青岛版九年级数学下册期中试卷
青岛版2021-2022学年度第二学期九年级期中质量检测数学试卷

青岛版2021-2022学年度第二学期九年级期中质量检测数学试卷题号 一 二 三 总分 得分评卷人 得分一、选择题(共30分)1.(本题3分)变量x 与y 之间的关系是21y x =+,当5y =时,自变量x 的值是( ) A .13B .5C .2D .32.(本题3分)下列图象中,表示y 是x 的函数的是( )A .B .C .D .3.(本题3分)如图所示的工件中,该几何体的俯视图是( )A .B .C .D .4.(本题3分)如图是一个可以转动的转盘.盘面上有6个全等的扇形区域,其中1个是红色,2个是黄色,3个是白色.用力转动转盘,当转盘停止后,指针对准黄色区域的可能性是( )A .16B .13C .12 D .235.(本题3分)下列函数中,y 随x 的增大而减小的是( ) A .2y x = B .3y x =- C .()20=>y x xD .()242y x x x =->6.(本题3分)已知直线y x =与双曲线ky x=相交于A ,B 两点,若点A 的坐标为()2,2,则点B 的坐标为( )A .()2,2-- B .()2,2- C .()2,2- D .()2,2 7.(本题3分)下列物体的影子中,不正确的是( )A .B .C .D .8.(本题3分)育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据: 抽查小麦粒数 100 300 800 1000 2000 3000 发芽粒数 962877709581923a则a 的值最有可能是( )A .2700B .2780C .2880D .29409.(本题3分)如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,△ABC 绕AC 所在直线旋转一周,所形成的圆锥侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .15πcm 210.(本题3分)如图,在Rt ABC 中,90ACB ∠=︒,10AB =,8AC =,E 是ABC 边上一动点,沿A C B →→的路径移动,过点E 作ED AB ⊥,垂足为D .设AD x =,ADE 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .评卷人 得分二、填空题(共32分) 11.(本题4分)如图,是体检时的心电图,其中横坐标x 表示时间,纵坐标y 表示心脏部位的生物电流,它们是两个变量.在心电图中,y___(填“是”或“不是” )x的函数.12.(本题4分)两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.13.(本题4分)时隔十三年,奥运圣火再次在北京点燃.北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”.墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是________.14.(本题4分)已知圆柱的底面半径为2cm,母线长为3cm,则这个圆柱的全面积为_________2cm.15.(本题4分)下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为_____.16.(本题4分)为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°.17.(本题4分)如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.x=-,根据图中信息可求得该二18.(本题4分)二次函数的图像如图所示,对称轴为直线1次函数的解析式为______.评卷人得分三、解答题(共58分)19.(本题8分)画出如图所示物体的主视图、左视图、俯视图.20.(本题8分)已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.21.(本题10分)已知正比例函数y=mx与反比例函数y=nx交于点(3,2)和点(3a﹣1,2﹣b).(1)求正比例函数和反比例函数的解析式.(2)求a、b的值.22.(本题10分)太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.23.(本题10分)如图,旗杆AB 的影子一部分在地面上,另一部分在某一建筑的墙上,小亮测得旗杆AB 在地面上的影长BD 为9.6 m ,在墙面上的影长CD 为2 m ,同一时刻,小亮又测得竖立于地面1 m 长的标杆的影长为1.2 m ,请帮助小亮求出旗杆AB 的高度.解:24.(本题12分)如图,在平面直角坐标系xOy 中,已知抛物线2y x bx =+经过点A (2,0)和点()1,B m -,顶点为点D .(1)求直线AB 的表达式; (2)求tan ∠ABD 的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC 与ABP △相似,求点C 的坐标.参考答案:1.解:当y =5时,5=2x +1,解得:x =2,故选:C .2.解:根据函数的定义可知,每给定自变量x 一个值,都有唯一的函数值y 与之相对应, 所以A 、C 、D 不合题意.故选:B .3.解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B .4.解:因为指针可以指向6个区域的任何一个,所以有6个等可能的结果,而指向黄色区域的结果数有2种,所以当转盘停止后,指针对准黄色区域的可能性是:21=.63故选B5.解:A .在2y x =中,y 随x 的增大而增大,故选项A 不符合题意; B .在3y x =-中,y 随x 的增大与增大,不合题意; C .在()20=>y x x中,当x >0时,y 随x 的增大而减小,符合题意; D .在()242y x x x =->,x >2时,y 随x 的增大而增大,故选项D 不符合题意;故选:C .6.解:把A ()2,2代入k y x =,得:22k = ∴k =4∴4y x = 联立方程组4y xy x =⎧⎪⎨=⎪⎩解得,121222,22x x y y ==-⎧⎧⎨⎨==-⎩⎩ ∴点B 坐标为(-2,-2)故选:A 7.B 8.∵96100%=96%100⨯,2877709581923100%96%100%96%100%96%100%96%30080010002000⨯≈⨯≈⨯≈⨯≈,,,, ∴300096%⨯=2880,故选:C .9.解:S rl π=侧,35r BC l AB ====、23515cm S rl πππ∴==⨯⨯=侧故选D .10.解:∵90ACB ∠=︒,10AB =,8AC =,∴BC =226AB AC -=, 过CA 点作CH ⊥AB 于H ,∴∠ADE =∠ACB =90°,∵11681022CH ⨯⨯=⨯⋅,∴CH =4.8,∴AH =22 6.4AC CH -=,当0≤x ≤6.4时,如图1,∵∠A =∠A ,∠ADE =∠ACB =90°,∴△ADE ∽△ACB ,∴AD DE AC BC =,即86x DE =,解得:x =34x ,∴y =12•x •34x =38x 2;当6.4<x ≤10时,如图2,∵∠B =∠B ,∠BDE =∠ACB =90°,∴△BDE ∽△BCA ,∴BDDE BC AC, 即1068x DE -=,解得:x =4043x -,∴y =12•x •4043x -=222033x x -+;故选:D . 11.解:两个变量x 和y ,变量y 随x 的变化而变化,且对于每一个x ,y 都有唯一值与之对应,y ∴是x 的函数.故答案为:是. 12.解:画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种, 所以两人手势不相同的概率=6293=,故答案为:23.13.解:列树状图如下:由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种, ∴两人同坐2号车的概率19=,故答案为:19.14.解:∵圆柱的底面半径为2cm ,母线长为3cm ,∴22=4cm S r ππ=底,224312cm S r h πππ=⋅=⨯=侧,∴2220cm S S S π=+=全侧底,故答案为:20π.15.解:西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②, 故答案是:③④①②.16.解:阅读时间不少于6小时的频数为50-7-13-24=6,∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是636050︒⨯=43.2°,故答案为:43.2. 17.解:如图,连接AC ,DF ,根据平行投影的性质得DF ∥AC ,ACB DFE ∴∠=∠,90ABC DEF ∠=∠=︒,D F ABC E ~∴,AB BCDE EF∴=, 634DE ∴=,8()DE m ∴=.故答案为:8. 18.由图象知:当x =1时,y =0,当x =0时,y =3,又对称轴为直线x =-1,则312a b ccba⎧⎪++=⎪=⎨⎪⎪-=-⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为y=-x2-2x+3,故答案为:y=-x2-2x+3.19.如图所示:20.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x -2 -1 0 1 2 y=x2﹣1 3 0 -1 0 3 描点可画出其图象如图所示:21.