【压轴卷】九年级数学上期中试卷含答案
九年级上册压轴题数学考试试卷精选含详细答案

九年级上册压轴题数学考试试卷精选含详细答案一、压轴题1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.2.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.3.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C .(1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n(0<n<2)个单位,点B、C′平移后对应的点分别记为B′、C″,是否存在n,使得四边形OB′C″A的周长最短?若存在,请直接写出n的值和抛物线平移的方向,若不存在,请说明理由.4.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.5.如图,A是以BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA 的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线;(3)若FG=EF=3,求圆O的半径和BD的长度.6.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④.(探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.7.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x ⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标;(2)线段DE 的长用含m 的式子表示为 ;(3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.8.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.9.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点,O B 重合).(1)如图①,当1OP =时,求点P 的坐标;(2)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '与OAB 重叠部分为四边形,,O P O Q ''分别与边AB 相交于点,C D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '与OAB 重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).10.直线m ∥n ,点A 、B 分别在直线m ,n 上(点A 在点B 的右侧),点P 在直线m 上,AP =13AB ,连接BP ,将线段BP 绕点B 顺时针旋转60°得到BC ,连接AC 交直线n 于点E ,连接PC ,且ABE 为等边三角形.(1)如图①,当点P 在A 的右侧时,请直接写出∠ABP 与∠EBC 的数量关系是 ,AP 与EC 的数量关系是 .(2)如图②,当点P 在A 的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P 在A 的左侧时,若△PBC 的面积为934,求线段AC 的长.11.如图,在平面直角坐标系中,以原点O 为中心的正方形ABCD 的边长为4m ,我们把AB y ∥轴时正方形ABCD 的位置作为起始位置,若将它绕点O 顺时针旋转任意角度α时,它能够与反比例函数(0)k y k x=>的图象相交于点E ,F ,G ,H ,则曲线段EF ,HG 与线段EH ,GF 围成的封闭图形命名为“曲边四边形EFGH”.(1)①如图1,当AB y ∥轴时,用含m ,k 的代数式表示点E 的坐标为________;此时存在曲边四边形EFGH ,则k 的取值范围是________;②已知23k m =,把图1中的正方形ABCD 绕点O 顺时针旋转45º时,是否存在曲边四边形EFGH ?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD 绕点O 顺时针旋转任意角度α时,直接写出使曲边四边EFGH 存在的k 的取值范围.③若将图1中的正方形绕点O 顺时针旋转角度()0180a a ︒<<︒得到曲边四边形EFGH ,根据正方形和双曲线的对称性试探究四边形EFGH 是什么形状的四边形?曲边四边形EFGH 是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD 绕点O 顺时针旋转到如图2位置,已知点A 在反比例函数(0)k y k x=>的图象上,AB 与y 轴交于点M ,8AB =,1AM =,试问此时曲边四边EFGH 存在吗?请说明理由.12.如图,⊙O 经过菱形ABCD 的三个顶点A 、C 、D ,且与AB 相切于点A .(1)求证:BC 为⊙O 的切线;(2)求∠B 的度数.(3)若⊙O 半径是4,点E 是弧AC 上的一个动点,过点E 作EM ⊥OA 于点M ,作EN ⊥OC 于点N ,连接MN ,问:在点E 从点A 运动到点C 的过程中,MN 的大小是否发生变化?如果不变化,请求出MN 的值;如果变化,请说明理由.13.如图①,在ABC 中,AB AC =,BAC α∠=,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE ,点M 、P 、N 分别为DE 、BE 、BC 的中点.(1)观察猜想:图①中,线段PM 与PN 的数量关系是_____________,用含α的代数式表示MPN ∠的度数是________________________;(2)探究证明:把ADE 绕点A 顺时针方向旋转到图②的位置,连接MN ,BD ,CE ,当120α=︒时,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内任意旋转,若90α=︒,3AD =,7AB =,请直接写出线段MN 的最大值和最小值.14.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数);()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少? (3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).15.如图1,与为等腰直角三角形,与 重合,,.固定,将绕点顺时针旋转,当边与边重合时,旋转终止.现不考虑旋转开始和结束时重合的情况,设(或它们的延长线)分别交(或它们的延长线)于点,如图2. (1)证明:;(2)当为何值时,是等腰三角形?16.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.17.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.18.如图,已知矩形ABCD 中,AB=8,AD=6, 点E 是边CD 上一个动点,连接AE ,将△AED 沿直线AE 翻折得△AEF.(1) 当点C 落在射线AF 上时,求DE 的长;(2)以F 为圆心,FB 长为半径作圆F ,当AD 与圆F 相切时,求cos ∠FAB 的值;(3)若P 为AB 边上一点,当边CD 上有且仅有一点Q 满∠BQP=45°,直接写出线段BP 长的取值范围.19.如图,在直角ABC ∆中,90C ∠=︒,5AB =,作ABC ∠的平分线交AC 于点D ,在AB 上取点O ,以点O 为圆心经过B 、D 两点画圆分别与AB 、BC 相交于点E 、F (异于点B ).(1)求证:AC 是O 的切线;(2)若点E 恰好是AO 的中点,求BF 的长;(3)若CF 的长为34. ①求O 的半径长;②点F 关于BD 轴对称后得到点F ',求BFF '∆与DEF '∆的面积之比.20.在平面直角坐标系xOy 中,函数1F 和2F 的图象关于y 轴对称,它们与直线(0)x t t =>分别相交于点,P Q .(1)如图,函数1F 为1y x =+,当2t =时,PQ 的长为_____; (2)函数1F 为3y x=,当6PQ =时,t 的值为______; (3)函数1F 为2(0)y ax bx c a =++≠,①当b t b=时,求OPQ △的面积; ②若0c >,函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,当1c x c ≤≤+时,设函数1F 的最大值和函数2F 的最小值的差为h ,求h 关于c 的函数解析式,并直接写出自变量c 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥; (2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =, ()ABD ACE SAS ∴∆≅∆, ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠, MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=,在Rt ABC ∆中,10AB AC ==,52AN =MN ∴=最大22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=, 7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 2.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】 【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
【精品】人教版九年级数学中考压轴试题(含答案解析)

【精品】人教版九年级数学中考压轴试题(含答案)1.(8分)如图,已知Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上的一点(不与A、B重合).过点B作BE⊥CD,垂足为E.将线段CE绕点C顺时针旋转90°,得到线段CF,连结EF.设∠BCE度数为α.(1)①补全图形.②试用含α的代数式表示∠CDA.(2)若=,求α的大小.(3)直接写出线段AB、BE、CF之间的数量关系.【分析】(1)①根据要求画出图形即可;②利用三角形的外角的性质计算即可;(2)只要证明△FCE∽△ACB,可得==,Rt△CFA中,∠CFA=90°,cos∠FCA=,推出∠FCA=30°,即α=30°.(3)在Rt△ABC,和Rt△CBE中,利用勾股定理即可解决问题;【解答】解:(1)①补全的图形如图所示:②∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∴∠CDA=∠DBC+∠BCD=45°+α.(2)在△FCE和△ACB中,∠CFE=∠CAB=45°,∠FCE=∠ACB=90°,∴△FCE∽△ACB,∴=∵=∴=连结FA,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠BCE=α,在Rt△CFA中,∠CFA=90°,cos∠FCA=∴∠FCA=30°,即α=30°.(3)结论:AB2=2CF2+2BE2.理由:∵AB2=AC2+BC2=2BC2,BC2=CE2+BE2=CF2+BE2,∴AB2=2CF2+2BE2.【点评】本题考查相似三角形综合题、相似三角形的判定和性质、等腰直角三角形的性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.2.(8分)已知在平面直角坐标系xOy中的点P和图形G,给出如下的定义:若在图形G上存在一点Q,使得P、Q之间的距离等于1,则称P为图形G的关联点.(1)当⊙O的半径为1时,①点P1(,0),P2(1,),P3(0,3)中,⊙O的关联点有P1,P2.②直线经过(0,1)点,且与y轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标x的取值范围.(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r的取值范围.【分析】(1)①利用两圆的位置关系即可判断;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式即可得到结论;(2)根据关联点的定义求出圆的半径r的最大值与最小值即可解决问题;【解答】解:(1)①∵点P1(,0),P2(1,),P3(0,3)∴OP1=,OP2=2,OP3=3,∴半径为1的⊙P1与⊙O相交,半径为1的⊙P2与⊙O相交,半径为1的⊙P3与⊙O相离1,∴⊙O的关联点是P1,P2;故答案为:P1,P2;②如图,以O为圆心,2为半径的圆与直线y=1交于 P1,P2两点.线段P1,P2上的动点P(含端点)都是以O为圆心,1为半径的圆的关联点.故此﹣≤x≤.(2)由已知,若P为图形G的关联点,图形G必与以P为圆心1为半径的圆有交点.∵正方形ABCD边界上的点都是某圆的关联点,∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,2﹣1 为半径的圆.