九年级数学期中试卷
江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。
江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1.已知O 的半径为3,点P 在O 内,则OP 的长可能是()A.5B.4 C.3D.2答案:D解析:解:∵O 的半径为3,点P 在O 内,∴3OP <,即OP 的长可能是2.故选:D .2.用配方法解方程2210x x --=,下列配方正确的是()A.2(1)0x -= B.2(1)1x -= C.2(1)2x += D.()212x -=答案:D解析:解:因为2210x x --=所以221x x -=则2212x x -+=即()212x -=故选:D3.给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A.①③④B.②C.②④D.①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B .4.函数22y kx =-与()0ky k x=≠在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A 、二次函数的开口方向向上,即0k >,反比例函数经过第一、三象限,即0k >,因为22y kx =-的对称轴0x =,故该选项是不符合题意;B 、二次函数的开口方向向上,即0k >,反比例函数经过第二、四象限,即0k <,此时k 互相矛盾,故该选项是不符合题意;C 、二次函数的开口方向向下,即0k <,反比例函数经过第二、四象限,即0k <,因为22y kx =-的对称轴0x =,故该选项是符合题意;D 、二次函数的开口方向向下,即0k <,反比例函数经过第一、三象限,即0k >,此时k 互相矛盾,故该选项是不符合题意;故选:C5.有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多()A.12步B.24步.C.36步D.48步答案:A解析:设矩形田地的长为x 步(30)x >,则宽为(60)x -步,根据题意得,(60)864x x -=,整理得,2608640x x -+=,解得36x =或24x =(舍去),所以(60)12x x --=.故选A .6.如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若25B ∠=︒,则P ∠的度数为()A.40︒B.50︒C.25︒D.65︒答案:A解析:解:如图所示,连接OA ,∵25B ∠=︒,∴222550AOP B ∠=∠=⨯︒=︒,∵PA 是O 的切线,∴90OAP ∠=︒,∴90905040P AOP ∠=︒-∠=︒-︒=︒,∴P ∠的度数为40︒.故选:A .7.以正六边形ABCDEF 的顶点C 为旋转中心,按顺时针方向旋转,使得新正六边形A B CD E F '''''的顶点E '落在直线BC 上,则正六边形ABCDEF 至少旋转的度数为()A.60︒B.90︒C.100︒D.30︒答案:B解析:解:连接CE ,∵正六边形的每个外角360606︒==︒,∴正六边形的每个内角18060120=︒-︒=︒,∴60MCD ∠=︒,120D ∠=︒,∵DC DE =∴()1180120302DCE DEC ∠=∠=⨯︒-︒=︒∴90MCE DCE MCD ∠=∠+∠=︒∴正六边形ABCDEF 至少旋转的度数为90︒故选:B .8.二次函数26y x x =-的图像如图所示,若关于x 的一元二次方程260x x m --=(m 为实数)的解满足15x <<,则m 的取值范围是()A.5m >- B.9m <- C.95m -≤<- D.95m -<<-答案:C解析:解:方程260x x m --=的解相当于26y x x =-与直线y m =的交点的横坐标,∵方程260x x m --=(m 为实数)的解满足15x <<,∴当1x =时,21615y =-⨯=-,当5x =时,25655y =-⨯=-,又∵()22639y x x x =-=--,∴抛物线26y x x =-的对称轴为3x =,最小值为9y =-,∴当15x <<时,则95y -≤<-,∴当95y -≤<-时,直线y m =与抛物线26y x x =-在15x <<的范围内有交点,即当95y -≤<-时,方程260x x m --=在15x <<的范围内有实数解,∴m 的取值范围是95y -≤<-.故选:C .二、填空题(本大题共10小题,每小题4分,共40分)9.已知关于x 的方程20x x m --=的一个根是3,则m =_______.答案:6解析:解:∵关于x 的方程20x x m --=的一个根是3,∴2330m --=,解得:6m =,故答案为:6.10.请在横线上写一个常数,使得关于x 的方程26x x -+_______0=.有两个相等的实数根.答案:9解析:解:1,6a b ==-,224(6)410,b ac c ∆=-=--⨯⨯=Q 9.c ∴=故答案为:9.11.方程2261x x -=的两根为1x 、2x ,则12x x +=_______.答案:3解析:解:移项得:22610x x --=,12632x x -=-+=∴,故答案为:3.12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15π解析:解:圆锥的侧面积=12•2π•3•5=15π.故答案为15π.13.某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为x ,根据题意可列方程为________.答案:()2200011280x -=解析:解:依题意得:()2200011280x -=,故答案为:()2200011280x -=.14.已知拋物线2(1)(0)y a x c a =-+<经过点()11,y -、()24,y ,则1y ________2y (填“>”“<”或“=”).答案:>解析:解:依题意得:抛物线的对称轴为:1x =,()11,y ∴-关于1x =对称点的坐标为:()13,y ,134<< ,且抛物线开口向下,12y y ∴>,故答案为:>.15.已知二次函数243y kx x =--的图象与坐标轴有三个公共点,则k 的取值范围是__.答案:43k >-且0k ≠解析:解:由题意可知:2(4)4(3)0k ∆=--⨯⨯->且0k ≠,解得:43k >-且0k ≠,故答案为:43k >-且0k ≠.16.如图是二次函数2y ax bx c =++的图像,给出下列结论:①240b ac ->;②2b a =;③0a b c -+>;④0abc <.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与x 轴有两个不同交点,∴240b ac ->,故结论①正确;∵对称轴为直线=1x -,∴12ba-=-,∴2b a =,故结论②正确;由图像知,当=1x -时,0y <,∴<0a b c -+,故结论③不正确;∵抛物线开口向上,∴0a >,∴20b a =>,∵抛物线与y 轴的交点在负半轴,∴0c <,∴0abc <,故结论④正确;∴正确的是①②④.故答案为:①②④.17.如图,在ABC 中,60A ∠=︒,43cm BC =,则能够将ABC 完全覆盖的最小圆形纸片的半径是_______cm .