解:正比例函数y=mx与反比例函数y=nx交于点(3,2),解得:2,6,3m n所以正比例函数为:2,3y x反比例函数为:6yx=.(2)解: 正比例函数y =mx 与反比例函数y =nx交于点(3,2)和点(3a ﹣1,2﹣b ),,A B ∴关于原点成中心对称,解得:234a b ,22解:(1)列表如下:所有等可能的情况数为16种,两人抽到同一景点的结果有4种, 所以两人抽到同一景点的概率为41164=. (2)列表如下:所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种, 所以两人抽到动物园和森林公园的概率为21126=. 23.解:作DE ∥AC ,交AB 于E ,则AE=CD=2米. 根据在同时同地物高与影长成比例,可得11.2BE BD = 所以,BE=119.681.2 1.2BD ⨯=⨯= ;所以AB=AE+BE=2+8=9米.试卷第5页,共5页 24.(1)解:∵抛物线2y x bx =+经过点A (2,0),∴2220b += ,解得:2b =- , ∴抛物线解析式为22y x x =-,当1x =- 时,3y = ,∴点B 的坐标为()1,3B - , 设直线AB 的解析式为()0y kx m k =+≠ ,把A (2,0),()1,3B -,代入得:203k m k m +=⎧⎨-+=⎩ ,解得:12k m =-⎧⎨=⎩ ,∴直线AB 的解析式为2y x =-+; (2)如图,连接BD ,AD ,∵()22211y x x x =-=--,∴点D 的坐标为()1,1D - ,∵A (2,0),()1,3B -∴()()()()()22222222212318,2112,111320AB AD BD =--+==-+-==--+--= ∴222AB AD BD += ,∴△ABD 为直角三角形,∴21tan 318AD ABD AB ∠===; (3)设直线BD 的解析式为()1110y k x b k =+≠ ,把点()1,1D -,()1,3B -代入得: 111113k b k b +=-⎧⎨-+=⎩ ,解得:1121k b =-⎧⎨=⎩ ,∴直线BD 的解析式为21y x =-+ , 当0y = 时,12x = ,∴点P 的坐标为1,02P ⎛⎫ ⎪⎝⎭,当△ABP ∽△ABC 时,∠ABC =∠APB , 如图,过点B 作BQ ⊥x 轴于点Q ,则BQ =3,OQ =1,∵△ABP ∽△ABC ,∴∠ABD =∠BCQ ,由(2)知1tan 3ABD ∠=,∴1tan 3BCQ ∠=,∴13BQ CQ = ,∴CQ =9,∴OC =OQ +CQ =10, ∴点C 的坐标为()10,0C - ;当△ABP ∽△ABC 时,∠APB =∠ACB ,此时点C 与点P 重合,∴点C 的坐标为1,02C ⎛⎫ ⎪⎝⎭, 综上所述,点C 的坐标为()10,0C -或1,02⎛⎫ ⎪⎝⎭.。
青岛版九年级下册数学期中考试题(附答案)

青岛版九年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释) 1.二次函数y=mx 2+x ﹣2m (m 是非0常数)的图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1个或2个2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )A .B .C .D .13.如图,双曲线y=与直线y=kx+b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程=kx+b 的解为( )A .﹣3,1B .﹣3,3C .﹣1,1D .﹣1,34.下列事件中,属于必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚硬币,正面向上D.通常情况下,水加热到100℃沸腾5.已知二次函数y=ax ²+bx+c(a ≠0)的图像如图所示,则下列结论中正确的是( )A.a >0B.3是方程ax ²+bx+c=0的一个根C.a+b+c=0D.当x <1时,y 随x 的增大而减小6.如图,两个反比例函数y = 1x k 和y = 2xk 在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .k 1+k 2B .k 1-k 2C .k 1·k 2 D.12k k 7.已知抛物线2y ax bx c =++的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A .最大值 -3B .最小值-3C .最小值2D .最大值28.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )A .7:20B .7:30C .7:45D .7:509.小明从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32a b =. 你认为其中正确信息的个数有( )A. 2个B. 3个C. 4个D. 5个10.一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )A .B .C .D .11.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B..有最大值4m - C.有最小值4m D.有最小值4m - 评卷人得分 二、填空题12.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是 .13.用配方法将二次函数y =4x 2-24x +26写成y =a(x -h)2+k 的形式是________ .14.在函数20172y x =- 中,自变量x 的取值范围是________.15.如图,已知反比例函数y=k x (k >0)的图象经过Rt△OAB 斜边OB 的中点C ,且与直角边AB 相交于点D ,若B 的坐标为(4,6),则△BOD 的面积为___________.16.点(1a -, 1y )、(1a +, 2y )在反比例函数(0)k y k x=>的图像上,若y y <,则a 的范围是________.评卷人得分 三、解答题17.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了 名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为 ,“综艺节目”在扇形统计图中所对应的圆心角的度数为 ;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为),“体育节目”(记为),“综艺节目”(记为C ),“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率. 两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.19.如图,已知抛物线y=﹣214x+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.20.在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.75左右,求n的值;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,用树状图或列表求摸出的2个球颜评卷人得分四、计算题个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.答案1.C.2.B3.A4.D5.B.6.B7.A.8.A.9.D. 10.C 11.B12.2313.y=4(x-3)2-10 14.x≠215.9 16.11a-<<17.(1)200;(2)40%,63°;(3)作图见解析;(4)16.18.(1)树状图见解析;(2)P(恰好选中两名男学生)=319.(1)y=﹣14x2+32x+4,x=3;(2)△AOC∽△COB.理由见解析;(3)4;(4)点Q的坐标为(3,11)或(3,4113,0)20.(1)6;(2)用树状图或列表见解析;(3)P(摸出的2个球颜色不同)=5 621.取出的2个乒乓球上面数字之和为偶数的概率=5 9.。
青岛版九年级下册数学期中试卷