综上所述,2﹣1≤r≤3.【点评】本题考查一次函数综合题、圆、正方形的有关性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(5分)如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 4 3.5 3.2 2.8 2.1 1.4 0.7 0补全上面表格,要求结果保留一位小数.则t≈ 2.9 .(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为2.3 cm.【分析】(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.【解答】解:(1)根据题意量取数据为2.9故答案为:2.9(2)根据已知数据描点连线得:(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3【点评】本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.4.(7分)已知抛物线:y=mx2﹣2mx+m+1(m≠0).(1)求抛物线的顶点坐标.(2)若直线l1经过(2,0)点且与x轴垂直,直线l2经过抛物线的顶点与坐标原点,且l1与l2的交点P在抛物线上.求抛物线的表达式.(3)已知点A(0,2),点A关于x轴的对称点为点B.抛物线与线段AB恰有一个公共点,结合函数图象写出m的取值范围.【分析】(1)利用配方法把解析式配成顶点式即可得到抛物线的顶点坐标;(2)先确定P点坐标,然后把P点坐标代入y=mx2﹣2mx+m+1求出m 即可;(3)分别把A、B点的坐标代入y=mx2﹣2mx+m+1求出对应的m的值,然后根据二次函数的性质确定满足条件的m的范围.【解答】(1)解:∵y=mx2﹣2mx+m+1=m(x﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)易得直线l2的表达式为y=x,当x=2时,y=x=2,则P(2,2),把P(2,2)代入y=mx2﹣2mx+m+1得4m﹣4m+m+1=2,解得m=1,∴抛物线解析式为y=x2﹣2x+2;(3)点A(0,2)关于x轴的对称点B的坐标为(0,﹣2),当抛物线过A(0,2)时,把A(0,2)代入y=mx2﹣2mx+m+1得m+1=2,解得m=1,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,0<m≤1;当抛物线过B(0,﹣2)时,把B(0,﹣2)代入y=mx2﹣2mx+m+1得m+1=﹣2,解得m=﹣3,结合图象可知,当抛物线开口向上且和线段AB恰有一个公共点时,﹣3≤m<0;综上所述,m的取值范围是 0<m≤1或﹣3≤m<0.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.5.(5分)如图,AB是⊙O的直径,C、D是⊙O上两点, =.过点B作⊙O的切线,连接AC并延长交于点E,连接AD并延长交于点F.(1)求证:AC=CE.(2)若AE=8,sin∠BAF=求DF长.【分析】(1)连接BC,想办法证明AC=BC,EC=BC即可解决问题;(2)首先证明∠DBF=∠BAF,可得sin∠BAF=sin∠DBF==,由此即可解决问题;【解答】(1)证明:连结BC.∵AB是的直径,C在⊙O上∴∠ACB=90°,∵=,∴AC=BC∴∠CAB=45°.∵AB是⊙O的直径,EF切⊙O于点B,∴∠ABE=90°,∴∠AEB=45°,∴AB=BE,∴AC=CE.(2)在Rt△ABE中,∠ABE=90°,AE=8,AE=BE ∴AB=8,在Rt△ABF中,AB=8,sin∠BAF=,解得:BF=6,连结BD,则∠ADB=∠FDB=90°,∵∠BAF+∠ABD=90°,∠ABD+∠DBF=90°,∴∠DBF=∠BAF,∵sin∠BAF=,∴sin∠DBF=,∴=,∴DF=.【点评】本题考查切线的性质、圆周角定理、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.8.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.9.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.10.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.11.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A (﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P 关于直线y=t的对称点为点Q,若点Q落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.。
人教版九年级上学期期中考试数学试卷及答案解析(共6套)

人教版九年级上学期期中考试数学试卷(一)一.选择题1、下列关于 X 的方程:①ax2+bx+c=0:②x'+ •!二6;③x—0;④x=3x2(5)(x+l )(x・1) =XMX中,一元二次方程的个数是()A、1个B、2个C、3个D、4个2、下列标志既是轴对称图形乂是中心对称图形的是()©c©D⅛⅛3、已知关于X的一元二次方程(a - 1) X2 - 2x÷l=0有两个不相等的实数根,则a的取值范围是()A、a>2B、a<2C、a<2 且D、&V ・ 24、若(2, 5)、(4, 5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()B、x=lC、x=2DX x=33、一个等腰三角形的两条边长分别是方程X2 - 7x÷10=0的两根,则该等腰三角形的周长是()A、12B、9C、13D、12 或 96、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD ±修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm',那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()B、(30 - 2x) (20 - 2x) =78C、(30∙2x) (20 ・ x) =6X78D、(30∙2x) (20 ・ 2x)二6X787、如图,∆ABC为OO的内接三角形,ZAOB=IOO o ,则ZACB的度数为(C、150°D、160°8、如图,在OO中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、 AB丄CDB、ZAOB=4 ZACDC、AD= BDD、 Po二PD9、已知抛物线y二∙x'+2x∙3,下列判断正确的是()A、开口方向向上,y有最小值是・2B、抛物线与X轴有两个交点C、顶点坐标是(■ 1, -2)D、当x<l时,y随X增大而增大10、有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A、4个B、3个C、2个D、1个11、将抛物线y二3x:向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A、y=3 (x+2)2+3B、y二3 (X ・ 2)2+3C、y二3 (x+2)2- 3D、y二3 (x・2)2- 312、下列说法正确的是()A、弦是直径B、平分弦的直径垂直弦C、长度相等的两条弧是等弧D、圆的对称轴有无数条,而对称中心只有一个13、已知抛物线y=a X=+bx+c的开口向下,顶点坐标为(2,・3),那么该抛物线有()A、最小值・3B、最大值・3C、最小值2D、最大值2二、填空题14、钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了 _______ 度.15、___________________________________________ 一元二次方程x'・4x+6二O实数根的悄况是_____________________________ .16、如图,在RtΔABC 中,ZBAC二90° , ZB二60° , ΔAB, C,可以由 AABC 绕点A顺时针旋转90°得到(点B'与点B是对应点,点C'与点C是对应点), 连接CC',则ZCC' B'的度数是____________ .17、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、18、已知二次函数y=aX=+bx+c的图象如图所示,有下列5个结论,Φabc<0;②2a+b=0:③b'∙4dc<0;④d+b+c>O;⑤a - b+c<O.其中正确的结论有20、某商店四月份的利润为6. 3万元,此后两个月进入淡季,利润均以相同的白分比下降,至六月份利润为5. 4万元.设下降的白分比为X,由题意列出方程21、__________________________________________________________ 已知In 是关于X的方程X2 - 2X- 3=0的一个根,则2m: - 4m= _______________ •22、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有_______ (填序号)23、如图所示:点M、G、D在半圆O上,四边形OEDF. HMNo均为矩形,EF二b,NH=c,则b与C之间的大小关系是b ________ C (填<、二、>)三.解下列方程24、解下列方程(1)X2÷6X - 1=0(2)(2x+3) 2 - 25=0.四、解答题25、在方格纸上建立如图所示的平面直角坐标系,将AABO绕点0按顺时针方向旋转90° ,得ZU' B Z 0.(1)画岀旋转后的图形;(2)写出点A' , B,的坐标.26、如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm, 水的最大深度为2c∏b求该输水管的半径是多少?27、如图,在RtΔABC中,ZACB二90, AD平分ZBAC,过A, C, D三点的圆与斜边AB交于点E,连接DE.(2)若AC=6, CB=8,求Z∖ACD的外接圆的直径.28、如图,已知抛物线与X交于A ( - 1, 0)、E (3, 0)两点,与y轴交于点B(1)求抛物线的解析式:(2)设抛物线顶点为D,求四边形AEDB的面积.29、某体育用品丿占购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为X(X$60)元,销售量为y套.(1)求出y与X的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?答案解析部分—、<b >选择题〈/b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:①当沪O时,ax2+bx+c=0不是一元二次方程;②X2+ ≥=6 是分式方程;③x'=()是一元二次方程;④x=3x'是一元二次方程⑤(x÷l) (x・1) =X Mx,整理后不含X的二次项,不是一元二次方程.故选:B.【分析】依据一元二次方程的定义求解即可.2、【答案】A【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【分析】根据中心对称图形与轴对称图形的概念判断即可.3、【答案】C【考点】根的判别式【解析】【解答】解:△二4 - 4 (a - 1)二8 ・ 4a>0得:a<2.又a・l≠0Λa<2 且 &H1.故选C.【分析】利用一元二次方程根的判别式列不等式,解不等式求出&的取值范围. 4、【答案】D【考点】二次函数的性质【解析】【解答】解:因为点(2, 5)、(4, 5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴X=故选D.【分析】由已知,点(2, 5)、(4, 5)是该抛物线上关于对称轴对称的两点, 所以只需求两对称点横坐标的平均数.5、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质【解析】【解答】解:X2- 7x÷10=0,(X ・ 2) (x ・ 5) =0,X ・ 2=0, X ・ 5=0,Xι~2, x:=o >①等腰三角形的三边是2, 2, 5V2+2<5,・・・不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2, 5, 5,此时符合三角形三边关系定理,三角形的周长是 2+5+5二12;即等腰三角形的周长是12.故选:A.【分析】求出方程的解,即可得出三角形的边长,再求出即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设道路的宽为xm,由题意得:(30 ・ 2x) (20 ・ x)二6X78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30∙2x) m, 宽为(20・x) m.根据长方形面积公式即可列方程(30・2x) (20・x)二6X78. 7、【答案】B【考点】圆周角定理【解析】【解答】解:在优弧AB上取点D,连接AD, BD,V ZAOB=IOO O ,Λ ZD= 4 ZAOB=50° ,・•・ZACB=I80° ・ ZD二130° .