答案:4解析:解:要使能够将ABC 完全覆盖的最小圆形纸片,则这个小圆形纸片是ABC 的外接圆,作ABC 的外接圆O ,连接BO ,CO ,作OD BC ⊥交BC 于D ,如图:60A ∠=︒ ,3cm BC =,120BOC ∴∠=︒,123cm 2BD BC ==,1602BOD BOC ∴∠=∠=︒,在Rt BOD 中,60BOD ∠=︒,90ODB ∠=︒,234cmsin 32BD BO BOD ∴==∠,故答案为:4.18.如图,O 的半径为2,点C 是半圆AB 的中点,点D 是 BC的一个三等分点(靠近点B ),点P 是直径AB 上的动点,则CP DP +的最小值_______.答案:23解析:解:如图,作点D 关于直径AB 的对称点D ¢,则点D ¢在圆上,连接CD ',CD '交直径AB 于点P ,∴CP DP CP D P D C ''+=+=,则CP DP +的最小值是D C '的长,∵点C 是半圆AB 的中点,O 的半径为2,∴ BC等于半圆AB 的一半,∴90BOC ∠=︒,∵点D 是 BC 的一个三等分点(靠近点B ),∴ BD等于 BC 的13,∴11903033BOD BOC ∠=∠=⨯︒=︒,∵点D 与点D ¢关于直径AB 的对称,∴30BOD BOD '∠=∠=︒,∴903060COD D OD '∠=︒-︒=︒=∠,∴OD CD '⊥,6060120COD COD D OD ''∠=∠+∠=︒+︒=︒,∴2D C CM '=,∵OC OD '=,∴1801801203022COD C '︒-∠︒-︒∠===︒,∴112122OM OC ==⨯=,∴CM ===∴2D C CM '==,即CP DP +的最小值是.故答案为:三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19.解方程:(1)225x x =;(2)233x x +=.答案:(1)10x =或252x =(2)132x -=或232x -=小问1解析:解:225x x=则()250x x -=那么0x =或250x -=即10x =或252x =小问2解析:解:233x x +=则2330x x +-=故2491221b ac ∆=-=+=所以322b x a -±-==即132x -+=或232x -=20.下表是二次函数24y x x c =-++的部分取值情况:x⋯024⋯y⋯c51⋯根据表中信息,回答下列问题:(1)二次函数24y x x c =-++图象的顶点坐标是_______;(2)求c 的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出0y >时x 的取值范围:_______.答案:(1)()2,5(2)1c =,作图见解析(3)22x -<<+。
陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

2023~2024学年度第一学期期中学习评价九年级数学纸笔测试第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若关于x 的一元二次方程20x x m --=的一个根是3x =,则m 的值是()A.6- B.3- C.3D.62.用配方法解方程2620x x --=,配方后的方程是()A.()232x -= B.()239x -= C.()239x += D.()2311x -=3.若菱形两条对角线的长度是方程2680x x -+=的两根,则该菱形的边长为()B.4C.5D.254.如图,直线123l l l ,直线AC 分别交1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交1l 、2l 、3l 于点D 、E 、F ,已知23BC AC =,若3DE =,则DF 的长是()A.94B.92C.9D.65.阳光明媚的一天,身高为1.6m 的小颖想测量校内一棵大树的高度.如图,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 3.2m BC =,0.8m CA =,于是计算出树的高度应为()A.8mB.6.4mC.4.8mD.10m6.如图,在菱形ABCD 中,84BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则CDF ∠的度数是()A.42︒B.48︒C.54︒D.60︒7.如图,在下列方格纸中的四个三角形,是相似三角形的是()A.①和②B.①和③C.②和③D.②和④8.如图,在ABC △中,BD AC ⊥于点D ,E 为BC 的中点,DE DC =,81A ∠=︒,则ABC ∠的度数是()A.31︒B.39︒C.41︒D.49︒9.阅览室有十本名著,小红和小燕都想借阅,于是她们通过摸球游戏决定谁先看,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,先由小红从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小燕从口袋中摸出1个乒乓球,记下颜色.若二人摸到乒乓球的颜色相同,则小红先看,否则小燕先看.则小燕先看的概率是()A.13 B.12C.49 D.5910.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP 、EF .给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③EF 的最小值为2;④AP EF =;⑤AP EF ⊥.其中正确的结论有()A.5个B.4个C.3个D.2个第二部分(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.如图,AB CD ,AC 与BD 相交于点E ,已知1AE=,2CE =,3DE =,则BD 的长为________.12.一个口袋中有若干个白球,小明想用学过的概率知识估计口袋中白球的个数,于是将4个黑球放入口袋中搅匀(黑球与口袋中的白球除颜色外其余都相同),从口袋中随机摸出一球,记下其颜色,再把它放回口袋并摇匀,不断重复上述过程,共摸了300次,其中有48次摸到黑球,估计口袋中大约有________个白球.13.若a 、b 是一元二次方程2290x x +-=的两个根,则223a a ab ++的值为________.14.如图,在矩形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将ADE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为________.15.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为________.三、解答题(共9小题,计75分.解答应写出过程)16.(本小题6分)如图,在ABC △中,AB AC =,请用尺规作图法在BC 上求作一点D ,使得DAB ABC △△.17.(本小题8分)解方程:(1)()()2333x x x +=+(2)()()32514x x -+=-18.(本小题8分)已知532a b c ==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.19.(本小题8分)如图,在菱形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE BF =.求证:(1)ADE CDF ≅△△;(2)DEFDFE ∠=∠.20.(本小题8分)某校九年级1班为准备学校元旦演讲比赛,通过班级预赛共评选出两位男生和三位女生共5名推荐人选.(1)若该班随机选一名同学参加比赛,求选中男生的概率;(2)若该班随机选出两名同学组成一组选手参加比赛,求恰好选中一男一女的概率(用列表或树状图的方法求解).21.