青岛版九年级下册数学期中试卷一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一项是正确的,请把正确的选项填在答题卡的相应位置.1.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )A.|a|>|b|B.|ac|=ac C.b<d D.c+d>02.(3分)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为( )A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014 3.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )A.B.C.D.4.(3分)某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( )A.众数B.中位数C.平均数D.方差5.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20°B.30°C.45°D.50°6.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.7.(3分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y =(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )A.4B.3C.2D.8.(3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF ∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为( )A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.(3分)因式分解:(a﹣b)2﹣(b﹣a)= .10.(3分)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为 .11.(3分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为 .12.(3分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为 .13.(3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为.14.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2019= .三、解答题(本大题共78分.把解答和证明过程写在答题卡的相应区域内)15.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1.16.解不等式组,并求出不等式组的整数解之和.17.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.18.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m).(参考数据:)19.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?20.反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标.21.学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)求全班学生总人数;(2)将上面的条形统计图与扇形统计图补充完整;(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是B类学生的概率.22.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一项是正确的,请把正确的选项填在答题卡的相应位置.1.【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.3.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.4.【分析】由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.【解答】解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.5.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.6.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.7.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.8.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)10.【分析】根据一元二次方程的解的定义,把x=2n代入方程得到x2﹣2mx+2n=0,然后把等式两边除以n即可.【解答】解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.11.【分析】根据矩形的性质可得AC=BD=10,BO=DO=BD=5,再根据三角形中位线定理可得PQ=DO=2.5.【解答】解:∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=BD,∴OD=BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=DO=2.5.故答案为:2.5.12.【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE 和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【解答】解:连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE,=﹣×,=﹣,=﹣,故答案为:﹣.13.【分析】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,证明△BCO∽△ODA,利用相似三角形的判定与性质得出=,根据反比例函数图象上点的坐标特征得出S△AOD=3,那么S△BCO=1,进而得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图.∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故答案为y=﹣.14.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×、S3=、……∴S2019=.故答案为:三、解答题(本大题共78分.把解答和证明过程写在答题卡的相应区域内)15.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.16.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.【解答】解:解不等式(x+1)≤2,得:x≤3,解不等式≥,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.17.【分析】由“SSS”可证△ACE≌△BDF,可得∠A=∠B,即可证AE∥BF.【解答】证明:∵AD=BC,∴AC=BD,且AE=BF,CE=DF∴△ACE≌△BDF(SSS)∴∠A=∠B18.【分析】在Rt△ABF中求出BF,在Rt△CDE中求出DE、EC,从而可得出坝高和坝底宽.【解答】解:如图,作DE垂直BC于点E,AF垂直BC于点F,在Rt△DEC中,∵CD=14m,∠DCE=30°,∴(m),∴(m),由梯形性质,得AF=DE=7m,EF=AD=6m,Rt△AFB中,∵∠ABF=45°,∴BF=AF=7m,∴BC=BF+EF+CE=7+6+7=13+7=13+7×1.73≈25.1(m).答:坝高为7m,坝底约为25.1m.19.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.20.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时P A+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵P A+PB=P A′+PB=BA′,∴此时P A+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).21.【分析】(1)由A类人数及其所占百分比可得总人数;(2)总人数减去A、B的人数求得C类人数,再分别用B、C的人数除以总人数可得对应百分比,据此即可补全图形;(3)列表得出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)全班学生总人数为10÷25%=40(人);(2)∵C类人数为40﹣(10+24)=6,∴C类所占百分比为×100%=15%,B类百分比为×100%=60%,补全图形如下:(3)列表如下:由表可知,共有12种等可能结果,其中全是B类的有2种情况,所以全是B类学生的概率为=.22.【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【解答】解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.23.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为3﹣1=2(cm).24.【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).。
2020-2021青岛市九年级数学下期中试卷(带答案)

17.在 ABC 中,若 B 45 , AB 10 2 , AC 5 5 ,则 ABC 的面积是______.
18.如图,l1∥l2∥l3,直线 a、b 与 l1、l2、l3 分别相交于点 A、B、C 和点 D、E、F.若 AB=3,DE=2,BC=6,则 EF=______.
9.C
解析:C 【解析】 【分析】 连接 CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得 出∠DOE=2∠ACD=40°即可, 【详解】 连接 CD,如图所示:
D.