【分析】首先在优弧AB上取点D,连接AD, BD,然后由圆周角定理,求得ZD 的度数,乂山圆的内接四边形的性质,求得ZACB的度数.8、【答案】D【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:TP是弦AB的中点,CD是过点P的直径,・・・AB丄CD,兄沪云方,ZiAOB是等腰三角形,・•・ ZAoB二 2 ZAOP,Y ZAOP二 2 ZACD,・•・ ZAoB二 2 ZAOP二2 × 2 ZACD二4 ZACD.故选D.【分析】根据垂径定理及圆周角定理可直接解答.9、【答案】D【考点】二次函数的性质【解析】【解答】解:y- ■ x'+2x - 3= - (X-I) ^ - 2,a二・1,抛物线开口向下,对称轴为直线X二1,顶点坐标为(1, -2) , △二4・12二・8<0,抛物线与X轴没有交点,当x<l时,y随X的增大而增大. 故选:D. 【分析】根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.10、【答案】D【考点】命题与定理【解析】【解答】解:①圆的对称轴是圆的直径所在的直线,故本选项错误;②在同圆或等圆中,相等的弦所对的弧相等,故本选项错误;③在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;④半径相等的两个半圆是等弧,故本选项正确;其中正确的有1个;故选D.【分析】根据轴对称图形的概念和弧、弦和圆心角之间的关系,分别对每一项进行分析即可得出答案.11、【答案】A【考点】二次函数图象与儿何变换【解析】【解答】解:由“上加下减”的原则可知,将抛物线y二3x'向上平移3 个单位所得抛物线的解析式为:y=3x2+3:IJI “左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3 (x+2) 2+3.故选A.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.12、【答案】D【考点】垂径定理【解析】【解答】解:A、直径是弦,但弦不一定是直径,选项错误;B、平分弦的直径垂直弦,被平分的弦不是直径,故选项错误;C、能重合的两个弧是等弧,选项错误;D、圆的对称轴有无数条,而对称中心只有一个,正确.故选D.【分析】根据弦的定义以及垂径定理、等弧的定义即可作出判断.13、【答案】B【考点】二次函数的最值【解析】【解答】解:因为抛物线开口向下和其顶点坐标为(2,・3),所以该抛物线有最大值・3.故选B.【分析】根据抛物线开口向下和其顶点坐标为(2,・3),可直接做出判断.二、<b >填空题<∕b>14、【答案】60【考点】生活中的旋转现象【解析】【解答】解:Y钟表上的时针匀速旋转一周的度数为360。
数学初三九年级上册 压轴解答题测试卷(含答案解析)

数学初三九年级上册压轴解答题测试卷(含答案解析)一、压轴题1.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.2.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.3.如图,已知矩形ABCD中,BC=2cm,AB3cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.4.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 5.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).6.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.7.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标.8.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.9.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.10.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....x.轴上方的部分围成的图形中............(.包括边界....).时,求t的取值范围.(直接写出答案即可) 11.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 12.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q . (1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长. (3)连接PQ ,试说明3PQ 2+OA 2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠= ∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△ ∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4. 【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解. 2.(1)作图见解析;(2)49π. 【解析】试题分析:(1)作出∠B 的角平分线BD ,再过X 作OX ⊥AB ,交BD 于点O ,则O 点即为⊙O 的圆心;(2)由于⊙P 与△ABC 哪两条边相切不能确定,故应分⊙P 与Rt △ABC 的边AB 和BC 相切;⊙P 与Rt △ABC 的边AB 和AC 相切时;⊙P 与Rt △ABC 的边BC 和AC 相切时三种情况进行讨论.试题解析:(1)如图所示:①以B 为圆心,以任意长为半径画圆,分别交BC 、AB 于点G 、H ;②分别以G 、H 为圆心,以大于23GH 为半径画圆,两圆相交于D ,连接BD ;③过X 作OX ⊥AB ,交直线BD 于点O ,则点O 即为⊙O 的圆心.(2)①当⊙P 与Rt △ABC 的边AB 和BC 相切时,由角平分线的性质可知,动点P 是∠ABC 的平分线BM 上的点,如图1,在∠ABC 的平分线BM 上任意确定点P 1(不为∠ABC 的顶点)∵OX=BOsin ∠ABM ,P 1Z=BPsin ∠ABM ,当BP 1>BO 时,P 1Z >OX 即P 与B 的距离越大,⊙P 的面积越大,这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点; 如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,时⊙P的面积就是S的最大值,∵AC=1,BC=2,∴AB=5,设PC=x,则PA=AC-PC=1-x在直角△APE中,PA2=PE2+AE2,∴(1-x)2=x2+(5-2)2,∴x=25-4;②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+(5-1)2,∴y=51 ;③如图4,同理可得,当⊙P与Rt△ABC的边BC和AC相切时,设PF=z,∵△APF∽△PBE,∴PF:BE=AF:PE,∴,∴z=49. 由①、②、③可知,49>51->∴z >y >x ,∴⊙P 的面积S 的最大值为π.考点:1. 切线的性质;2.角平分线的性质;3.勾股定理;4.作图—复杂作图. 3.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】 【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AE BE BC =,23y xx -=,即2132y x x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°, ∴∠AEF +∠AFE =90°, ∵EF ⊥CE , ∴∠AEF +∠BEC =90°, ∴∠AFE =∠BEC , ∴△AEF ∽△BCE ; (2)由(1)△AEF ∽BEC 得AF AE BE BC =,23y xx -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x -+, 当3x =y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点, ∴∠EHF =90°, ∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF , ∴MA =ME =MF =MH , 则A 、E 、H 、F 在同一圆上; 如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30° ∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°, 如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=, ∵AB =23 ∴AH =3,所以点H 移动的距离为3. 【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键. 4.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =,∴34 ab =.【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.5.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或()π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA 216x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB =2∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF =18x 2=98, ∴FG=2﹣98,AF158,AH, ∵∠CFG =∠AFH ,∠FCG =∠AHF ,∴△CFG ∽△HFA , ∴GF CG AF AH=,∴928158-= ∴CG,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.6.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析【解析】【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值;(2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离;(3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得.【详解】(1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6),可设2(10)6y m x =-+,将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在. ∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点, ∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =. 开口向下,0a <,∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.7.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫- ⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭ 【解析】【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩, ∴抛物线的函数表达式为y =x 2+2x -3.