(本小题9分)已知关于x 的一元二次方程()22210x k x k +-+=有实数解.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,若()()125114x x --=,求k 的值.22.(本小题9分)某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?23.(本小题9分)如图,在四边形ABCD 中,AB CD ,90D ∠=︒,ABC ∠的平分线BE 交CD 于点E ,F 是AB 的中点,连接AE 、EF ,且AE BE ⊥.求证:(1)四边形BCEF 是菱形;(2)2BE AEAD EF ⋅=⋅.24.(本小题10分)如图,在Rt ABC △中,90B ∠=︒,8cm AB =,6cm BC =.点P 从A 点出发沿AC 向C 点运动,速度为每秒2cm ,同时点Q 从C 点出发沿CB 向B 点运动,速度为每秒1cm ,当点P 到达顶点C 时,P 、Q 同时停止运动,设P 点运动时间为秒.(1)当为何值时,PQC △是以C ∠为顶角的等腰三角形?(2)当为何值时,PQC △的面积为25cm (3)当为何值时,PQC △与ABC △相似?2023~2024学年度第一学期期中学习评价九年级数学纸笔测试参考答案及评分标准一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.D2.D3.A4.C5.A6.C7.B8.B9.C 10.B二、填空题(共5小题,每小题3分,计15分)11.9212.2113.18-14.10315.68三、解答题(共9小题,计75分,解答应写出过程)16.解:作图(略)……………………………………………………………………(5分)则点D 即为所求.…………………………………………………………………………(6分)17.解:(1)原方程可化为()()23330x x x +-+=.……………………………………(1分)即()()3230x x +-=,……………………………………………………………………(2分)∴30x +=或230x -=,………………………………………………………………(3分)∴13x =-,232x =.……………………………………………………………………(4分)(2)原方程可化为22561514x x x +--=-,即2210x x --=,……………………………………………………………………(1分)这里2a =,1b =-,1c =-.∵()()224142190b ac -=--⨯⨯-=>,………………………………………………(2分)∴()113224x --±==⨯,……………………………………………………………………(3分)∴11x =,212x =-.…………………………………………………………………………(4分)18.解:(1)∵532a b c==,∴532a b c +=+,……………………………………………………………………………………(2分)∴842a b c +==.………………………………………………………………………………(3分)(2)∵532a b c ==,∴532252a b c a +-⨯=+-,…………………………………………………………………………(5分)∴459a=.……………………………………………………………………………………(6分)∵532a b c==,∴25325429a b c a ⨯-+==-+,……………………………………………………………………(7分)∴8124a b c -+=.…………………………………………………………………………(8分)19.证明:(1)∵四边形ABCD 是菱形,∴AD CD AB BC ===,A C ∠=∠,………………………………………………(2分)∵BE BF =,∴AE CF =.……………………………………………………………………(3分)在ADE △与CDF △中,,,,AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CDF ≅△△.(2)∵ADE CDF ≅△△,∴DE DF =,∴DEFDFE ∠=∠.20.解:(1)随机选一名同学参加比赛有5种等可能结果数,而选中男生的结果有2种,∴选中男生的概率为:25P =.………………………………………………………………(3分)(2)5名推荐人选中,两位男生分别记为A ,B ,三位女生分别记为c ,d ,e 列表为:A Bc d eA ABAc Ad Ae BBABc Bd BeccA cB cdceddA dB dcdee eAeBeced…………………………………………………………………………(6分)共有20种等可能的结果数,其中恰好选中一男一女的结果数为12种.所以恰好选中一男一女的概率为:123205P ==.………………………………………………(8分)21.解:(1)∵关于x 的方程()22210x k x k +-+=有实数根,∴()22242141b ac k k ∆=-=--⨯⨯……………………………………………………(2分)410k =-+≥,………………………………………………………………………………(3分)∴14k ≤.……………………………………………………………………………………(4分)(2)∵方程()22210x k x k +-+=的两个实数根分别为1x ,2x .∴()1221x x k +=--,212x x k =.……………………………………………………(5分)由()()125114x x --=,∴()1212514x x x x -++=,………………………………………………………………(6分)∴()252114k k +-+=,即24850k k +-=,…………………………………………(7分)∴152k =-,212k =(舍去),…………………………………………………………(8分)∴52k =-.……………………………………………………………………(9分)22.解:(1)若该商品降价5元,平均每天销售数量是405250+⨯=(件).………………(3分)(2)设每件商品应降价x 元,则每件盈利为:()50x -元,日销售量为:()402x +件,…………(5分)根据题意得:()()504022400x x -+=,……………………………………………………(7分)解这个方程得:110x =,220x =.…………………………………………………………(8分)由于每件盈利不少于35元,那么每件应降价10元.………………………………………………(9分)23.证明:(1)∵AE BE ⊥,F 是AB 的中点.∴EFBF AF ==,∴FEB FBE ∠=∠.……………………………………………………………………………………(1分)∵BE 是ABC ∠的平分线,∴FBE CBE ∠=∠,∴FEB CBE ∠=∠,……………………………………………………………………(2分)∴EFBC ,………………………………………………………………………………(3分)∵AB CD ,∴四边形BCEF 是平行四边形.………………………………………………………………(4分)∵EFBF =,∴四边形BCEF 是菱形.……………………………………………………………………(5分)(2)∵AB CD ,∴DEA EAB ∠=∠.……………………………………………………………………(6分)∵90D AEB ∠=∠=︒,∴ADE BEA △△,………………………………………………………………(7分)∴AE ABAD BE=,…………………………………………………………………………(8分)∴BE AEAD AB ⋅=⋅,即2BE AE AD EF ⋅=⋅.