1)解方程:3x(x−3)=2(x−3);(2)将二次函数解析式y=2x2−8x+5配方成y=a(x−ℎ)2+k的形式.如图,将△ABC绕点B旋转得到△DBE,且点D落在边AC上.求证:DB平分∠ADE.如图,∠BAC=60∘,AD平分∠BAC交⊙O于点D,连接OB,OC,BD,CD. (1)求证:四边形OBDC是菱形;(2)若改变∠BAC的大小,则四边形OBDC能否成为正方形?请作出判断,并说明理由.如图,在菱形ABCD中,∠ABC=60∘,连接对角线AC,点P是△ABC内一点,连接PA、PB、PC将线段AP绕点A顺时针旋转60∘,得到线段AM,连接BM.(1)证明:△MAB≅△PAC.(2)若PA=6,PB=8,PC=10,求∠APB的度数.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.(1)求⊙O的半径;(2)若点P是线段AB上的一动点,求线段OP的所有整数值.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30∘,∠OCD=45∘.观察:(1)将图1中的三角板OCD沿AB的方向平移至图2的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN的度数为________;操作:(2)将图1中的三角板OCD绕点O按顺时针方向旋转,使边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;拓展:(3)将图1中的三角板OCD绕点O按顺时针方向旋转一周,在旋转的过程中,当边OC旋转________时,边CD恰好与边MN平行.(直接写出结果).如图1,矩形ABCD的对角线AC,BD相交于点O,AB<BC,F是BC边上的一点,且满足AF=FC,BE是△ABF的中线.(1)∠OBE与∠OCB有怎样的数量关系?为什么?(2)如图2,点M是射线EB上的一个动点,将线段OM绕点O逆时针旋转得到线段ON,使∠MON=∠AFC,连接CN.①求证:BM=CN.②若∠ACB=30∘,AB=1,当∠CON=15∘时,求线段ME的长度.参考答案与试题解析2019-2020学年河北石家庄九年级上数学期中试卷一、选择题1.【答案】此题暂无答案【考点】一元二表方病的解【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】中心较称图腾【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】三角形常角簧定理旋因末性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】圆明角研理圆内接根边形的萄质【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】圆的水射概念【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】二水来数兴象触几何变换旋因末性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】垂径水正的应用勾体定展【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】根体判展式解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二次表数擦应用【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】关验掌陆箱称的点的坐标【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】圆明角研理圆心角、射、弦开关系【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】垂径水正的应用三角形因位线十理【解析】此题暂无解析【解答】此题暂无解答14. 【答案】此题暂无答案【考点】垂径水正的应用勾体定展【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】二次常数图见合点的岸标特征二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】旋因末性质等边三根形的性隐【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】解一根盖次看程径直接开平方法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】定射新从号二次函于的三凸形式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆与四验库的综合垂径水正的应用勾体定展含因梯否角样直角三角形【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】二次函于的三凸形式解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形都右平分线旋因末性质全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆内接根边形的萄质菱形的来定与筒质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱都资性质勾股定体的展定理等边三使形的判爱等边三根形的性隐全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】动表问擦三角常三簧关系垂径水正的应用勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形常角簧定理旋因末性质平水因性质平行线明判轮与性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定四边正形合题矩来兴性质直使三碳形望边扩的中线【解析】此题暂无解析【解答】此题暂无解答。
2019-2020学年九年级数学上学期期中A卷(河北)(考试版)【测试范围:冀教版九上全册】