(2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1,∴D (﹣1,0),x M =x N =﹣1,设Q (t ,t 2+2t ﹣3)(﹣3<t <1),设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩, ∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6,∴DM =0﹣(﹣2t ﹣6)=2t +6,设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2,∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1,∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC=AB =4,∴Rt △AOC 中,sin ∠ACO=0A AC =,cos ∠ACO=OC AC =, ∵AB =AH ,G 为BH 中点,∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG ,∵∠PAB =2∠ACO ,∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG=10BG AB =, ∴BGAB =, ∴BH =2BG, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°,∴∠HBI =∠BAG =∠ACO ,∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HI BH,cos ∠HBI=BI BH =, ∴HIBH =43,BIBH =125, ∴x H =411355-+=-,y H =125-,即1112,55H ⎛⎫-- ⎪⎝⎭, 设直线AH 解析式为y =kx +a , ∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩,解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH :3344y x =-, ∵2334423y x y x x ⎧=-⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴939,416P ⎛⎫-- ⎪⎝⎭. ②若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称.∴1112,55H ⎛'⎫- ⎪⎝⎭, 设直线AH '解析式为y k x a ='+', ∴0111255k a k a +='''⎧-'⎪⎨+=⎪⎩,解得:3434k a ⎧=-⎪⎪⎨''⎪=⎪⎩, ∴直线AH ':3344y x =-+, ∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.8.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB 上,52102=CD 【解析】【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值; (2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解.【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4,∴a=1;故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b b x a =-=-= ∴4b =-故答案为:4b =-. ②将点Q 向右平移4个单位得点()4,2R当2c =时,242y x x =-+令2y =,则2242x x =-+解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR ==∵4QM QN +=∵QM NR =∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上设(),2M m ,则02m ≤<,224m m c =-+ 2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤<∴c 随着m 的增大而增大∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴x =∴12,22b D b ⎛-+-++ ⎝⎭ 2224412444244AB ac b b b b y k b a ---+-+=+=+==-++124224AB D b y yb b ⎛⎫-+-=-++-++= ⎪⎝⎭∵20b ≥∴12404410444D ABb y y -+-+-=≥==> ∴点1D 始终在直线AB 上方∵2C b -+-⎝⎭∴24224BC A b y yb b ⎛⎫-+-=-+--++= ⎪⎝⎭ ∴224841644AB C b b y y -++--++-== )22164-+=∵b-<<2028b ≤<,∴4≤<设n ,4n≤<∴2(2)164AB C n y y --+-= ∵104-<,对称轴为2n = ∴当4n ≤<时,AB C y y -随着n 的增大而减小∴当4n =时,0AB C y y -=∴当224n ≤<时,AB C y y >∴区域S 的边界与l 的交点必有两个∵1D AB y y >∴区域S 的边界与l 的交点D 一定在线段AB 上∴D AB y y =∴2(2)164D C C AB n y y y y --+-=-= ∴当22n =时,D C y y -有最大值122+此时1222D C x x +-= 由勾股定理得:()()2252102C CD D CD x x y y +=-+-=,故答案为:5102=CD . 【点睛】 本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键.9.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】 (1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,∴A 、B 点的坐标为:A (0,2),B(4,0),将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+,D2M的解析式为:322y x=-,联立两个方程得:D3(4,4),故所求的D点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.10.(1)y=−x2+3;(2)①t=2或t=5;②6−3⩽t⩽6 2【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t⩽6 2.∵C′E′=CE=3,∴C′点的横坐标为t−3,∴MN=3−(t−3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得3−(t−3)2⩾3−2t2,解得t⩾6−3或t⩽−6−3(舍去).∴t的取值范围为:6−3⩽t⩽6 .【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..11.(1)45,45;(2)k=3;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33 ;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3﹣1,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y=3x+b,将点Q′的坐标代入上式并解得:直线的表达式为:y=3x+3﹣2【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.12.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。
【压轴题】九年级数学上期中试题含答案

【压轴题】九年级数学上期中试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5D .43.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 4.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣45.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3)6.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-7.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2B .3C .-2或3D .-2且3 8.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 9.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=2110.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2 12.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.14.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠D =20°,则∠CBA 的度数是__.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________16.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=17.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.18.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².19.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b ____c (用“>”或“<”号填空)20.已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与轴的一个交点的坐标为(m ,0),若2<m<3,则a 的取值范围是_________.三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点B 与点E , 点C 与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点P (a+3,4﹣b )与点Q (2a ,2b ﹣3)也是通过上述变换得到的对应点,求a ,b 的值.(3)求图中△ABC 的面积.23.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.25.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.3.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x-=,故x-2=3或x-2=-3,解得:x1=5,x2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.4.D解析:D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.5.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
九年级上册压轴题数学考试试卷含详细答案

九年级上册压轴题数学考试试卷含详细答案一、压轴题1.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,E 为OC 上动点(与点O 不重合),作AF ⊥BE ,垂足为G ,交BO 于H .连接OG 、CG .(1)求证:AH=BE ;(2)试探究:∠AGO 的度数是否为定值?请说明理由;(3)若OG ⊥CG ,BG=32,求△OGC 的面积.2.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.3.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为()3,0,过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ;M 是直线l 上的一点,其纵坐标为32m -+,以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.4.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.5.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.6.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).7.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A ,B 两点,A 点坐标为(2,0)-,与y 轴交于点(0,4)C ,直线12y x m =-+与抛物线交于B ,D 两点.(1)求抛物线的函数表达式;(2)求m 的值和D 点坐标;(3)点P 是直线BD 上方抛物线上的动点,过点P 作x 轴的垂线,垂足为H ,交直线BD 于点F ,过点D 作x 轴的平行线,交PH 于点N ,当N 是线段PF 的三等分点时,求P 点坐标;(4)如图2,Q 是x 轴上一点,其坐标为4,05⎛⎫- ⎪⎝⎭,动点M 从A 出发,沿x 轴正方向以每秒5个单位的速度运动,设M 的运动时间为t (0t >),连接AD ,过M 作MG AD ⊥于点G ,以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',点M 在运动过程中,线段A Q ''的位置也随之变化,请直接写出运动过程中线段A Q ''与抛物线有公共点时t 的取值范围.8.