………………………………………………………………(9分)24.解:(1)∵8cm AB =,6cm BC =,∴10cm AC =.由题意2AP t =,102PC t =-,CQ t =,()05t <≤………………………………(1分)∵PQC △是以C ∠为顶角的等腰三角形,∴PC CQ =,……………………………………………………………………(2分)∴102t t -=,解得103t =.……………………………………………………………………………………(3分)(2)过点P 作PD BC ⊥于点D ,∴PD PC AB AC=,………………………………………………………………………………(4分)∴()()810285105t t AB PC PD AC --⋅===,…………………………………………(5分)∴()85115225PQC t S CQ PD t -=⋅=⋅=△,解得:1252t t ==.……………………………………………………………………(6分)(3)当11PQ C ABC △△时,11CP AC CQ BC=,…………………………………………(7分)∴102106t t -=,解得:3011t =.…………………………………………………………………………(8分)当22P Q C BAC △△时,22CP BCCQ AC=,…………………………………………(9分)∴102610t t -=,解得:5013t =.综上所述3011t =或5013t =时,PQC △与ABC △相似.…………………………(10分)11。
2024-2025学年山西省太原市晋源区两校上学期期中测试九年级数学试卷

2024-2025学年山西省太原市晋源区两校上学期期中测试九年级数学试卷1.下列方程中,是关于的一元二次方程的是()A.B.C.D.2.五个大小相同的正方体塔成的几何体如图所示,其左视图是()A.B.C.D.3.已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)4.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.2B.4C.6D.85.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.B.C.D.6.若关于x的一元二次方程有两个相等的实数根,则c的值是()A.36B.9C.6D.7.如图,在正方形网格中,与位似,则下列说法正确的是()A.位似中心是点B.位似中心是点C.位似比为D.位似比为8.如图,在平面直角坐标系中,反比例函数的图象经过点、,轴于点C,轴于点D,交于点E.若,则的值为()A.2B.4C.6D.89.如图,在中,,且分别是上的高,分别是的中点,若,则的长为()A.10B.12C.13D.1410.如图,在矩形中,,,连接,以对角线为边,按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形,按照此规律作下去,则边的长为()A.B.C.D.11.如图,在矩形中,对角线相交于点,在不添加任何辅助线的情况下,请你添加一个条件______,使矩形是正方形.12.点在反比例函数图象上,则_______(填“<”或“>”号).13.关于的一元二次方程的常数项是,则的值为______.14.如图,在菱形中,,.点为边上一点,且不与点,重合,连接,过点作,且,连接,,则四边形的面积为__.15.已知在中,,点D是边上的一个动点,且,连接,作关于所在直线的对称图形,得到,且交边于点E.若为直角三角形,则________.16.阅读材料,并回答问题:佳佳解一元二次方程的过程如下:解:第一步第二步第三步第四步.问题:(1)上述解答过程中,从第_____步开始出现了错误,发生错误的原因是_______________;(2)请写出正确的解答过程.17.《笠翁对韵》是明末清初著名戏曲家李渔的作品,是学习写作近体诗、词,用来熟悉对仗、用韵、组织词语的启蒙读物,“天对地,雨对风.大陆对长空.山花对海树,赤日对苍穹……”就是其中的句子.现将“A.天”,“B.地”,“C.雨”,“D.风”,“E.大陆”,“F长空”分别书写在材质、大小完全相同的6张卡片上,洗匀后背面朝上.(1)第一次抽取时先抽取了一张,翻开后是“A.天”,那么在剩下的五张卡片中恰好抽取得到卡片“B.地”,使得对仗工整的概率是______;(2)若第一次已经把“A.天”、“B.地”两张卡片抽走,第二次在剩下的四张卡片中随机抽取两张,请用列表或画树状图的方法求出能够对仗工整的概率.18.矩形的顶点E,G分别在菱形的边、上,顶点F,H在菱形的对角线上.(1)求证:;(2)若E为中点,,求菱形的周长.19.某绘画艺人第一天的收入为875元,第三天的收入为1260元(每天收入的增长率相同).(1)求绘画艺人每天平均收入的增长率是多少?(2)绘画艺人想制作一幅长30分米,宽20分米的一幅画,其中有一横一竖宽度相同的彩条(阴影部分为彩条无费用),其余空白处进行作画,如图所示,作画区域的费用为每平方分米3元,经预算作画区域的总费用恰好是第四天的收入,求彩条的宽度是多少分米.20.为了开展趣味学习活动,张教师带领学生们在操场上利用所学的知识测量一棵树的高度.如图,某一时刻树在太阳光照下,一部分影子落在了墙上,另一部分树影落在了地面上,张老师在树另一侧的地面C点放置一平面镜,在平面镜左侧点S处竖直放置了一根木杆,秦飞同学在平面镜右侧的点T处刚好可从平面镜中观察到木杆的顶端.与此同时,秦飞发现木杆影子的顶端恰好落在平面镜C点处.现测得木杆高2米,秦飞的眼睛距地面为1米,长为9米,树影为5米,为21米,求树的高.(平面镜大小忽略不计)21.如图,一次函数的图象与x轴正半轴相交于点C,与反比例函数的图象在第二象限相交于点,过点A作轴,垂足为D,.(1)求一次函数的表达式;(2)已知点满足,求a的值.22.如图,在中,,点从点出发,沿着以每秒的速度向点运动;同时点从点出发,沿着以每秒的速度向点运动,设运动时间为秒.(1)为何值时,;(2)是否存在某一时刻,使,若存在,求出此时的长;若不存在,请说明理由.23.综合与实践综合与实践课上,数学研究小组以“手拉手图形”为主题开展数学活动两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)操作判断已知点为和的公共顶点,将绕点顺时针旋转,连接,,如图1,若和均为等边三角形,请完成如下判断:①线段与线段的数量关系是________;②直线与直线相交所夹锐角的度数是________;(2)迁移探究如图2,若,,其他条件不变,则(1)中的结论是否都成立?请说明理由;(3)拓展应用:如图3,若,,,,当点,,三点共线时,请直接写出的长.。
四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)

A.∠D=∠B B.∠
10.学校图书馆去年年底有图书
平均增长率为x,则列出下列方程正确的是(
A.2:5B.2:3
12.如图,在菱形ABCD中,∠
一点(不与端点重合),连接线段
A.①②③B.①④
二、填空题(每小题4分,共
13.若3
x+是二次根式,则
17.若将一条线段AB 分割成长、短两条线段即PB AP AP AB =,则可得出这一比值等于段AB 的黄金分割点,黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.一芭蕾舞演员的身高为18.如图,过线段34A A 、……1-n n A A 31n B B -=.