数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中A 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若一元二次方程20ax bx c ++=中的2a =,0b =,1c =-,则这个一元二次方程是 A .2 210x -= B .2210x +=C .2 20x x +=D .2 20x x -=2.已知23x y =,则xy等于A .2B .3C .23D .323.若2sin A,则锐角A 的度数为 A .30°B .45°C .60°D .75°4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是A .22°C ,26°CB .22°C ,20°C C .21°C ,26°CD .21°C ,20°C5.如图,在⊙O 中,=AB AC ,∠AOB =40°,则∠ADC 的度数是A .40°B .30°C .20°D .15°6.如图所示的两个三角形相似,则α与β的度数分别为A .α=30°,β=30°B .α=105°,β=30°C .α=30°,β=105°D .α=105°,β=45°7.一元二次方程2250x x --=的左边配成完全平方后所得方程为 A .2 (1)6x -= B .2 (1)6x +=C .2 (2)9x +=D .2 (2)9x -=8.圆锥底面圆半径与母线长之比为1:2,那么圆锥侧面展开图扇形的圆心角为 A .30° B .60°C .90°D .180°9.如图,在一块长为20m ,宽为15m 的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m 2,如果设小路的宽度为x m ,那么下列方程正确的是A .()()2015546x x --=B .()()2015546x x ++=C .()()202152546x x --=D .()()202152546x x ++=10.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则OM和BC 的长分别为数学试题 第3页(共6页) 数学试题 第4页(共6页)A .2,π3 B.πC2π3D.4π311.如图,在△ABC 中,∠ADE =∠B ,DE :BC =2:3,则下列结论正确的是A .AD :AB =2:3 B .AE :AC =2:5C .AD :DB =2:3D .CE :AE =3:212.如图,已知圆心角∠AOB =118°,则圆周角∠ACB =A .59°B .118°C .121°D .125°13.若点A (a ,b )在反比例函数2y x=的图象上,则代数式ab –4的值为 A .0 B .2C .–2D .–614.已知12m n n -=,则mn 的值为 A .23B .13C .32D .1215.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1AC 的长是A .10米 B.米C .15米D.16.如图,已知⊙O 的半径是4,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A.83π- B.163π-C.163π-D.83π-第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分)19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8+3tan30°–(π–1)0. 21.(本小题满分9分)解下列一元二次方程:(1)2340x x +-=;(2)()()315x x -+=;(3)229(2)4(1)x x -=+.数学试题 第5页(共6页) 数学试题 第6页(共6页)22.(本小题满分9分)已知0654a b c==≠,且223a b c +-=,求a 的值. 23.(本小题满分9分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,–4),B (3,–2),C (6,–3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以M 点为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2:1.24.(本小题满分10分)关于x 的方程()21220k x kx -++=.(1)求证:无论k 为何值,方程总有实数根; (2)设12,x x 是该方程的两个根,记121221x x S x x x x =+++,S 的值能为2吗?若能求出此时k 的值. 25.(本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,OD ⊥AC ,垂足为E ,连接BD .(1)求证:BD 平分∠ABC ;(2)当∠ODB =30°时,求证:BC =OD .26.(本小题满分12分)如图,已知直线y =kx (k >0)与双曲线8y x=交于A 、B 两点,且点A 的纵坐标为4,第一象限的双曲线上有一点()1,P a ,过点P 作PQ //y 轴交直线AB 于点Q . (1)直接写出k 的值及点B 的坐标:(2)求线段PQ 的长;(3)如果在直线y =kx 上有一点M ,且满足△BPM 的面积等于12,求点M 的坐标.。
河北省石家庄市九年级上学期数学期中试卷附答案解析

12.【答案】 5
【解析】【解答】解:∵数据 2,3,4,x,6 的平均数是 4,
∴〔2+3+4+x+6〕÷5=4, 解得:x=5;
故答案为:5.
【分析】根据用平均数的定义列出算式,再进行计算即可得出答案.
13.【答案】 2
【解析】【解答】解:将 x=﹣3 代入方程
中,
得:2×9+3k﹣24=0,
解得:k=2,
【解析】【分析】 设剪去正方形的边长为 ,那么做成无盖长方体盒子的底面长为
,宽
为
,高为 , 根据矩形的面积计算方法,及长方体盒子侧面积的计算方法,由 长方体
盒子的侧面积为
建立方程,求解并检验即可。
21.【答案】 解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
∴
,
∵DE=40cm=0.4m,EF=30cm=0.3m,AC=1.5m,CD=10m,
∴AB= OA=100m. 故答案为:A.
6【.【分答析案】】先A求出∠AOB 的度数,再由 30°所对的直角边的性质求解即可.