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B 的坐标和平移后抛物线的解析式;(2)点M 在原抛物线上,平移后的对应点为N ,若OM ON =,求点M 的坐标; (3)如图2,直线CB 与平移后的抛物线交于F .在抛物线的对称轴上是否存在点P ,使得以,,C F P 为顶点的三角形是直角三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.9.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB SS =,求直线CE 的解析式 (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,,(2,0)8H G ⎛⎫ ⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.10.如图1,梯形ABCD 中,AD ∥BC ,AB=AD=DC=5,BC=11.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(t >0).(1)当正方形PQMN 的边MN 恰好经过点D 时,求运动时间t 的值;(2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.11.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标;(3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式;②直接写出N 点的运动轨迹长度为 .12.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.13.在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(0)4,,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD 是等腰三角形,求点P 的坐标;14.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围. 15.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A 、C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC 是“近直角三角形”,∠B >90°,∠C =50°,则∠A = 度;(2)如图1,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4.若BD 是∠ABC 的平分线, ①求证:△BDC 是“近直角三角形”;②在边AC 上是否存在点E (异于点D ),使得△BCE 也是“近直角三角形”?若存在,请求出CE 的长;若不存在,请说明理由.(3)如图2,在Rt △ABC 中,∠BAC =90°,点D 为AC 边上一点,以BD 为直径的圆交BC 于点E ,连结AE 交BD 于点F ,若△BCD 为“近直角三角形”,且AB =5,AF =3,求tan ∠C 的值.17.如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.18.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++>与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C ,且30OBC ∠=︒.点E 在第四象限且在抛物线上.(1)如(图1),当四边形OCEB 面积最大时,在线段BC 上找一点M ,使得12EM BM +最小,并求出此时点E 的坐标及12EM BM +的最小值; (2)如(图2),将AOC △沿x 轴向右平移2单位长度得到111AO C △,再将111AO C △绕点1A 逆时针旋转α度得到122AO C △,且使经过1A 、2C 的直线l 与直线BC 平行(其中0180α︒<<︒),直线l 与抛物线交于K 、H 两点,点N 在抛物线上.在线段KH 上是否存在点P ,使以点B 、C 、P 、N 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.19.我们规定:有一组邻边相等,且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD 中,270A C ∠+∠=︒,30D ∠=︒,AB BC =,求证:四边形ABCD 是“准筝形”;(2)如图2,在“准筝形”ABCD 中,AB AD =,60BAC BCD ∠=∠=︒,4BC =,3CD =,求AC 的长;(3)如图3,在ABC 中,45A ∠=︒,120ABC ∠=︒,33AB =-D 是ABC 所在平面内一点,当四边形ABCD 是“准筝形”时,请直接写出四边形ABCD 的面积.20.(问题发现)(1)如图①,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E是AB边上一动点,则EC+ED的最小值是.(问题研究)(2)如图②,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M、N分別是⊙A、⊙B上的动点,点P为x轴上的动点,试求PM+PN的最小值.(问题解决)(3)如图③,该图是某机器零件钢构件的模板,其外形是一个五边形,根据设计要求,边框AB长为2米,边框BC长为3米,∠DAB=∠B=∠C=90°,联动杆DE长为2米,联动杆DE的两端D、E允许在AD、CE所在直线上滑动,点G恰好是DE的中点,点F可在边框BC上自由滑动,请确定该装置中的两根连接杆AF与FG长度和的最小值并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见解析;(2)45°;(3)9.【解析】【分析】(1)利用正方形性质,证△ABH ≌△BCE.可得AH=BE .(2)证△AOH∽△BGH,OH AHGH BH=,OH GHAH BH=,再证△OHG∽△AHB.,得∠AGO=∠ABO=45°;(3)先证△ABG ∽△BFG.得AG BGBG GF=,所以,AG·GF=BG 2=(322=18. 再证△AGO ∽△CGF.得GO AGGF CG=,所以,GO·CG =AG·GF=18.所以,S△OGC =12 CG·GO.【详解】解:(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=CB,∠ABO=∠ECB =45°∵AF⊥BE,∴∠BAG+∠ABG =∠CBE +∠ABG =90°. ∴∠BAH =∠CBE .∴△ABH ≌△BCE .∴AH =BE .(2)∵∠AOH =∠BGH =90°, ∠AHO =∠BHG , ∴△AOH ∽△BGH ∴OH AH GH BH = ∴OH GH AH BH= ∵∠OHG =∠AHB .∴△OHG ∽△AHB .∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值 (3)∵∠ABC =90°,AF ⊥BE , ∴∠BAG =∠FBG ,∠AGB =∠BGF =90°, ∴△ABG ∽△BFG . ∴AG BG BG GF=,∴AG ·GF =BG 2 =(2=18. ∵△AHB ∽△OHG ,∴∠BAH =∠GOH =∠GBF .∵∠AOB =∠BGF =90°, ∴∠AOG =∠GFC .∵∠AGO =45°,CG ⊥GO , ∴∠AGO =∠FGC =45°. ∴△AGO ∽△CGF . ∴GO AG GF CG=, ∴GO ·CG =AG ·GF =18. ∴S △OGC =12CG ·GO =9. 【点睛】此题为综合题,要熟练掌握正方形性质和相似三角形判定方法还有相似三角形的性质.2.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =1或CM =123+ 【解析】 【分析】 (1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =及旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H , ∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴22(12)(50)m m --+--221634m m -+又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴22(14)(52)m m --+--221634m m -+∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-,∴CM =231或CM =123+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.3.(1)1b =;(2)120,4m m ;(3)71m =-;(4)03m <<或4m >. 【解析】【分析】(1)将A 点坐标代入函数解析式即可求得b 的值;(2)分别表示出P 、Q 、M 的坐标,根据Q 、M 的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ 和MQ 的长度,根据矩形PQMN 是正方形时PQ MQ =,即可求得m 的值,再根据顶点在正方形内部,排除不符合条件的m 的值;(4)分1m ,13m <<,3m =,3m >四种情况讨论,结合图形分析即可.【详解】解:(1)将点()3,0A 代入21322y x bx =-++ 得21303322b =-⨯++, 解得b=1,; (2)由(1)可得函数的解析式为21322y x x =-++, ∴213,22P m m m ⎛⎫-++ ⎪⎝⎭,∵PQ l ⊥于点Q , ∴233,122m m Q ⎛⎫ ⎪⎝-+⎭+, ∵M 是直线l 上的一点,其纵坐标为32m -+, ∴3(3,)2m M -+,若点Q 与点M 重合,则 2133222m m m -++=-+, 解得120,4m m ;(3)由(2)可得|3|PQ m ,223131)2222|(()||2|MQ m m m m m ,当矩形PQMN 是正方形时,PQ MQ = 即212|2||3|m m m , 即22123m m m 或22123m m m , 解22123m m m 得1271,71m m , 解22123m m m 得3233,33m m ,又2131(1)2222y x x x =-++=--+, ∴抛物线的顶点为(1,2),∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即1m <,且M 点的纵坐标大于抛物线顶点的纵坐标,即322m ,解得12m <-,故m 的值为71;(4)①如下图当1m 时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,且P 点应该在x 轴上侧, 即2313222m m m 且213022m m -++>, 解2313222mm m 得04m <<, 解213022m m -++>得13m -<<, ∴01m <≤,②如下图当13m <<时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,即2313222m m m ,解得04m <<, ∴13m <<;③当3m =时,P 点和M 点都在直线x=3上不构成矩形,不符合题意;④如下图当3m >时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该大于P 点纵坐标, 即2313222m m m ,解得0m <或4m >, 故4m >,综上所述03m <<或4m >.【点睛】本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M 、P 、Q 的坐标并结合图形分析是解决此题的关键,注意分类讨论. 4.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可; (2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得:23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.5.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
【压轴卷】九年级数学上期中试卷附答案