三、计算题(19题、20题各8分,19.(1)计算:()012132222
--++--()
(1)求证:2
=
CD AD
AC=,AB=
(2)若4
24.电商平台某服装销售商家在销售中发现某品牌童装平均每天可售出
了迎接“双11”,电商决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4
(1)求证:PBE QAB ∽△△.
(2)你认为PBE △和BAE 相似吗?如果相似,给出证明,如果不相似,请说明理由.
(3)如图(3),沿AG 折叠,使点E 落在AD 上为点H ,连结HG 交的中线等于斜边的一半)
∵
1
2
OQ AB OB
==,OB=
∴OQ OB BQ
==,
∴BOQ
△是等边三角形,。
九年级上册数学期中考试试卷

九年级上册数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 5D. 2x - 3 = 52. 已知等腰三角形的两边长分别为5和8,那么第三边的长度是多少?A. 3B. 5C. 8D. 103. 函数y = 2x + 3的图像经过哪个象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限4. 以下哪个是完全平方数?A. 16B. 18C. 20D. 225. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个6. 计算以下表达式的值:(2x - 3)(x + 2)。
A. 2x^2 - x - 6B. 2x^2 + x - 6C. 2x^2 - x + 6D. 2x^2 + x + 67. 以下哪个是一元二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. 2x - 3 = 0D. x^2 - 4 = 08. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π9. 以下哪个是正比例函数?A. y = 3x + 2B. y = 2xC. y = x^2D. y = 1/x10. 计算以下表达式的值:(a + b)(a - b)。
A. a^2 - b^2B. a^2 + b^2C. 2abD. a^2 + 2ab + b^2二、填空题(每题2分,共20分)11. 已知一个等差数列的首项是3,公差是2,那么第5项的值是_________。
12. 一个直角三角形的两直角边长分别为6和8,那么斜边的长度是_________。
13. 计算以下表达式的值:(3x + 2)(3x - 2) = _________。
14. 一个数的立方根是它本身的数有_________个。
15. 函数y = -x + 5与x轴的交点坐标是(_________, 0)。
山西省长治市武乡县多校2024-2025学年上学期期中测九年级数学试卷(含答案)

山西省2024~2025学年第一学期九年级期中质量监测数学试卷(华师大版)注意事项:1.本试卷分第I 卷和第II 卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.若要使的取值范围为( )A. B. C. D.2.我们在解一元二次方程时,可以将其左边分解因式得到,从而得到两个一元一次方程或,所以得到原一元二次方程的解为,,这种解法体现的数学思想是( )A.数形结合思想B.函数思想C.转化思想D.公理化思想3.合并的是( )4.下列一元二次方程中,没有实数根的是( )A. B. C. D.5.为了倡导全民健身,某小区在公共活动区域安装了健身器材,其中跷跷板很受欢迎.如图,为跷跷板的中点,支柱垂直于地面,垂足为,.当跷跷板的一端着地时,另一端离地面的高度为( )A. B. C. D.6.若(,,均不为零),则的值为( )A.-11 B. C. D.11a 2a ≥-2a >-2a ≥2a >20x x -=()10x x -=0x =10x -=10x =21x =2352x x =-2410x x +-=2440x x -+=2243x x -=-O AB OC C 0.5m OC =A B 0.5m1m 1.5m 2m 432x y z ==x y z 2x y y z +-103-1037.如图,矩形内有两个相邻的正方形.若两个正方形的面积分别为和,则图中阴影部分的面积为( )8.如图,在矩形绸布中,边的长为,沿图中实线部分将其裁剪成三块形状大小完全相同的矩形绸布.若裁出的绸布与绸布相似,则绸布边的长为( )A. B. C.D.9.如图所示是钢材质人字梯的侧面示意图,是人字梯两条斜撑的连接点,,是人字梯两条斜撑的触地点,,,,是人字梯后斜撑上的分割点,且,,,,,是人字梯前斜撑上的分割点,且.若,则人字梯前斜撑触地点到连接点的钢材长度为( )A. B. C. D.10.如图,在中,,分别是边,上的点,连结,,且.若,的面积为3,则的面积为( )12S =23S =2-2ABCD AB 2m ABCD BC 4m A F G B C D E 30cm AB BC CD DE ====20cm EF =O N M H 25cm GH =BO CN DM EH FG G A 190cm 175cm 150cm 125cmABC △D E AC AB DE BD DE BC :1:2AE BE =ADE △BDC △A.21B.18C.15D.12第II 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:_____.12.山西是中华民族的发祥地之一,被誉为“华夏文明摇篮”,素有“中国古代文化博物馆”之称.如图是山西的3个旅游景点,将其放在适当的平面直角坐标系中,若云冈石窟的坐标为,娘子关瀑布的坐标为,则壶口瀑布的坐标为__________.13.如图,在中,为边的中点,过点作交边于点E ,P 为边上一点,连结,.若的面积为3,则图中阴影部分的面积为_____.14.如图,学校生物小组的试验园地是一块长、宽的矩形,为便于管理,现要在中间开辟两横一纵共三条等宽的小道.若要使种植面积为,则小道的宽为_____m.)22-=()2,5()4,0ABC △D AB D DE BC AC BC DP EP ADE △36m 22m 2612m15.如图,在中,,于点,为上一点,连结并延长,交边于点,且,过点作交的延长线于点.若,,则的长为_____.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)计算:(1;(2).17.(本题7分)解方程:.18.(本题8分)如图,在平面直角坐标系中,线段的顶点坐标分别为,.Rt ABC △90BAC ︒∠=AD BC ⊥DE AD BE ACF EA EB=C CG BF ⊥BF G6AB =8AC =CG 203---(222+-2325x x +=AB ()4,1A -()1,1B(1)将线段先沿轴向右平移3个单位,再沿轴向上平移4个单位得到线段,点,的对应点分别为,,画出线段,连结,,并直接写出四边形的形状.(2)画出四边形关于轴对称的四边形.(3)画出线段以为位似中心,放大到原来2倍的线段.19.(本题8分)如图,在中,,平分交边于点,延长至点,连结,使.(1)求证:.(2)若,,则的长为_____.20.(本题9分)某综合与实践小组开展了测量本校教学楼高度的实践活动,他们在李老师的带领下制定了测量方案,并利用课余时间完成了实地测量.记录如下表:活动内容测量本校教学楼高度成员组长:×××组员:×××,×××,×××测量工具皮尺测量示意图说明:某组员从树的点C 处后退一定距离到点E 处,可以透过树的顶端D 观察到救学楼的顶端A,点A,B ,C ,D ,E ,F 均在同一竖直平面内教学楼到树的距离BC 树到该组员的距离CE 该组员眼睛到地面的距离EF树的高度CD 测量数据15m 9m 1.7m 6m请利用表中提供的信息,求教学楼的高度.(结果精确到)21.