【解析】【解答】解:∵数据 x1 , x2 , …,xn 的方差是 2, ∴由于另一组数据 x1+3,x2+3,…,xn+3 是在原数据根底上每个数据都加上 3, ∴新数据的波动幅度没有发生改变, ∴另一组数据 x1+3,x2+3,…,xn+3 的方差是 2,
根据以上信息,解答以下问题:
〔1〕这个班共有男生________人,共有女生________人; 〔2〕补全初二 1 班体育模拟测试成绩分析表;
〔3〕你认为在这次体育测试中,1 班的男生队、女生队哪个表现更突出一些?并说明理由.〔至少从两个
初中数学 河北省石家庄市赵县九年级数学上学期期中考模拟试卷及答案

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:要使式子有意义,x的取值范围是()A.x>2 B.x≥2 C.x≥﹣2 D.x>﹣2试题2:下列图形中,是中心对称图形的是()试题3:近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A.(1+x)2=2000 B.2000(1+x)2=3600C.(3600﹣2000)(1+x)=3600 D.(3600﹣2000)(1+x)2=3600试题4:已知a<0,那么|﹣2a|可化简为()A.﹣a B.a C.﹣3a D.3a试题5:评卷人得分如图,将正方形图案绕中心O旋转180°后,得到的图案是()试题6:已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1 B.0 C.1 D.2试题7:下列二次根式中,最简二次根式是()A.B.C.D.试题8:下面是某同学在九年级期中测试中解答的几道填空题:(1)若x2=a2,则x=a;(2)方程2x(x﹣1)=x﹣1的根是x=0;(3)若直角三角形的两边长为3和4,则第三边的长为5,其中答案完全正确的题目个数为()A.0 B.1 C.2 D.3试题9:关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0试题10:式子m+6m﹣5m2的值是()A.正数B.负数C.非负数D.可为正数也可为负数试题11:利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,则第二季度共生产零件()A.100万个B.160万个C.180万个D.182万个试题12:如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°试题13:已知a=+2,b=﹣2,则= _________ .试题14:若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为_________ .试题15:将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP′重合,若BP=4,则PP′= _________ .试题16:若x=2﹣,则x2﹣4x+8= _________ .试题17:已知点M(﹣,3m)关于原点对称的点在第一象限,那么m的取值范围是_________ .试题18:小聪用描点法画出了函数的图象F,如图所示.结合旋转的知识,他尝试着将图象F绕原点逆时针旋转90°得到图象F1,再将图象F1绕原点逆时针旋转90°得到图象F2,如此继续下去,得到图象F n.在尝试的过程中,他发现点P(﹣4,﹣2)在图象_________ 上(写出一个正确的即可);若点P(a,b)在图象F127上,则a= _________ (用含b的代数式表示).试题19:当时,求的值.试题20:解方程:x﹣2=x(x﹣2)试题21:阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣,x1x2=.这是一元二次方程根与系数的关系,我们利用它可以用来解题:设x1,x2是方程x2+6x﹣3=0的两根,求x+x的值.解法可以这样:∵x1+x2=﹣6,x1x2=﹣3,则x+x=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.请你根据以上解法解答下题:已知x1,x2是方程x2﹣4x+2=0的两根,求:(1)+的值;(2)(x1﹣x2)2的值.试题22:一个三角形的三边长分别为厘米、厘米、厘米,求三角形的周长和面积.试题23:某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?试题24:已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.试题25:如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.D试题2答案: D试题3答案: D试题4答案: C试题5答案: D试题6答案: A试题7答案: B试题8答案: A试题9答案: B试题10答案: B试题11答案: D试题12答案: C5 .试题14答案:6,10,12 .试题15答案:.试题16答案:14 .试题17答案:m<0 .试题18答案:F2, ).试题19答案:解:原式====,当时,原式==﹣=.试题20答案:.解:原方程可化为:(x﹣2)﹣x(x﹣2)=0(x﹣2)(1﹣x)=0,x﹣2=0或1﹣x=0,解得:x1=1,x2=2.如果没有找到你要的试题答案和解析,请尝试下下面的试题搜索功能。
2019-2020学年河北省石家庄九年级上学期期中考试数学试卷及答案解析

D.200[1+(1+x)+(1+x)2]=1000
8.(3分)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到对应的△A′B′O.若点B的坐标是(﹣2,1),则点B′的坐标是( )
A.(4,﹣2)B.(﹣4,2)C.(2,﹣4)D.(﹣2,4)
A.5B.8C. D.