【压轴卷】九年级数学上期中试卷附答案一、选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°3.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣44.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④5.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上6.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .77.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30° 8.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( )A .﹣1或3B .﹣3或1C .3D .1 9.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=2110.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .11.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个二、填空题13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2)2=16﹣x 1x 2,实数m 的值为________.14.如图,二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab <0;②方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3;③4a+2b+c <0;④当x >1时,y 随x 值的增大而增大;⑤当y >0时,﹣1<x <3;⑥3a+2c <0.其中不正确的有_____.15.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.16.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)17.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________18.如图,正五边形ABCDE 内接于⊙O ,F 是CD 弧的中点,则∠CBF 的度数为_____.19.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .20.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.23.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数. 购买件数 销售价格不超过30件单价40元 超过30件 每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元24.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=o ,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?25.如图,在中,,是的外接圆,点P 在直径BD 的延长线上,且. 求证:PA 是的切线; 若,求图中阴影部分的面积结果保留和根号【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD 即可解决问题.【详解】解:∵∠AOD=2∠ACD ,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C .【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.4.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.5.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.7.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为»AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角,∴∠ACB >∠ASB ,即∠ASB <30°.故选D8.D解析:D【解析】【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可.【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,∴a 2+2a ﹣3=0,解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3,即(x ﹣1)2=﹣3,此方程无实数解;当a =1时,x 2﹣2x +1=1,此时方程有解,故选:D .【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.9.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.10.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意.故选B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.二、填空题13.1【解析】【分析】【详解】解:由题意有△=2(m+1)2﹣4(m2﹣1)≥0整理得8m+8≥0解得m≥﹣1由两根关系得x1+x2=﹣2(m+1)x1x2=m2﹣1(x1﹣x2)2=16﹣x1x2(x解析:1【解析】【分析】【详解】解:由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,由两根关系,得x1+x2=﹣2(m+1),x1x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1.∵m≥﹣1,∴m=1故答案为:1.【点睛】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.14.⑤【解析】【分析】①由图象可知a>0b<0则问题可解;②根据图象与x轴交点问题可解;③由图象可知当x=2时对应的点在x轴下方x=2时函数值为负;④由图象可知抛物线对称轴为直线x=1当x>1时y随x值解析:⑤【解析】【分析】①由图象可知,a>0,b<0,则问题可解;②根据图象与x轴交点,问题可解;③由图象可知,当x=2时,对应的点在x轴下方,x=2时,函数值为负;④由图象可知,抛物线对称轴为直线x=1,当x>1时,y随x值的增大而增大;⑤由图象可知,当y>0时,对应x>3或x<-1;⑥根据对称轴找到ab之间关系,再代入a﹣b+c=0,问题可解.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a >0,﹣2b a>0,c <0, ∴b <0, ∴ab <0,说法①正确;②二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,∴方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3,说法②正确;③∵当x =2时,函数y <0,∴4a+2b+c <0,说法③正确;④∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x =1,∵图象开口向上,∴当x >1时,y 随x 值的增大而增大,说法④正确;⑤∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y <0时,﹣1<x <3,说法⑤错误;⑥∵当x =﹣1时,y =0,∴a ﹣b+c =0,∴抛物线的对称轴为直线x =1=﹣2b a, ∴b =﹣2a ,∴3a+c =0,∵c <0,∴3a+2c <0,说法⑥正确.故答案为⑤.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数图象上点的坐标特征,解答关键是根据二次函数性质结合函数图象解答问题. 15.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD 中AO=DO 可得∠A 的度数进而得出△ABO 中∠B 的度数可得∠C 的度数【详解】解:∵∠AOC 的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数,可得∠AOB 的度数,再根据△AOD 中,AO=DO ,可得∠A 的度数,进而得出△ABO 中∠B 的度数,可得∠C 的度数.【详解】解:∵∠AOC 的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD 中,AO=DO ,∴∠A=12(180°-40°)=70°, ∴△ABO 中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】 底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr =列式进行计算即可得解.【详解】 解:圆锥的侧面积11641222==⨯⨯=lr ππ. 故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键. 17.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.18.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.19.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 122π+20.-2【解析】已知3是关于x的方程x2-5x+c=0的一个根代入可得9-3+c=0解得c=-6;所以由原方程为x2-5x-6=0即(x+2)(x-3)=0解得x=-2或x=3即可得方程的另一个根是x=解析:-2【解析】已知3是关于x的方程x2-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x2-5x-6=0,即(x+2)(x-3)=0,解得,x=-2或x=3,即可得方程的另一个根是x=-2.三、解答题21.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷1=14(s ); 综上所述:当t=2s 或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D 在运动过程中,△DBE 是等边三角形这一点得到DE=CD ,从而可知当CD ⊥AB 时,CD 最短,则DE 最短,由此即可由已知条件解得DE 的最小值;(2)解第3小题的关键是:根据点D 的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE 中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t 的值了.22.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ;(2)根据题意,得:﹣3x 2+54x=25×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍), ∴32x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.23.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得: x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.24.经过2秒后PBQ ∆的面积等于24cm【解析】【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【详解】过点Q 作QE PB ⊥于E ,则90QEB ∠=︒,如图所示:30ABC ∠=︒Q ,2QE QB ∴= 12PQB S PB QE ∆∴=g g 设经过t 秒后PBQ ∆的面积等于2 4cm ,则62PB t QB t QE t =-==,,.根据题意,16 4.2t t -=g g () 212 680,24t t t t -+===,.当4t =时,28,87t =>,不合题意舍去,取2t =.答:经过2秒后PBQ ∆的面积等于24cm .【点睛】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程.25.(1)证明见解析(2)【解析】【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【详解】如图,连接OA;,;而,;而,;,,是的切线.如图,过点O作,则,,,,;,,图中阴影部分的面积.【点睛】本题考查了切线的判定与扇形面积的计算,解题的关键是熟练的掌握切线的判定与扇形面积公式.。
初三九年级数学上册上册数学压轴题试题(Word版 含答案)