(本题9分)项目式学习某校综合与实践活动小组针对货物的销售单价与日销售量开展项目式学习活动,请你参与活动,并与他们共同完成该项目任务.项目主题:商品销售策略的制定驱动问题:某玩具店老板欲购进一批进价为40元/个的益智玩具,请你运用所学数学知识根据市场情况和该玩具店老板的要求,帮助他制定这种益智玩具的销售策略.任务一:市场调查AB x y DC A B D C DC AD BC ABCD ABCD y 1111A B C D AB ()3,0-22A B Rt ABC △90ACB ︒∠=CD ACB ∠AB D AB E CE CE DE =AEC CEB △∽△2BE =5AB =DE AB 0.1m调查附近A ,B ,C ,D ,E 五家玩具店近期销售这种益智玩具的销售单价(元)和日销售量(个)的情况,记录如下表:玩具店A B C D E 销售单价x /元6160595857日销售量y /个2830323436任务二:模型建立(1)该益智玩具的日销售量与销售单价之间的函数关系式为_____.任务三:问题解决(2)如果该玩具店的房租、水电费、人工费等每天的支出为300元,该玩具店老板想要每天获得200元的利润,同时为了尽快减少库存,那么该益智玩具的销售单价应定为多少元?22.(本题12分)综合与实践问题情境:如图1,四边形是学校劳动实践基地的一块试验田,其中,,,,.现要对该试验田内种植区域进行划分,以种植不同的农作物,学校面向全体同学征集设计方案.方案设计:晓晓的设计方案如下:第一步:在田边,上分别取点,,放入一段篱笆,使,篱笆的左侧区域种植谷物,其种植面积占试验田总面积的.第二步:在田边上取点,使,用篱笆沿,将篱笆的右侧区域分割成,和三个区域,分别种植红薯,土豆和胡萝卜三种农作物.方案实施:学校采用了晓晓的方案,在完成第一步分割后,发现学校仅剩篱笆.若要继续完成第二步的分割,需确定和的长度.为此,晓晓在图2中以所在直线为轴,所在直线为轴建立平面直角坐标系.请按照她的设计方案解决下列问题.(1)请直接写出线段的函数表达式.(2)为完成第二步的分割,求学校还需要准备的篱笆长度.(结果精确到)x y y x OBCD OB OD ⊥CD OD ⊥13m OB =9m OD =1m CD =BC OD E F EF EF OB EF 1121DF G EG CG ⊥EG CG EF EFG △CDG △CEG △7m EG CG OD x OB y BC 1m 3.16≈23.(本题12分)综合与探究如图,在中,,是边上的高,点在边上从点向点移动,点在边上从点向点移动,连结两点同时出发,且移动速度均为,其中移动时间为,,.(1)求的长.(2)当的面积为时,求此时的值.(3)当是等腰三角形时,请直接写出的值.山西省2024~2025学年第一学期九年级期中质量监测数学(华师大版)参考答案与评分标准一、选择题(本大题共10个小题,每小题3分,共30分)题号12345678910答案A C C D B D A CBB二、填空题(本大题共5个小题,每小题3分,共15分)11.3 12. 13.6 14.2 15.三、解答题(本大题共8个小题,共75分)16.解:(1)原式…………(3分)4分).…………(5分)(2)原式4分).…………(5分)17.解:方程化为.…………(1分)ABC △AB AC =BD AC P AC C A Q AB A B ,,PQ P Q 1cm /s s t 5cm BD =1cm CD =AB APQ △290cm 13t APQ △t ()2,4--145123=-+23=-+1=32432=++--4=+23250x x +-=,,.…………(2分),…………(4分)所以,…………(5分)即,.………………(7分)18.解:(1)如解图,四边形即为所求.…………(2分)四边形是菱形.…………(4分)(2)如解图,四边形即为所求.…………(6分)(3)如解图,线段即为所求.…………(8分)19.(1)证明:平分,,.…………(1分),.…………(2分),,.…………(4分)又,…………(5分).…………(6分)(2…………(8分)20.解:如解图,过点作于点,交于点,则四边形,四边形和四边形都是矩形.(1分)3a =2b =5c =-()224243564b ac -=-⨯⨯-=286x -±===11x =253x =-ABCD ABCD 1111A B C D 22A B CD ACB ∠90ACB ︒∠=45ACD BCD ︒∴∠=∠=CE DE = CDE DCE ∴∠=∠CDE ACD CAE ∠=∠+∠ DCE BCD BCE ∠=∠+∠CAE BCE ∴∠=∠AEC CEB ∠=∠ AEC CEB ∴△∽△F FG AB ⊥G CD H BCHG CEFH BEFG,,,.……(3分),.…………(4分).…………(5分).…………(6分).…………(7分).…………(8分)答:教学楼的高度约为.…………(9分)21.解:(1)………………(2分)(2)根据题意,得.…………(5分)解得.…………(7分)当销售单价为65元时,日销售量为20个.当销售单价为50元时,日销售量为50个.,且为了尽快减少库存,.…………(8分)答:该益智玩具的销售单价应定为50元.…………(9分)22.解:.…………(2分)(说明:未写出自变量的取值范围不扣分)(2),,.设,则.…………(3分)..解得,(舍去).……(4分),.…………(5分).,,..9m FH CE ∴== 1.7m BG CH EF ===()24m FG BE BC CE ==+=CH BG ()4.3m DH CD CH ∴=-=CD AB DFH AFG ∴△∽△DH FH AG FG∴=()4.32411.47m 9DH FG AG FH ⨯⨯∴==≈()11.47 1.713.2m AB AG BG ∴=+=+≈AB 13.2m 1502y x =-()()150240300200x x ---=1265,50x x ==2050< 50x ∴=()()4113093y x x =-+≤≤()()21131963m 2OBCD S =+⨯= 四边形1121OFEB OBCD S S =四边形四边形()2116333m 21OFEB S ∴=⨯=四边形(),0F n 4,133E n n ⎛⎫-+ ⎪⎝⎭4,133OF n EF n ∴==-+413133323n n ⎡⎤⎛⎫∴+-+= ⎪⎢⎥⎝⎭⎣⎦13n =2332n =3m OF ∴=()43139m 3EF =-⨯+=()6m DF OD OF ∴=-=EF OB OB OD ⊥EF OD ∴⊥90EFG ︒∴∠=.,,..,.…………(6分).(7分)..解得.…………(8分).在中,根据勾股定理,得.……(9分)在中,根据勾股定理,得.……(10分)学校还需要准备的篱笆长度为.…………(11分)答:学校还需要准备的篱笆长度约为.…………(12分)23.解:(1)设,则.……(1分)在中,根据勾股定理,得..解得.…………(2分)的长为.…………(3分)(2)如解图,过点作于点.………………(4分)是边上的高,..…………(5分).(6分).90FEG EGF ︒∴∠+∠=EG CG ⊥CD OD ⊥90EGCGDC ︒∴∠=∠=90EGF DGC ︒∴∠+∠=FEG DGC ∴∠=∠EFG GDC ∠=∠FEG DGC ∴△∽△FE FG DG DC∴=961DG DG -∴=123DG DG ==3m,3m DG FG ∴==Rt EFG △)m EG ==Rt CDG △)m CG ==∴()76m -≈6m AC AB x ==1AD AC CD x =-=-Rt ABD △222AD BD AB +=()22215x x ∴-+=13x =AB ∴13cm Q QE AC ⊥E BD AC BD AC ∴⊥QE BD ∴ AQE ABD ∴△∽△QE AQ BD AB ∴=根据题意,得,..(7分),的面积为,.解得,.…………(8分)答:此时的值为4或9.…………(9分)(3)或或.…………(12分)[注意:以上各题的其他解法,请参照此标准评分]cm AQ CP t ==13cm AC AB ==()5cm 13BD AQ QE t AB ⨯∴==()13cm AP AC CP t =-=- APQ △290cm 13()159********t t ∴-⨯=14t =29t =t 1323123716937。