16.(2分)如图,已知函数y=﹣3x与y 的图象在第二象限交于点A(m,y1),点B(m﹣1,y2)在y 的图象上,且点B在以O点为圆心,OA为半径的⊙O上,则k的值为( )
A. B.﹣1C. D.﹣2
二.填空题(本大题共3小题,共11分.17小题3分;18-19小题各有2个空,每个空2分.把答案写在答题卡相应题号中的横线上)
25.(10分)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.
(1)求证:PB是⊙O的切线;
(2)求证:E为△PAB的内心;
(3)若cos∠PAB ,BC=1,求PO的长.
26.(12分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.
11.(2分)若关于x的方程x2 x+sina=0有两个相等的实数根,则锐角a为( )
A.75°B.60°C.45°D.30°
12.(2分)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是( )
A.60πcm2B.65πcm2C.120πcm2D.130πcm2
13.(2分)如图,三角形纸片ABC的周长为22cm,BC=6cm,⊙O是△ABC的内切圆,玲玲用剪刀在⊙O的左侧沿着与⊙O相切的任意一条直线MN剪下一个△AMN,则△AMN的周长是( )
2019-2020学年度第一学期期中考试(九年级数学)

2019-2020学年度第一学期期中考试(九年级数学)(分值120分考试时间:120分钟)一、选择题:本题共10小题,共30分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
1. 如图所示的几何体的主视图是()2. 下列说法正确的是( )A. 矩形都是相似图形B. 菱形都是相似图形C. 各边对应成比例的多边形是相似多边形D. 等边三角形都是相似三角形3.已知反比例函数的图象经过点(2.-3),那么下列四个点中,也在这个函数图象上的是()A. (-6,-1)B. (-2,-3)C. (3,-2)D. (1,6)4. 在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5. 反比例函数图象上有三个点,,,其中,则,,的大小关系是()A. B. C. D.6. 函数与在同一坐标系内的图像可以是A. B. C. D.7. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A. B. C. D.8. 如图,在矩形ABCD中,,,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么∠的值是 A. B. C. D.( 第7题) ( 第8题) ( 第9题)9. 在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为 米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为 米,一级台阶高为 米,如图所示,若此时落在地面上的影长为 米,则树高为( )A. 米B. 7米C. 8米D. 12米10. 如图,正方形ABCD 的边长是3, ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论: ; ;四边形 ; 当 时, ∠,其中正确结论的个数是( )A. 1 B. 2 C. 3 D. 4二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 反比例函数,在每个象限内,y 随x 的增大而增大,则m 的值是______.12. 已知0)tan 3(21sin 2=-+-B A ,那么∠A+∠B= . 13. 如图, 中,D 、E 分别是AB 、AC 上的点 不平行 ,若使 与 相似,则需要添加______即可 只需添加一个条件 .14. 如图是拦水坝的横断面,斜坡 AB 的水平宽度为 12 米,斜面坡度为 1:2,则斜坡AB 的长 为 米( 第13题 ) ( 第14题 ) ( 第15题 )15. 如图△ABC 三个顶点的坐标分别为 A (2,2)、B (4,0)、C (6,4),以原点为中心,将△ABC 缩小,位似比为 1:2,则线段 AC 的中点 P 变换后对应点的坐标 .(第16题)(第17题) (第18题)16. 如图,在圆桌的正上方有一盏吊灯在灯光下,圆桌在地板上的投影是面积为π的圆已知圆桌的高度为,圆桌面的半径为1 m,则吊灯距圆桌面的高度为m.17. 如图,在△ABC 中,D、E 分别是 AB、BC 上的点,且 DE∥AC,若 S△BDE:S△CDE=1:4,则 S△BDE:S△ACD=.18. 如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (8分) (1) -2sin45°+||-()-2+()0.(2) +|2-8|-()-1-2cos30°.20.(8分)如图,在ABC中,∠A=30°,cos B=,AC=6.求AB的长.21.(8分)如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx+b-=0的解;(3)求AOB的面积;(4)观察图象,直接写出不等式kx+b-<0的解集.22.