初三九年级数学上册上册数学压轴题试题(Word 版 含答案)一、压轴题1.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.2.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.3.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE∽;(2)若23AC ,求AB的长;(3)在(2)的条件下,求出ABC的外接圆圆心与CEF△的外接圆圆心之间的距离?4.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.5.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.6.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A的水平距离为x米,与地面的距离为y米,运行时间为t秒,经过多次测试,得到如下部分数据:t秒0 1.5 2.54 6.57.59…x米04810121620…y米2 4.56 5.846 5.84 4.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.7.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.8.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)9.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值. 10.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式; (2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.11.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】 【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP . 【详解】解:(1)∵:3:4AQ AB =,3AQ x = ∴4AB x =∴在Rt ABQ △中,5BQ x ==∵OD m ⊥,m l ⊥ ∴//OD l ∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q ∴3AP AQ x == ∵4PC = ∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒ ∴//OM AB ∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形 ∴13x =,25x =-(不合题意,舍去) ∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9. (3)若矩形DEGF 是正方形,则DE DF = ①点P 在A 点的右侧时,如图:∴243x x += ∴4x = ∴312AP x == ②点P 在A 点的左侧时 I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x = ∴473x x -= ∴25x =∴635AP x x == ii.当4273x ≤<时,如图:∵74DE x =-,3DF x = ∴743x x -=∴1x =(不合题意,舍去) II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x = ∴743x x -= ∴1x = ∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题. 2.(1)详见解析;(2)①详见解析;②8 【解析】 【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度. 【详解】(1)证明: ∵AB 是⊙O 的直径, ∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠, ∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒, ∴90CAB ∠=︒, ∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠, ∴CFA CAF ∠=∠ ∴CA CF =; ② 设CA CF x ==, 在Rt ABC ∆中,2BC x =+,CA x =,6AB =, 由勾股定理可得222(2)6x x +=+,解得:8x =, ∴8AC =. 【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.3.(1)详见解析;(2)3)12【解析】 【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度. 【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒, ∴90AEF AFE ∠+∠=︒, ∵EC EF ⊥, ∴90FEC ∠=︒, ∴90AEF BEC ∠+∠=︒, ∴AFE BEC =∠∠, ∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC , ∵E 、F 分别是AB 、AD 的中点, ∴22,2AB AE BE AD AF ===; ∵AEF BCE ∽, ∴AE AFBC BE=,∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =; (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴2AD AB =, ∴22122882MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 4.(1)OD=4, (2)证明过程见详解(3)5043π- 【解析】 【分析】(1)根据AB 与圆O 相切,在Rt △OBD 中运用tan ∠BOD=34,即可求出OD 的长, (2)作辅助线证明四边形ADOG 是矩形,得DO ∥AC,sin ∠OCG=35,在Rt△OCG 中,求出OG 的长等于半径即可解题,(3)利用S 阴影=S Rt △BAC -S 正方形ADOG -14S 圆O ,求出AC 长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.5.(1)菱形的周长为8;(2)t=65,∠MAC=105°;(3)当t=1﹣35或t=1+315时,圆M与AC相切.【解析】试题分析:(1)过点B 作BE ⊥AD ,垂足为E .由点A 和点B 的坐标可知:BE=3,AE=1,依据勾股定理可求得AB 的长,从而可求得菱形的周长;(2)记 M 与x 轴的切线为F ,AD 的中点为E .先求得EF 的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B 作BE ⊥AD ,垂足为E ,连接MF ,F 为 M 与AD 的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM 是等腰直角三角形,从而可得到∠MAF 的度数,故此可求得∠MAC 的度数;(3)如图4所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE 的长,然后依据3t+2t=5-AE 可求得t 的值;如图5所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=33,最后依据3t+2t=5+AE .列方程求解即可. 试题解析:(1)如图1所示:过点B 作BE AD ⊥,垂足为E ,∵()B 1,3-,()A 2,0, ∴BE 3=,AE 1=, ∴22AB AE BE 2=+=,∵四边形ABCD 为菱形, ∴AB BC CD AD ===, ∴菱形的周长248=⨯=.(2)如图2所示,⊙M 与x 轴的切线为F ,AD 中点为E ,∵()M 3,1-, ∴()F 3,0-,∵AD 2=,且E 为AD 中点,∴()E 30,,EF 6=, ∴2t 3t 6+=, 解得6t 5=. 平移的图形如图3所示:过点B 作BE AD ⊥,垂足为E ,连接MF ,F 为⊙M 与AD 切点, ∵由(1)可知,AE 1=,BE 3=, ∴tan EAB 3∠=, ∴EAB 60∠=︒, ∴FAB 120∠=︒, ∵四边形ABCD 是菱形, ∴11FAC FAB 1206022∠∠==⨯︒=︒, ∵AD 为M 切线, ∴MF AD ⊥, ∵F 为AD 的中点, ∴AF MF 1==,∴AFM 是等腰直角三角形, ∴MAF 45∠=︒,∴MAC MAF FAC 4560105∠∠∠=+=︒+︒=︒.(3)如图4所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒, ∴DAC 60∠=︒. ∵AC 、AD 是圆M 的切线 ∴MAE 30∠=︒, ∵ME MN 1==. ∴EA 3=, ∴3t 2t 53+=-, ∴3t 1=-. 如图5所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒, ∴DAC 60∠=︒, ∴NAE 120∠=︒,∵AC 、AD 是圆M 的切线, ∴MAE 60∠=︒, ∵ME MN 1==, ∴3EA =∴33t 2t 53+=+, ∴3t 115=+. 综上所述,当3t 1=-3t 1=+时,圆M 与AC 相切. 点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.6.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析 【解析】 【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值; (2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离; (3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得. 【详解】 (1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6), 可设2(10)6y m x =-+, 将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在.∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点,∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得126400a -=,226a --=.开口向下,0a <, ∴1a ,2a 都可以, 将1a ,2a 分别代入()215610010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键. 7.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.8.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】 【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式; (2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案. 【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩,解得:132b c =⎧⎪⎨=⎪⎩,∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+,∴点M 的坐标为(1,2)令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32,∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.9.(1) 见解析;(2) 2,2 ;(3)0或2或2x <<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=, 综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(1)35,5784y x =+ ;(21722r ≤. 【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C 坐标为(-3,-2)或(6,-2),设AC 表达式为y=kx+b ,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小r=2,当点E的纵坐标为1时,⊙P的半径最大r=17,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D(1,1),∴OD所在的直线表达式为y=x,∴点E的坐标为(2,2),∴OE222+2=22∴⊙P的半径最小r2②当DE∥x轴时,即:点E的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+117, ∴⊙P 的半径最大r 17, 172r ≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.11.