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学试卷温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一.选择题:每小题给出的四个选项中,其中只有一个是正确的。
请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分)1 2 3 4 5 6 7 8 9 101. 下列标志图中,既是轴对称图形,又是中心对称图形的是().A. B. C. D.2.方程(x+1)2=4的解是().A.x1=2,x2=-2 B.x1=3,x2=-3 C.x1=1,x2=-3 D.x1=1,x2=-2 3.抛物线y=x2-2x-3与y轴的交点的纵坐标为().A.-3 B.-1 C.1 D.34. 如图所示,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为().A.0.5B.1.5C2D.15.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>16.将函数y=x2的图象向左、右平移后,得到的新图象的解析式不可能...是().A.y=(x+1)2B.y=x2+4x+4 C.y=x2+4x+3 D.y=x2-4x+4 题号一二三四五六七八总分(1~10)(11~14)15 16 17 18 19 20 21 22 23得分得分评卷人60°BA第4题图7.下列说法中正确的个数有( ).①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③一条直线平分弦,那么这条直线垂直这条弦;④平分弦的直线,必定过圆心;⑤平分弦的直径,平分这条弦所对的弧.A .1个B .2个C .3个D .4个 8.两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第二年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x ,则可列方程( ). A .5000(1-x -2x )=2400 B .5000(1-x )2=2400 C .5000-x -2x =2400D .5000(1-x ) (1-2x )=24009.如图所示,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( ). A .a =b B .2a -b =1 C .2a +b =-1 D .2a +b =110.如图所示是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );④一元二次方程ax 2+bx +c =n -1有两个不相等的实根.其中正确结论的个数是( ). A .1个 B .2个 C .3个D .4个二、填空题 (本大题共4小题,每小题5分,满分20分)11.已知抛物线y =(m +1) x 2开口向上,则m 的取值范围是___________.12.若抛物线y =x 2-2x -3与x 轴分别交于A 、B 两点,则线段AB 的长为____________. 13.如图所示,⊙O 的半径OA =4,∠AOB =120°,则弦AB 长为____________.得分 评卷人第10题图MN第9题图14.如图所示,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=6,BC=8,则BD=_____________.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你作出△A′B′C′和△A″B″C″(不要求写作法).16. 已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,求a的值.四、(本大题共2小题,每小题8分,满分16分)得分评卷人得分评卷人AB第14题图第13题图AOB17.如图所示,在⊙O中,半径OC⊥弦AB,垂足为D,AB=12,CD=2.求⊙O半径的长.18.已知二次函数y=ax2+bx的图象经过点(2,0)和(-1,6).(1)求二次函数的解析式;(2)求它的对称轴和顶点坐标.五、(本大题共2小题,每小题10分,满分20分)19.为丰富职工业余生活,某单位要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?20.如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x 轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D 的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.得分评卷人六、(本题满分12分)21. 我市高新区某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价...为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:7.5(04)510(414)x xyx x≤≤⎩≤⎧=⎨+<.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本....为p元/件,p与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?七、(本题满分12分)得分评卷人22.如果关于x的一元二次方程ax2+bx+c=0 (a≠0)有两个不相等的实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,方程x2-6x+8=0的两个根是2和4,则方程x2-6x+8=0就是“倍根方程”.(1)若一元二次方程x2-3x+c=0是“倍根方程”,则c= ;(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代数式4m2-5mn+n2的值;(3)若方程ax2+bx+c=0(a≠0)是倍根方程,且相异两点M(1+t,s),N(4-t,s),都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.八、(本题满分14分)23.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC .(1)如图1所示,已知∠AOB =150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC . ①求∠DAO 的度数;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2)设∠AOB =α,∠BOC =β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,请你直接写出OA+OB+OC 的最小值.ABCDABCO 图1图2九年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案BCADACADCC二、填空题(本大题共4小题,每小题5分,共20分) 11.m >-1; 12.4; 13.43; 14.10 三、(本大题共2小题,每小题8分,满分16分)15.