(8分)如图,在▱ABCD中过点A作AE DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:ABF∽ BEC;(2)若AD=5,AB=8,sin D=,求AF的长.23.(9分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)24.(9分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=5,AB=7,求的值.25.(12分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:AEF∽ ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?答案和解析一、选择题1.【答案】B2.【答案】D【解析】解:A、正方形是特殊的矩形,所以矩形不都是相似图形,故本选项错误;B、菱形的内角度数不定,所以菱形不都是相似图形,故本选项错误;C、菱形和正方形可以满足边长对应成比例,但不是相似图形,故本选项错误;D、等边三角形都是相似三角形,故本选项正确.故选D.根据相似图形的三条特点相似图形的形状必须完全相同;相似图形的大小不一定相同;两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况,结合选项即可判断出答案.本题考查了相似图形的定义,属于基础题,解答本题的关键是掌握相似图形的定义和特点.3.【答案】B【解析】解:反比例函数的图象经过点,反比例函数解析式为:当时,,则选项A错误;当时,,则选项B错误;当时,,则选项C正确;当时,则选项D错误;故选:B.由题意可求反比例函数解析式,将选项中点的坐标代入可求解.本题考查反比例函数图象上点的坐标特征,熟练掌握函数图象上点的坐标满足函数图象的解析式是本题的关键.4. 【答案】B【解析】【分析】本题考查了锐角三角函数的定义,勾股定理的应用,根据勾股定理列式求出BC,再根据锐角的正弦等于对边比斜边列式即可得解.【解答】解:如图,,,.故选B.5. 【答案】D【解析】【分析】此题主要考查了反比例函数的性质,熟练地应用反比例函数的性质是解决问题的关键.利用,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,分别分析即可得出答案.【解答】解:,每一象限,y随x的增大而减小,,,,,.故选D.6.【答案】B【解析】【分析】此题考查了一次函数和反比例函数的图象与性质,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:由函数的图象可知,由函数的图象可知,相矛盾,故A错误;B.由函数的图象可知,由函数的图象可知,故B正确;C.由函数的图象可知,由函数的图象可知,相矛盾,故C错误;D.由函数的图象可知,由函数的图象可知,相矛盾,故D错误.故选B.7.【答案】B【解析】【分析】本题考查由三视图判断几何体的形状和圆锥侧面积的计算,解题的关键是先运用勾股定理求到圆锥的母线长是2,然后根据圆锥侧面积的公式即可得到答案.【解答】解:该几何体是一个底面直径为2,高为的圆锥,可得圆锥母线长为故这个几何体的侧面积为2,故选B.8.【答案】A【解析】【分析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了矩形的性质和勾股定理先根据矩形的性质得,,再根据折叠的性质得,,在中,利用勾股定理计算出,则,设,则,然后在中根据勾股定理得到,解方程即可得到x,进一步得到EF的长,再根据余弦函数的定义即可求解.【解答】解:四边形ABCD为矩形,,,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,,,在中,,,设,则在中,,,解得,,∠.故选A.9.【答案】C【解析】【分析】本题考查了相似三角形的应用,难点在于把大树的影长分成三段求出假设都在地面上的长度,作出图形更形象直观作出图形,先根据同时同地物高与影长成正比求出台阶的高落在地面上的影长EH,再求出落在台阶上的影长在地面上的长,从而求出大树的影长假设都在地面上的长度,再利用同时同地物高与影长成正比列式计算即可得解.【解答】解:如图,,,,,米,故选C.10.【答案】B【解析】解:四边形ABCD是正方形,,,,, 在与∠∠, 中,∠∠, ≌ ,, ,,,故正确;,,∠∠,∽ ,,即,,,,,故错误;在与中,∠∠∠∠,≌ ,,,在与中,∠∠,≌ ,,即四边形,故正确;,,,∽ ,,,,∠∠,∠∠,∽ ,,即∠,故错误,故选:B.由四边形ABCD是正方形,得到,,根据全等三角形的性质得到∠∠,根据余角的性质得到;根据相似三角形的性质得到,由,得到;根据全等三角形的性质得到,,于是得到,即;根据相似三角形的性质得到,求得,根据 ∽ ,即可得到四边形,进而得到结论.本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义的综合运用,熟练掌握全等三角形、相似三角形的判定和性质是解题的关键.二、填空题:11.【解析】解:根据题意得:,解得:.故答案为.根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.本题考查了反比例函数的性质对于反比例函数,当时,在每一个象限内,函数值y随自变量x的增大而减小;当时,在每一个象限内,函数值y随自变量x的增大而增大.12.【答案】90 013.【解析】解:∠是公共角,如果∠∠或∠∠,∽ ;如果,∠∠,∽ ,故答案为:∠∠或∠∠或.