7.如图,在△ABC 中,M 是 AC 的中点,P,Q 为 BC 边上的点,且 BP=PQ=CQ,BM 与 AP,AQ 分别交于 D,E 点,则 BD∶DE∶EM 等于
A.3∶2∶1
B.4∶2∶1
8.下列命题是真命题的是( )
C.5∶3∶2
D.5∶2∶1
A.如果两个三角形相似,相似比为 4:9,那么这两个三角形的周长比为 2:3 B.如果两个三角形相似,相似比为 4:9,那么这两个三角形的周长比为 4:9 C.如果两个三角形相似,相似比为 4:9,那么这两个三角形的面积比为 2:3 D.如果两个三角形相似,相似比为 4:9,那么这两个三角形的面积比为 4:9
一、选择题
1.B 解析:B 【解析】 【分析】 运用平行线分线段成比例定理对各个选项进行判断即可. 【详解】
∵AD:DB=2:3,∴ AD = 2 . AB 5
∵DE∥BC,∴ DE = AD ห้องสมุดไป่ตู้ 2 ,A 错误,B 正确; BC AB 5
2020-2021学年青岛版数学九年级下册期中测试题及答案(共3套)

青岛版数学九年级下册期中测试题(一)(时间:120分钟 分值:120分)一、选择题1.(2014•杭州中考)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .13162.某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,则恰好选中两名男生的概率是( ) A.B.C.D.3. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张奖金(元) 1 000 500 100 50 10 2 数量(个)10401504001 00010 000如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是( ) A.B.C.D.4.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为,则小圆与大圆的半径比值为( ) A.B.4C.D.25. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过 多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( ) A.5个B.10个C.15个D.30个6.若y=mx 2+nx ﹣p (其中m ,n ,p 是常数)为二次函数,则( )第1题图第9题图A. m,n,p均不为0B. m≠0,且n≠0C. m≠0D. m≠0,或p≠07.下列各式中,y是x的二次函数的是()A. y=B. y=x2+x﹣2C. y=2x+1D. y2=x2+3x8.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( ).A. y=3(x+2)2-1B. y=3(x-2)2+1C. y=3(x-2)2-1D. y=3(x+2)2+l9.已知点()、()、()在双曲线上,当时,、、的大小关系是( )A. B. C. D.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个11.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位12.下列函数中,不是二次函数的是()A. y=1﹣x2B. y=2x2+4C. y=(x﹣1)(x+4)D. y=(x﹣2)2﹣x2二、填空题13.已知y与成反比例,当y=1时,x=4,则当x=2时,y=________.14.对某班的一次数学测验成绩进行统计分析,各分数段的人数如图所示(分数取正整数,满分为100分).请根据图形回答下列问题:该班有名学生,70~79分这一组的频数是,频率是.15.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是 .批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1).17.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n 的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为________ .18.若函数y=4x与y=的图象有一个交点是(, 2),则另一个交点坐标是________19.反比例函数y=﹣,当y的值小于﹣3时,x的取值范围是________.20.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.21.二次函数的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(为实数)在﹣1<x<4的范围内有解,则t的取值范围是________.三、解答题22. 随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城城市项目北京太原杭州沈阳广州深圳上海桂林南通海口南京温州威海兰州中山上班花费时间(分钟)523334344846472324243725242518上班堵车时间(分钟)1412121212111177665550(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=×100%.比如:北京的堵车率=×100%≈36.8%;沈阳的堵车率=×100%≈54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.23. A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.24.袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.25.如图,抛物线y=ax2+bx+c交x轴于A(﹣4,0),B(1,0),交y轴于C 点,且OC=2OB.(1)求抛物线的解析式;(2)在直线BC上找点D,使△ABD为以AB为腰的等腰三角形,求D点的坐标.(3)在抛物线上是否存在异于B的点P,过P点作PQ⊥AC于Q,使△APQ与△ABC相似?若存在,请求出P点坐标;若不存在,请说明理由.答案解析一、选择题1.C解析:两个指针分别落在某两个数所表示的区域,两个数的和的各种可能性列表如下:的和是3的倍数的结果有5种;既是2的倍数,又是3的倍数的结果有3种,故两个数的和是2的倍数或是3的倍数的结果有10种.根据概率计算公式得P =105168=. 2. A .∵共有6种等可能的结果,其中恰好选中两名男学生有2种,∴恰好选中两名男学生的概率为2163=.3. D 解析:10万张彩票中设置了10个1 000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为.4. C 解析:由题意可知小圆的面积是大圆面积的,从而小圆的半径是大圆半径的.5.C 解析:由于知道有5个黑球,又黑球所占的比例为1-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个). 6.C 7. B 8.A 9.B 10.B 11.B 12.D 二、填空题 13.两数和第 二 个 1 2 3 41 2 3 4 5 2 3 4 5 6 345674 5 6 7 8第 一 个第7题答图14.60180.3解析:该班有学生,70~79分这一组的学生人数为18,所以频数是18,频率为.15.解析:(方法1)列表法:1 2第一盒第二盒1 1,1 1,22 2,1 2,23 3,1 3,2共有种,所以P(两张卡片标号恰好相同).(方法2)画树状图如图所示:共有6种情况,两张卡片标号恰好相同的情况有2种,第15题答图所以P(两张卡片标号恰好相同).16.0.8解析:由表知,玉米种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.17. 818.19. 0<x<120. x<﹣1或0<x<221. ﹣1≤t<8三、解答题22.分析:本题考查了统计与概率的综合应用.(1)上班花费时间在30至40分钟的城市有4个,上班花费时间在40至50分钟的城市有3个;(2)每个城市平均上班堵车时间=;(3)从4个城市中任意选取两个作为出发目的地共有6种不同选择.解:(1)补全频数分布直方图如图所示(阴影部分).(2)15个城市的平均上班堵车时间==≈8.3(分钟).(3)上海的堵车率=×100%≈30.6%,温州的堵车率=×100%=25.0%.4个城市中堵车率超过30%的城市有北京、沈阳和上海.从四个城市中选两个的所有方法有6种:(北京,沈阳),(北京,上海),(北京,温州),(沈阳,上海),(沈阳,温州),(上海,温州).其中两个城市堵车率都超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海),所以选取的两个城市堵车率都超过30%的概率P ==.23.解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A,每种结果发生的可能性相等,球恰在B手中的结果只有一种,所以两次传球后,第23题答图球恰在B 手中的概率是(2)由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这2种,所以三次传球后,球恰在A 手中的概率是 =.24.解:(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:第二次 第一次 R 1 R 2 G 1 G 2R 1 (R 1,R 1) (R 1,R 2) (R 1,G 1) (R 1,G 2) R 2 (R 2,R 1) (R 2,R 2) (R 2,G 1) (R 2,G 2) G 1 (G 1,R 1) (G 1,R 2) (G 1,G 1) (G 1,G 2) G 2(G 2,R 1) (G 2,R 2) (G 2,G 1) (G 2,G 2)①其中第一次摸到绿球,第二次摸到红球的结果有4种, ∴ P (第一次摸到绿球,第二次摸到红球)=41=164.②其中两次摸到的球中有1个绿球和1个红球的结果有8种, ∴ P (两次摸到的球中有1个绿球和1个红球)=81=162.