解:如图,△A′B′C′和△A ″B″C ″为所作. ................................................................8分16.解:∵一元二次方程(a +1)x 2﹣ax +a 2﹣1=0的一个根为0,∴a +1≠0且a 2﹣1=0, ......................................................................................4分 ∴a =1. .......................................................................................8分四、(本大题共2小题,每小题8分,满分16分)17.解:连接AO . ................................................................2分 ∵半径OC ⊥弦AB ,∴AD =BD . ∵AB =12,∴AD =BD =6.设⊙O 的半径为R ,∵CD =2,∴OD =R -2,在Rt △AOD 中,OA 2=OD 2+AD 2,即:R 2=(R -2)2+62. ................................................................6分 ∴R =10.答:⊙O 的半径长为10. ................................................................8分18.解:(1)依题意,得:⎩⎨⎧=-=+6024b a b a ,解得:⎩⎨⎧-==42b a∴二次函数的解析式为:x x y 422-=. ................................................................4分 (2)对称轴为x =1,顶点坐标为(1,-2). ................................................................8分五、(本大题共2小题,每小题10分,满分20分)19.解:设应邀请x 支球队参加比赛. ................................................................1分由题意,得28)1(21=-x , ................................................................6分 解得:x 1=8,x 2=-7(舍去),答:应邀请8支球队参加比赛. ................................................................10分 20.解:(1)∵二次函数y =-mx 2+4m 的顶点坐标为(0,2),∴4m =2,即m =12, ∴抛物线的解析式为:2212+=x y . ..............................................................2分 (2)∵A 点在x 轴的负方向上坐标为(x ,y ),四边形ABCD 为矩形,BC在x 轴上,∴AD ∥x 轴,又∵抛物线关于y 轴对称,∴D 、C 点关于y 轴分别与A 、B 对称. ∴AD 的长为-2x ,AB 长为y ,∴周长p =2y -4x =2(-12x 2+2)-4x =-x 2-4x +4. ..................................6分 ∵A 在抛物线上,且ABCD 为矩形,又∵抛物线y =﹣12x 2+2与x 轴交于(-2,0)与(2,0), ∴由图象可知﹣2<x <2.综上所述,p =-x 2-4x +4,其中-2<x <2. ..................................8分 (3)不存在.假设存在这样的p ,即:-x 2-4x +4=9,解此方程,无实数解.∴不存在这样的p .来 .....................................................................................10分 六、(本题满分12分) 21.解:(1)根据题意,得:若7.5x =70,得:x =283>4,不符合题意; 若5x +10=70. 解得:x =12答:工人甲第12天生产的产品数量为70件. ...............................................................2分 (2)由函数图象知,当0≤x ≤4时,p =40,当4<x ≤14时,设p =kx +b ,将(4,40)、(14,50)代入,联立方程组,解得:k =1,b =36.∴P =x +36. .....................................................................................5分 ①当0≤x ≤4时,W =(60-40)×7.5x =150x .∵W 随x 的增大而增大,∴当x =4时,W 最大=600元;②当4<x ≤14时,W =(60-x -36)(5x +10)=-5x 2+110x +240=-5(x -11)2+845, ∴当x =11时,W 最大=845.∵845>600,∴当x =11时,W 取得最大值,845元.答:第11天时,利润最大,最大利润是845元. .....................................12分七、(本题满分12分)分∵()()22454m mn n m n m n -+=--,∴4m 2-5mn +n 2=0. .....................................6分 (3)∵方程()200ax bx c a ++=≠是倍根方程,不妨设12=2,x x ∵相异两点()()1,,4,M t s N t s +-都在抛物线2y ax bx c =++上,分八、(本题满分14分)23.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =360°-150°-120°=90°又∵将△BOC 绕点C 按顺时针方向旋转60°得△ADC .∴∠OCD =60°,∠D =∠BOC =120°∴∠DAO =180°+180°-∠AOC -∠OCD -∠D =90°. ......................................2分②连接OD.∵将△BOC绕点C按顺时针方向旋转60°得△ADC.∴△ADC≌△BOC,∠OCD=60°∴CD=OC,∠ADC=∠BOC=120°,AD=OB∴△OCD是等边三角形∴OC=OD=CD.又∵∠DAO=90°∴OA2+AD2=OD2即OA2+OB2=OC2....................................................................................6分(2)①当α=β=120°时,OA+OB+OC有最小值. ...........................................................8分将△AOC绕点C按顺时针旋转60°得△A′O′C,连接OO′则OC=O′C,OA=O′A′,且△OCO′是等边三角形,∴∠C O O′ =∠CO′O=60°,OC=OO′又∵∠A′O′C=∠AOC=∠BOC =120°∴B,O,O′,A′四点共线∴OA+OB+OC= O′A′+OB+OO′=BA′时,值最小. ...............................................12分②3...................................................................................14分【注:以上各题解法不唯一,只要合理,均应酌情赋分】。