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG ⊥BC ,∵BC ∥AO ,∴∠AOC =∠GCP ,∴sin ∠AOC =sin ∠GC 45PG P PC ==, ∵OP =PG =20﹣t , ∴42051t t -=-, ∴1609t =, 综上所述,t 的值2016041699为秒或秒或秒或秒 【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -= 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,5x ,得到25x ,求出35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,5x ,可得PC=OC-5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD ==+,即可得到结论.【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒,FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP a ∴=,25PD a =, 5DF a =,35PF a ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ y x =x (舍弃),∴ 12y x +=,∴ DE y CD x y ===+. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】九年级数学上期中试卷含答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3 3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .44.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°5.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -= B .213()24x += C .215()24x += D .215()24x -= 6.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间 7.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .0 8.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是()A.12k>且k≠1B.12k>C.12k≥且k≠1D.12k<9.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11B.(x﹣4)2=11C.(x+4)2=21D.(x﹣4)2=21 10.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B =135°,P′A∶P′C=1∶3,则P′A∶PB=( )A.1∶2B.1∶2C.3∶2D.1∶311.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=012.如果反比例函数2ayx-=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>2二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=52,则BC的长为_____.15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y轴上______________ 16.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.18.关于x的方程的260x x m-+=有两个相等的实数根,则m的值为________.19.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为¼BB',则图中阴影部分的面积为_____.三、解答题21.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.22.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?23.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=o ,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法3.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ),∴244ac ba-=n,∴b2=4ac-4an=4a(c-n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C.【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.5.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x+x=12x+x+14=1+14 215 ()24 x+=.【点睛】考点:配方的方法.6.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.8.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.9.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.10.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.11.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.12.D解析:D【解析】【分析】反比例函数k y x=图象在一、三象限,可得>0k . 【详解】解:Q 反比例函数2a y x-=(a 是常数)的图象在第一、三象限, 20a ∴->,2a ∴>.故选:D .【点睛】 本题运用了反比例函数k y x=图象的性质,解题关键要知道k 的决定性作用. 二、填空题13.【解析】【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率 解析:512【解析】【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】 抬头看信号灯时,是绿灯的概率为2553025512=++. 故答案为:512. 【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.(2)P (必然事件)=1.(3)P (不可能事件)=0. 14.8【解析】【分析】连接AD 根据CD 是∠ACB 的平分线可知∠ACD=∠BCD=45°故可得出AD=BD 再由AB 是⊙O 的直径可知△ABD 是等腰直角三角形利用勾股定理求出AB 的长在Rt△ABC 中利用勾股定解析:8【解析】【分析】连接AD ,根据CD 是∠ACB 的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD ,再由AB 是⊙O 的直径可知△ABD 是等腰直角三角形,利用勾股定理求出AB 的长,在Rt △ABC 中,利用勾股定理可得出BC 的长.【详解】连接AD ,∵∠ACB=90°,∴AB 是⊙O 的直径.∵∠ACB 的角平分线交⊙O 于D ,∴∠ACD=∠BCD=45°,∴AD=BD=52. ∵AB 是⊙O 的直径,∴△ABD 是等腰直角三角形,∴AB=22AD BD +=10.∵AC=6,∴BC=2222106AB AC -=-=8.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上∴对称轴为02b x a=-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利解析:2 3【解析】【分析】列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率.【详解】列树状图得::共有9种等可能的情况,其中编号之和大于12的有6种,所以概率= 62 93 ,故答案为:23.【点睛】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题的关键.18.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.-1【解析】【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0求出m的取值即可【详解】解:由已知得△=0即4+4m=0解得m=-1故答案为-1【点睛】本题考查的是根的判别解析:-1【解析】【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出DB′=2212=5+,A′B′=2222=22+,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S阴=905253 1222222= 360242()ππ⨯-⨯÷--⨯÷-.故答案为53 42π-.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)详见解析;(2)9 2【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=92.【详解】(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=8,∵sin∠ABD=sin∠DBF=35,∴AB=10,AD=6,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=35,在Rt△ADE中,sin∠DAC=35,设DE=3x,则AE=5x,∴AD=4x,∴tan∠DAE=34 DE x AD x∴DE=92.【点睛】本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.22.这种玩具的销售单价为460元时,厂家每天可获利润20000元.【解析】试题分析:设这种玩具的销售单价为x元时,厂家每天可获利润元,根据销售单价每降低元,每天可多售出个可得现在销售[160+2(480-x)]个,再利用获利润元,列一元二次方程解求解即可.试题解析:【解】解:设这种玩具的销售单价为x元时,厂家每天可获利润元,由题意得,(x-360)[160+2(480-x)]=20000(x-360)(1120-2x)=20000(x-360)(560-x)=10000∴这种玩具的销售单价为460元时,厂家每天可获利润元.23.(1)作图见解析;裁掉的正方形的边长为2dm,底面积为12dm2;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x 的取值范围,用x 可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm ,由题意可得(10﹣2x )(6﹣2x )=12,即x 2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x ),解得0<x≤2.5,设总费用为w 元,由题意可知w=0.5×2x (16﹣4x )+2(10﹣2x )(6﹣2x )=4x 2﹣48x+120=4(x ﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w 随x 的增大而减小,∴当x=2.5时,w 有最小值,最小值为25元,答:当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元.考点:1、二次函数的应用;2、一元二次方程的应用24.经过2秒后PBQ ∆的面积等于24cm【解析】【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【详解】过点Q 作QE PB ⊥于E ,则90QEB ∠=︒,如图所示:30ABC ∠=︒Q ,2QE QB ∴=12PQB S PB QE ∆∴=g g设经过t 秒后PBQ ∆的面积等于2 4cm ,则62PB t QB t QE t =-==,,. 根据题意,16 4.2t t -=g g () 212 680,24t t t t -+===,.当4t =时,28,87t =>,不合题意舍去,取2t =.答:经过2秒后PBQ ∆的面积等于24cm .【点睛】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程. 25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】 (1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.。