(2)23.25. (1)解:∵B (1,0),OC=2OB , ∴C (0,﹣2),设抛物线解析式为y=a (x+4)(x ﹣1),把C (0,﹣2)代入得a•4•(﹣1)=﹣2,解得a= , ∴抛物线的解析式为y= (x+4)(x ﹣1),即y= x 2+ x ﹣2 (2)解:AB=1﹣(﹣4)=5, 设直线BC 的解析式为:y=kx+b , 把B (1,0),C (0,﹣2)代入得 ,解得,∴直线BC 的解析式为y=2x ﹣2, 设D (m ,2m ﹣2),∵△ABD 为以AB 为腰的等腰三角形, ∴BD=BA=5或AD=AB=5,当BD=BA 时,即(m ﹣1)2+(2m ﹣2)2=52 , 解得m 1=1+ ,m 2=1﹣ ,此时D 点坐标为(1+,2),(1﹣,﹣2),当AD=AB 时,即(m+4)2+(2m ﹣2)2=52 , 解得m 1=1(舍去),m 2=﹣1,此时D 点坐标为(﹣1,﹣4), 综上所述,满足条件的D 点坐标为(1+,2),(1﹣,﹣2),(﹣1,﹣4)(3)解:AB 2=25,BC 2=12+22=5,AC 2=42+22=20, ∵AB 2=BC 2+AC 2 ,∴△ABC 为直角三角形,∠ACB=90°, ∵∠BAC=∠CAO ,∴△ACO∽△ABC,∵△APQ与△ABC相似,∴∠CAP=∠OAC,∴AC平分∠BAP,设直线AP交y轴于E,作CF⊥AE于F,则CF=CO=2,∵∠CEF=∠AEO,∴△ECF∽△EAO,∴= = = ,在Rt△AOE中,∵OE2+OA2=AE2,∴(2+CE)2+42=(2CE)2,解得CE=﹣2(舍去)或CE= ,∴E(0,﹣),设直线AE的解析式为y=mx+n,把A(﹣4,0),E(0,﹣)得,解得,∴直线AE的解析式为y=﹣x﹣,解方程组,解得或,∴P(﹣,﹣).青岛版数学九年级下册期中测试题(二)一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S=8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于 5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数2515474336根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A300.1B900.3C m0.4D60n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC ﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OF•BF=3AE•3OE=9AE•OE,∵B点在反比例函数y=(x>0)的图象上,∴OF•BF=9AE•OE=3,∴AE•OE=,设A(a,b),∵OE=﹣a,AE=b,∴AE•OE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)•y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).青岛版数学九年级下册期中测试题(三)(时间:120分钟分值:120分)一、选择题1.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=()A. ﹣1.3B. ﹣2.3C. ﹣0.3D. ﹣3.32.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0②b<0③c>0④4a+2b+c=0,⑤b+2a=0⑥ b2-4ac>0其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个3.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y的最大值为﹣4D.抛物线的对称轴是直线x=14.下列图形中阴影部分面积相等的是()A. ①②B. ②③C. ①④D. ③④5.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似解为()A. x1≈﹣2.1,x2≈0.1B. x1≈﹣2.5,x2≈0.5C. x1≈﹣2.9,x2≈0.9D. x1≈﹣3,x2≈16.质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件.由此估计这一批次产品中的次品件数是()A.5B.100C.500D.10 0007.已知一个样本的数据个数是,在样本的频率分布直方图中各个小长方形的高的比依次为,则第二小组的频数为()A.4B.12C.9D.88.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A .16B.14C .13D.129.下列说法正确的是()A.在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚质地均匀的骰子,朝上一面的点数和为6D.在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是113 10.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()A.2B.4C.12D.16二、填空题11.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1 200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有________人.每周课外阅读时间(小时)0~1 1~2(不含1)2~3(不含2)超过3人数7 10 14 1912.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .13.为了解小学生的体能情况,抽取了某小学同年级50名学生进行跳绳测试,将所得数据整理后,画出频率分布直方图,已知图中从左到右各小组的频率分别是,,,,则第四小组的频率是_____,频数是______.14.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为________ 米.第3题图15.二次函数y=4x 2+3的顶点坐标为________ .16.把二次函数的表达式y=x 2-4x+6化为y=a (x -h )2+k 的形式,那么h+k=________.17.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.18. 有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.三、解答题19.在对某班的一次英语测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分分). (1)该班有多少名学生? (2)分这一组的频数是多少?频率是多少?20.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制分数段(分数为x 分)频数 百分比 60≤x <708 20% 70≤x <80a 30% 80≤x <9016 b % 90≤x <1004 10% (1)表中的a =_______,b =_________,请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的第17题图 第20题图圆心角的度数是________;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学,学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为_______.21.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率.(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.22.y是x的反比例函数,下表给出了x与y的一些值:x ﹣2 ﹣1 ﹣ 1 3y 2 ﹣1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.23.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象上的点A(1,0)及B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b(x-2)2+m的x的取值范围.24.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A,B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点25.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率. (2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?答案解析1.D2. D3. C4. D5. B6. C 解析:估计这一批次产品中的次品件数=10 000×5100=500(件).7.B 解析:因为各个小长方形的高的比依次为, 所以第二小组的频率为, 所以第二小组的频数为,故选B .8. D 解析:这6张扑克牌中点数为偶数的有3张,根据概率计算公式得到点数为偶数的概率为3162. 9.D10.B 解析:设黄球的个数为,则由题意得,解得.11. 240 解析:被调查的学生人数为7+10+14+19=50(人),样本中每周课外阅读时间在1~2(不含1)小时的学生所占的百分比为10010%20%50,由此来估计全体学生1 200人中每周课外阅读时间在1~2(不含1)小时的学生人数为1 200×20%=240(人).朝上的点数 1 2 3 4 5 6出现的次数 7 9 6 8 20 1012.10解析:由题意可得=0.2,解得n=10.13.0.210解析:已知图中从左到右前三个小组的频率分别是则第四小组的频率,频数是14. 315. (0,3)16. 417.12解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是12.18. 45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是4 5 .19.解:(1)答:该班有60名学生.(2)由题图,知分这一组的频数是,频率是34÷60=.20.解:(1)12 40补全频数分布直方图如图.(2)108°(3)21. 解:(1)P(选到女生)=123205.(2)不公平. 画树状图如图:列表如下:第21题答图第20题答图。
2020-2021青岛第三十九中学九年级数学下期中模拟试卷附答案