根据相似三角形判定定理:两个角相等的三角形相似;夹角相等,对应边成比例的两个三角形相似,即可解题.本题主要考查相似三角形的判定,掌握相似三角形的判定方法是解题的关键,即有两组角对应相等的三角形相似,三边对应成比例的两个三角形相似,两组边对应成比例且夹角相等的两个三角形相似.14.【答案】【解析】【分析】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解根据斜面坡度为1:2,斜坡AB的水平宽度为12米,可得,,然后利用勾股定理求出AB的长度.【解答】解:斜面坡度为1:2,,,则.故答案为.15.【答案】或【解析】【分析】本题考查了位似变换,坐标与图形性质,熟练掌握位似变换的性质是解题的关键,难点在于点P的对应点有两种情况,作出图形更形象直观分缩小后的三角形在第一象限和第三象限两种情况,根据网格结构分别找出点A、B、C的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点P的坐标.【解答】解:如图,,,点P的坐标为,以原点为位似中心将缩小位似比为1:2,线段AC的中点P变换后的对应点的坐标为或故答案为或16.【答案】【解析】【分析】题考查了相似三角形的应用,先通过投影的面积得出投影半径,再根据相似三角形边长的相似比,代入已知的圆桌高度,即可求得吊灯距离桌面的高度,此题中得出相似比的关系是解题关键.【解答】解:投影的面积为,投影的半径,,∽,圆桌高度,解得.吊灯距圆桌面的高度为故答案为17.1:20【分析】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用的面积表示出的面积是解题的关键设的面积为a,表示出的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出和相似,根据相似三角形面积的比等于相似比的平方求出的面积,然后表示出的面积,再求出比值即可.【解答】解:::4,设的面积为a,则的面积为4a,和的点D到BC的距离相等,,,∥,∽ ,::25,,:::20.18.【解析】解:设反比例函数解析式为,一次函数解析式为,将点代入中,得,反比例函数解析式为,将点、代入中,得,解得,一次函数解析式为.设点P的坐标为,则四边形矩形矩形,四边形PMON面积的最大值是.设反比例函数解析式为,一次函数解析式为,根据点的坐标利用待定系数法求出反比例与一次函数的解析式,再利用分割图形求面积法找出四边形关于m的函数关系式,利用配方法解决最值问题.本题考查了待定系数法求函数解析式以及反比例函数与一次函数交点的问题,解题的关键是找出关于m的函数关系式本题属于中档题,难度不大,利用分割图形求面积法是解题的关键.四边形三、解答题19【答案】(1)解:原式.19.【答案】解:.【解析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握特殊角的三角函数值、负整数指数幂、二次根式、绝对值等考点的运算.20.【答案】解:如图,过点C作于点D.在中,,,,在中,,设,...,.【解析】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于基础题如图,过点C作于点分别在,中,求出AD,DB即可.21.【答案】解:在上,.反比例函数的解析式为.点在上,..经过,,.解得:.一次函数的解析式为.,是一次函数的图象和反比例函数的图象的两个交点,方程的解是,.当时,.点..;不等式的解集为或.【解析】把代入反比例函数得出m的值,再把代入一次函数的解析式,运用待定系数法分别求其解析式;经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;先求出直线与x轴交点C的坐标,然后利用进行计算;观察函数图象得到当或时,一次函数的图象在反比例函数图象上方,即使.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.22.【答案】证明:四边形ABCD是平行四边形,∥,∥,,,∠∠,,∠∠,∽ ;解:,∥,,在中,,在中,根据勾股定理得:,,由得: ∽ ,,即,解得:.【解析】由平行四边形的性质得出∥,∥,,得出,∠∠,证出∠∠,即可得出结论;由三角函数求出AE,由勾股定理求出BE,再由相似三角形的性质求出AF的长.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.23.【答案】解:过B作于G,中,∠,,;,,,四边形BHEG是矩形.由得:,,,中,,.中,,,..答:宣传牌CD高约米.【解析】过B作DE的垂线,设垂足为分别在中,通过解直角三角形求出BH、AH;在解直角三角形求出DE的长,进而可求出EH即BG的长,在中,,则,由此可求出CG的长然后根据即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.24.【答案】证明:平分∠,∠∠,又,∽ ,::AB,.证明:为AB的中点,,,∠∠,∠∠,∠∠,∥;解:∥,∽ ,::CF,,,,,,.【解析】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质,利用直角三角形斜边上中线的性质得到是解题的关键.由AC平分∠,,可证得 ∽ ,然后由相似三角形的对应边成比例,证得;由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得,继而可证得∠∠,得到∥;易证得 ∽ ,然后由相似三角形的对应边成比例,求得的值.25.【答案】解:四边形EGFH为正方形,∥,∽ ;设正方形零件的边长为x mm,则,,∥,∽ ,,,,解得.答:正方形零件的边长为48mm.设,,∽,矩形面积故当时,此时矩形的面积最大,最大面积为.【解析】根据正方形的对边平行得到∥,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”判定即可.设正方形零件的边长为xmm,则,,根据∥,得到 ∽ ,根据相似三角形的性质得到比例式,解方程即可得到结果;根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.。