2020-2021青岛第三十九中学九年级数学下期中模拟试卷附答案一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)3.若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-44.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A .23DE BC =B .25DE BC = C .23AE AC =D .25AE EC = 5.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .376.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BCB .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 7.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°8.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .59.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 10.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25-C .251D 52 11.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)12.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.如图,P(m,m)是反比例函数9yx在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.15.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为_____米.16.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.17.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.18.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.19.如图,直立在点B处的标杆AB=2.5m,站立在点F处的观测者从点E看到标杆顶A,树顶C在同一直线上(点F,B,D也在同一直线上).已知BD=10m,FB=3m,人的高度EF =1.7 m,则树高DC是________.(精确到0.1 m)20.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.三、解答题21.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P6≈2.449,结果保留整数)22.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为 ;(3)在不改变主视图和俯视图的情况下,最多可添加 块小正方体.23.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;24.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数kyx=的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.25.已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.(1)如图1,若⊙O直径为10,AC=8,求BF的长;(2)如图2,连接OA,若OA=F A,AC=BF,求∠OAD的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB相交,由A、B的坐标,可求出k的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.4.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD :DB =2:3,∴AD AB =25. ∵DE ∥BC ,∴DE BC =AD AB =25,A 错误,B 正确; AE AC =AD AB =25,C 错误; AE EC =AD DB =23,D 错误. 故选B .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.B解析:B【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b b b -=. 故选B.6.D解析:D 【解析】【分析】根据黄金分割的定义得出51BC ACAC AB-==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴51BC ACAC AB-==,即AC2=BC•AB,故A、B错误;∴AC=51-AB,故C错误;BC=512-AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.8.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.9.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.10.A解析:A【解析】根据黄金比的定义得:51APAB-=,得514252AP-== .故选A.11.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.12.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.15.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴CD EDAB EB=,即1.52216AB=+,∴AB=13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.16.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.17.3:2【解析】因为DE ∥BC 所以因为EF ∥AB 所以所以故答案为:3:2解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 18.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.19.2m 【解析】【详解】解:过点E 作EM⊥CD 交AB 与点N∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CMV V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM ==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m.【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.20.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题21.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠APC=403(海里),在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cos cos45PCBPC=∠︒=406≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.22.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体,23.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE=,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.24.(1)2yx=,E(2,1),F(-1,-2);(2)32.【解析】【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.25.(1)BF=6;(2)∠OAD=30°.【解析】【分析】(1)如图1中,作⊙O的直径CM,连接AM,BM.利用勾股定理求出AM,证明四边形AMBF是平行四边形即可解决问题;(2)如图2中,作⊙O的直径CM,连接AM,BM,设AD交CM于J.证明AO⊥CM.推出∠OAD=∠BCM,解直角三角形求出∠BCM即可解决问题.【详解】(1)如图1中,作⊙O的直径CM,连接AM,BM.∵CM 是直径,∴∠CAM =∠CBM =90°,∵CM =10,AC =8,∴AM =22CM AC -=22108-=6,∵AD ⊥CB ,BE ⊥AC ,∴∠ADC =∠MBC =90°,∠BEC =∠MAC =90°,∴AD ∥BM ,AM ∥BE ,∴四边形AMBF 是平行四边形,∴BF =AM =6.(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .由(1)可知四边形AMBF 是平行四边形,∴AM =BF ,AF =BM ∵AC =BF ,∴AC =AM ,∵∠MAC =90°,MO =OC ,∴AO ⊥CM ,∵AD ⊥BC ,∴∠AOJ =∠CDJ =90°,∵∠AJO =∠CJD ,∴∠DCJ =∠JAO ,∵AF =OA ,AF =BM ,∴OA =BM ,∴CM =2BM ,∵∠CBM =90°,∴sin ∠BCM =BM CM =12, ∴∠BCM =30°,∴∠OAD=∠BCM=30°.【点睛】本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题.。
2022-2023学年青岛新版九年级下册数学期中复习试卷(有答案)