2019-2020学年九年级数学上学期期中B卷(河北)(考试版)【测试范围:冀教版九上全册】

数学试题 第1页(共6页) 数学试题 第2页(共6页)2019-2020学年上学期期中B 卷九年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版九上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.已知方程22(2)(2)30mm x m x --+++=是关于x 的一元二次方程,则m =A .2±B .2C .–2D .02.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是 A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶43.已知两个相似三角形的周长比为4:9,则它们的面积比为 A .4:9B .2:3C .8:18D .16:814.方程2230x x +-=的解是 A .1或–3B .3C .–3D .15.如图,在⊙O 中,弧AB =弧AC ,∠A =36°,则∠C 的度数为A .44°B .72°C .62°D .54° 6.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别是 A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.707.如图,⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,则⊙O 的半径长为A .3cmB .4cmC .5cmD .6cm8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,此刻与他相邻的一棵树的影长为3.6米,则这棵树的高度为 A .4.8米B .4米C .4.2米D .2.7米9.若方程x 2+9x –a =0有两个相等的实数根,则 A .81a =B .81a =-C .814a =D .814a =-10.如图,已知第一象限内的点A 在反比例函数2x 上,第二象限的点B 在反比例函数y =kx上,且OA ⊥OB ,sin Bk 的值为A .12-B .1-C .3-D .4-11.在反比例函数2y x=-图象上有两个点A 11(,)x y ,B 22(,)x y ,若120x x <<,则下列结论正确的是 A .120y y <<B .120y y <<C .210y y <<D .210y y <<12.在Rt △ABC 中,∠C =90°,sin A =45,则cos B 的值等于数学试题 第3页(共6页) 数学试题 第4页(共6页)A .35B .45C .34D13.如图,O 是ABC △的外接圆,连接OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠=,则ACB ∠的度数为A .50B .45C .40D .3014.ABC △与A'B'C'△是位似图形,且ABC △与A'B'C'△的位似比是1:2,已知ABC △的面积是3,则A'B'C'△的面积是 A .3 B .6C .9D .1215.在方差的计算公式222212101[(20)(20)(20)]10s x x x =-+-+⋅⋅⋅+-中,数字10和20分别表示的意义可以是A .数据的个数和方差B .平均数和数据个数C .数据的个数和平均数D .数据的方差和平均数16.已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tan α的值等于A .23B .34C .43D .32第Ⅱ卷二、填空题(本大题共3小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.如图,梯形ABCD 中,AD ∥BC ∥EF ,AE ∶EB =2∶3,AD =12,则BC =18,则EF =__________.18.已知方程x 2+2x +a –2=0的两根为x 1,x 2,且x 1=1,则a =__________,x 2=__________. 19.如图,点A ,B 是反比例函数y =k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA 、BC ,已知点C (2,0),BD =3,S △BCD =3,则k 的值为__________,S △AOC 为__________.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解方程:(1)240x x -=;(2)x 2+3x +1=0.21.