2022-2023学年青岛新版九年级下册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.如图,数轴上表示数的点是()A.A点B.B点C.C点D.都不是2.据中央电视台“朝闻天下”报道,北京市目前汽车拥有量约为3100000辆,则3100000用科学记数法表示为()A.0.31×107B.31×105C.3.1×105D.3.1×1063.某个长方体主视图是边长为1cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是()A.B.C.D.4.两组数据:8,9,9,10和8.5,9,9,9.5,它们之间不相等的统计量是()A.平均数B.中位数C.众数D.方差5.已知,如图,AB∥CD,直线EF与AB、CD分别相交于点M、N,∠EMB=65°,则∠END的度数为()A.65°B.115°C.125°D.55°6.如图,下列五个三角形中与第一个三角形相似的是()A.B.C.D.7.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥y轴,C、D在y轴上,若四边形ABCD为矩形,则它的面积为()A.1.5B.1C.3D.28.如图①,正方形ABCD中,点P以恒定的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,△APQ的面积为()A.6cm2B.4cm2C.D.2二.填空题(共6小题,满分18分,每小题3分)9.因式分解:﹣4y3+4y=.10.如果﹣1是方程x2+mx﹣1=0的一个根,那么m的值为.11.如图,点O是矩形ABCD的对角线AC的中点,点M是矩形ABCD的边AD的中点,连接OM,若OM=3,BC=8,则OB的长为.12.如图,平行四边形ABCD中,∠A=60°,CD=4,以点A为圆心,AB的长为半径画弧交AD边于点E,以点B为圆心,BE的长为半径画弧交BC边于点F,则阴影部分的面积为.13.在反比例函数的图象上有两点P(2,n),Q(3,n﹣1),则该反比例函数的解析式为.14.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为4的等边三角形,边AO在y 轴上,点B1,B2,B3,…都在直线上,则点A2021的坐标是.三.解答题(共10小题,共108分)15.计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;16.解不等式组并求它的整数解.17.如图,已知在△ABC中,AB=AC,∠1=∠2,AE⊥CD于点E.求证:DC﹣DB=2DE.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)19.“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系…29282726…销售量y(千克)…10.51111.512售价x(元/千克)(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?20.如图,反比例函数y=(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.21.为了了解重庆市的空气质量情况,我校初2017级“综合实践环境调查”小组从环境监测网随机抽取了若干天的空气质量作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出):(1)课题小组随机抽取的天数为天,请将条形统计图补充完整;(2)为找出优化环境的措施,“环境治理研讨小组”的同学欲从天气质量为“中度污染”和“重度污染”的样本中随机抽取两天分析污染原因,请用列表或画树状图的方法求出所抽取的两天恰好都是“重度污染”的概率.22.已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠PAC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠PAM=∠DAN.23.如图,在平面直角坐标系中,等边三角形△ABO的边长为4.(1)求点A的坐标.(2)若点P从点O出发以每秒1个单位的速度沿x轴正方向运动,运动时间为t秒,△PAB的面积为S,求S与t的关系式,并直接写出t的范围.(3)在(2)的条件下,当点P在点B的右侧时,若S=,在平面内是否存在点Q,使点P、Q、A、B围成的四边形是平行四边形?若存在,求出点Q坐标;若不存在,请说明理由.24.如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B 两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)将抛物线y=+bx+c向上平移2个单位长度,再向右平移|m|(m<0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:根据实数与数轴的关系,右边的点表示的数比左边的点表示的数大,又由1<<2,则表示数的点在1与2之间.故选:B.2.解:将3100000用科学记数法表示为3.1×106.故选:D.3.解:易得主视图中对角线的长为,由于截面是一个正方形,那么可得这个长方体的宽也为,俯视图应表现出几何体的长与宽为1,.故选:D.4.解:数据8、9、9、10的平均数为=9、中位数为=9,众数为9,方差为×[(8﹣9)2+2×(9﹣9)2+(10﹣9)2]=0.5;数据8.5,9,9,9.5的平均数为=9、中位数为、众数为9、方差为×[(8.5﹣9)2+2×(9﹣9)2+(9.5﹣9)2]=0.125;由以上计算可知,两组数据的方差不同,故选:D.5.解:∵AB∥CD,∴∠END=∠EMB=65°,故选:A.6.解:设小正方形的边长为1,那么已知三角形的三边长分别为,2,,所以三边之比为1:2:.A、三角形的三边分别为2,,3,三边之比为::3,故错误;B、三角形的三边分别为2,4,2,三边之比为1:2:,故准确;C、三角形的三边分别为2,3,,三边之比为2:3:,故错误;D、三角形的三边分别为,,4,三边之比为::4,故错误.故选:B.7.解:如图,延长BA交x轴于点E.∵AB∥y轴,四边形ABCD为矩形,∴四边形AEOD、DBEOC都是矩形.∵点A在双曲线y=上,∴矩形AEOD的面积为1,∵点B在双曲线y=上,∴矩形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故选:D.8.解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故BD=4;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=BC=CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4﹣×4×2﹣×2×2﹣×4×2=6(cm2).故选:A.二.填空题(共6小题,满分18分,每小题3分)9.解:原式=﹣4y(y2﹣1)=﹣4y(y+1)(y﹣1),故答案为:﹣4y(y+1)(y﹣1).10.解:∵﹣1是方程x2+mx﹣1=0的一个根,∴x=﹣1满足方程x2+mx﹣1=0,∴1﹣m﹣1=0,解得m=0.故答案是:0.11.解:∵M、O分别是AD、AC的中点,∴OM=CD,∵OM=3,∴CD=6,∵四边形ABCD是矩形,∴∠ABC=∠D=90°,AD=BC=8,AB=CD,由勾股定理得:AC===10,∵∠ABC=90°,O为AC的中点,∴OB=AC==5,故答案为:5.12.解:如图连接BE,EF.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∵AE=AB,∴△ABE是等边三角形,∴∠ABE=∠EBF=60°,∵BE=BF,∴△EBF是等边三角形,∵S阴=S△BEF=×42=4,故答案为4.13.解:在反比例函数的图象上有两点P(2,n),Q(3,n﹣1),∴,解得:k=6,∴该反比例函数的解析式为y=,故答案为:y=.14.解:如图,∵△OAB1,△B1A1B2,△B2A2B3,…都是边长为4的等边三角形,∴∠AOB1=∠AB1B2=∠A2B2B3=…=60°,∴AO∥A1B1∥A2B2∥…,∵AO在y轴上,∴A1B1⊥x轴,A2B2⊥x轴,…过B1作B1C⊥x轴,垂足为C,∵点B1在直线y=x上,设B1(x,x),∴∠B1OC=30°,∵△OAB1是等边三角形,且边长为4,∴B1C=2,OC=2,∴A1的坐标为(2,4+2),同理A2(4,4+4)、A3(6,4+6),∴A2021的坐标为(4042,4046),故答案为:(4042,4046).三.解答题(共10小题,共108分)15.解:原式=4﹣1+2﹣+2×=5﹣+=5.16.解:,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.17.证明:如图,在CD上截取CM=BD,AB与CD交于点O.∵∠1=∠BAC,∠DOB=∠AOC,∴∠ABD=∠ACM,在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴AD=AM,∵AE⊥DM,∴DE=EM,∴CD﹣BD=CM+DM﹣CM=2DE.18.解:(1)过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶,∴速度还可以化为:m/s,最小安全距离为:×0.2+=8(m),大灯能照到的最远距离是BD=7m,∴该车大灯的设计不能满足最小安全距离的要求.19.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(11,28),(12,26)代入y=kx+b,得:,解得:,∴y与x之间的函数关系式为y=﹣2x+50.当x=14时,y=﹣2×14+50=22,∴当天该水果的销售量为22千克.(2)根据题意得:(x﹣10)(﹣2x+50)=100,整理得:x2﹣35x+300=0,解得:x1=15,x2=20.又∵10≤x≤16,∴x=15.答:该天水果的售价为15元/千克.20.解:(1)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF==2.21.解:(1)课题小组随机抽取的天数为12÷20%=60(天),则“轻度污染”的天数为60×5%=3天,轻微污染天数为60﹣(12+36+3+2+2)=5天,补全条形图如下:故答案为:60;(2)设中度污染的两天即为甲、乙,重度污染的两天记为A、B,画树状图如下:由树状图知,共有12种等可能结果,其中所抽取的两天恰好都是“重度污染”的有2种,所以所抽取的两天恰好都是“重度污染”的概率为=.22.证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠PAM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠BAM+∠BMA=90°,∵AD⊥PN,∴∠AND+∠DAN=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠BMA,∴∠BAM=∠DAN,即∠PAM=∠DAN.23.