(本小题满分9分)如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD .(1)求证:BC =BD ;(2)已知CD =6,OH =2,求圆O 的半径长.22.(本小题满分9分)如图,在Rt ABC △中,90C ∠=︒,点D 是BC 边上的一点,6CD =,3cos 5ADC ∠=,2tan 3B =. (1)求AC 和AB 的长;(2)求sin BAD ∠的值.23.(本小题满分9分)东台市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2017年投资1000万元,预计2019年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(3)若OE=BE,求∠AGC的度数.Array(2)按此增长率,计算2020年投资额能否达到1360万?24.(本小题满分10分)为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨)并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计市直机关500户家庭中平均用水量不超过12吨的约有多少户?26.(本小题满分12分)如图,AB为⊙O的直径,弦CD⊥AB于点E,点G是AD上一点,连接AG,CG.(1)在不添加辅助线的前提下直接写出图中与∠AGC相等的角,不用证明;(2)求证:当AB∥DG时,△ACG与△EAC相似;数学试题第5页(共6页)数学试题第6页(共6页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石家庄市赵县2019-2020学年九年级上期中数学试卷及答案届九年级(上)期中数学试卷
一、选择题(每小题3分,共36分)
1.要使式子有意义,x的取值范围是()
3.近年来,全国房价不断上涨,某年4月份的房价平均每平方米为3600元,比年同期的房价平均每平方米上涨了2000元,假设这两年该房价的平均增长率均为x,则关于x的方
,那么|﹣
2
B
方程2x(x﹣1)=x﹣1的根是x=0;(3)若直角三角形的两边长为3和4,则第三边的长
10.式子m+6m﹣5m2的值是()
位置,使得CC′∥AB,则∠BAB′=()
二、填空题(每小题4分,共24分)
13.已知a=+2,b=﹣2,则=_________.
14.若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为
_________.
15.将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP′重合,若BP=4,则PP′=
_________.
16.若x=2﹣,则x2﹣4x+8=_________.
17.已知点M(﹣,3m)关于原点对称的点在第一象限,那么m的取值范围是
_________.
18.小聪用描点法画出了函数的图象F,如图所示.结合旋转的知识,他尝试着将图象F绕原点逆时针旋转90°得到图象F1,再将图象F1绕原点逆时针旋转90°得到图象F2,如此继续下去,得到图象F n.在尝试的过程中,他发现点P(﹣4,﹣2)在图象
_________上(写出一个正确的即可);若点P(a,b)在图象F127上,则a=
_________(用含b的代数式表示).
三、解答题(本大题共60分)
19.(5分)(•承德一模)当时,求的值.
20.(5分)解方程:x﹣2=x(x﹣2)
21.(10分)阅读材料:
如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣,x1x2=.
这是一元二次方程根与系数的关系,我们利用它可以用来解题:
设x1,x2是方程x2+6x﹣3=0的两根,求x+x的值.
解法可以这样:∵x1+x2=﹣6,x1x2=﹣3,则x+x=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×
(﹣3)=42.
请你根据以上解法解答下题:
已知x1,x2是方程x2﹣4x+2=0的两根,求:
(1)+的值;
(2)(x1﹣x2)2的值.
22.(10分)一个三角形的三边长分别为厘米、厘米、厘米,求三角形的周长和面积.
23.(10分)(•上二模)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
24.(10分)已知关于x的方程.
(1)如果此方程有两个不相等的实数根,求m的取值范围;
(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.
25.(10分)(•荆州)如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
参考答案
一、选择题(每小题3分,共36分)
1.D
2.D
3.D
4.C
5.D
6.A
7.B
8.A
9.B
10.B
11.D
12.C
二、填空题(每小题4分,共24分)
13.5.
14.6,10,12.
15..
16. 14.
17.m<0.
18.F
2,).
解:原式=
=,
==
1+x2=4,x1x2=2,
∴+===2;
2
2122
=2,=2=4,
+2+4
)),(
))(
∴三角形的面积为××
×2
×=9
此时方程为x2+3x+=0,
x=
∴方程的根为x1=,x2=.
=
,。