解:(1)如图1,过点A作AD⊥x轴于D,∵△ABC是等边三角形,∴∠AOD=60°,OD=OB=2,在Rt△AOD中,AD=OD=2,∴A(2,2);(2)由运动知,OP=t,当0≤t<4时,如图2,BP=OB﹣OP=4﹣t,=BP•AD=(4﹣t)×2=﹣t+4,∴S=S△ABP当t>4时,如图3,BP=OP﹣OB=t﹣4,=BP•AD4=(t﹣4)×2=t﹣4;∴S=S△ABP(3)由(2)知,点P在点B右侧时,t>4,S=t﹣4,∵S=,∴t﹣4=,∴t=5,∴P(5,0),∵等边△ABC的边长为4,∴B(4,0),∵A(2,2),设Q(m,n),∵使点P、Q、A、B围成的四边形是平行四边形,∴①当AP为对角线时,∴AP与BQ互相平分,∴(2+5)=(4+m),(2+0)=(0+n),∴m=3,n=2,∴Q(3,2),②当AB为对角线时,∴AB与PQ互相平分,∴(2+4)=(5+m),(2+0)=(0+n),∴m=1,n=2,∴Q(1,2),③当BP为对角线时,∴BP与AQ互相平分,∴(4+5)=(2+m),(0+0)=(2+n),∴m=7,n=﹣2,∴Q(7,﹣2),即:满足条件的点Q的坐标为(3,2)或(1,2)或(7,﹣2).24.解:(1)当x=0时,y=﹣4,∴点B的坐标为(0,﹣4);当y=0时,x=4,∴点A的坐标为(4,0).将点A(4,0)、B(0,﹣4)代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣x﹣4.当y=0时,有x2﹣x﹣4=0,解得:x1=﹣3,x2=4.∴点C的坐标为(﹣3,0).(2)∵y=x2﹣x﹣4=﹣4,∴原抛物线的顶点坐标为(,﹣4).∵将点(,﹣4)向上平移2个单位长度,再向右平移|m|(m<0)个单位长度得到点P,∴点P的坐标为(+|m|,﹣2).∵点P在△ABC内,∴点P在线段AB的上方.当y=﹣2时,有x﹣4=﹣2,解得:x=2,∴+|m|<2,解得:﹣<m<.∴若新抛物线的顶点P在△ABC内,m的取值范围为﹣<m<0.(3)分两种情况考虑(如图):①过点B作BE⊥BC交x轴于点E,∵A(4,0),B(0,﹣4),∴∠ABO=45°,∵∠MBA+∠CBO=45°,BC⊥BE,∴∠MBA=∠EBA,∴直线BE与抛物线的交点为点M.设点E的坐标为(n,0)(n>0),∵∠BCO=∠ECB,∠BOC=∠EBC=90°,∴△BCO∽△ECB,∴.∵B(0,﹣4),C(﹣3,0),E(n,0),∴OC=3,EC=n﹣(﹣3)=n+3,BC==5,∴,解得:n=,经检验n=是分式方程的解,∴点E的坐标为(,0).设直线BE的解析式为y=kx﹣4,将点E(,0)代入y=kx﹣4中,得:0=k﹣4,解得:k=,∴直线BE的解析式为y=x﹣4.联立直线BE与抛物线解析式成方程组,得:,解得:(舍去)或,∴点M的坐标为(,﹣);②取点F(3,0),连接BF,延长BF交抛物线于点M,∵OC=OF,BO⊥CF,∴∠CBO=∠FBO,∴∠MBA+∠CBO=45°.∵点B的坐标为(0,﹣4),点F的坐标为(3,0),∴直线BF的解析式为y=x﹣4.联立直线BF与抛物线解析式成方程组,得:,解得:解得:(舍去)或,∴点M的坐标为(5,).综上所述:当∠MBA+∠CBO=45°时,点M的坐标为(,﹣)或(5,).。
2019届青岛九年级下数学期中检测题及答案解析

期中检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.已知一次函数的图象经过点,则该函数图象必经过点( ) A .B .C .D . 2.下列函数中,随增大而减小的是( )A .B .C .D .3. 甲、乙两辆摩托车同时分别从相距20 km 的A ,B两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )之间的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B 两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km4.已知正比例函数的图象上的两点,当时,有,那么的取值范围是( )A .B .C .D . 5.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<6. 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1 000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象的是( )7.关于频率和概率的关系,下列说法正确的是()A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等8.现有游戏规则如下:第一个人先说“1”或“1,2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就获胜.在这个游戏中,若采取合理的策略,你认为()A.后报者可能胜B.后报者必胜C.先报者必胜D.不分胜负9.已知二次函数y=x2-4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≥-4C.当a=3时,不等式x2-4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-310.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1 B.2 C.3 D.411.已知k1<0<k2,则函数y=k1x-1和y=的图象大致是()第12题12.反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别是( ) A .y =k x ,y =kx 2-x B . y =k x,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-k x,y =-kx 2-x 二、填空题(每小题3分,共24分)13.若一次函数的图象经过点和点,则这个函数的图象不经过第_______象限.14.若函数的图象经过点,则____,此时函数是________函数.15.如图,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.16.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6, 7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏___________.(填“公平”或“不公平”)17.将二次函数的图象向上平移1个单位,则平移后的二次 函数的解析式为 .18.抛物线的部分图象如图所示,若,则的取值范围是 . 19.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)k y k x=>的图象上的点是 . 20.如图所示,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则顶点A 与桌面接触的概率是 . 三、解答题(共60分)21.(6分)如图,正比例函数的图象与一次函数的图象交于点; 一次函数的图象经过点与轴的交点为,与轴的交点为.(1)求一次函数的解析式;(2)求点的坐标;(3)求△的面积.第18题图22.(6分)小明和小刚做摸纸牌游戏.如图所示,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数时,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.23.(6分)如图,反比例函数kyx=的图象与一次函数y mx b=+的图象交于(13)A,,(1)B n-,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值?24.(6分)某公司市场营销部营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:(1)求营销员个人月收入元与该营销员每月的销售量万件之间的函数解析式;(2)已知该公司某营销员月份的销售量为1.2万件,求该营销员月份的收入.25.(8分)某块实验田里的农作物每天的需水量y(千克)与生长天、第时间x(天)之间的关系如图所示.这些农作物在第天的需水量分别为千克、千克,在第天后每天的需水量比前一天增加千克.(1)分别求出和时,与之间的函数解析式;千克(2)如果这些农作物每天的需水量大于或等于时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?26.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有其他任何区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14.(1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?27.(10分)某公司有A型产品件,B型产品件,分配给下属甲、乙两个商店销售,其中件给甲店,件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:型产品利润型产品利润(1)设分配给甲店A型产品x件,这家公司卖出这件产品的总利润为W,求W关于x的函数解析式,并求出x的取值范围;(2)若公司要求总利润不低于元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?28.(10分)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级五班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C,D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇地发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)第28题图期中检测题参考答案1.B 解析:由一次函数的图象经过点,知,所以,所以一次函数的解析式为,所以该一次函数必经过点.2.D 解析:由一次函数的性质知,当时,函数值随自变量的增大而减小,故选D.3. C 解析:观察函数的图象可以得出:甲摩托车的速度为20÷0.6=(km/h),乙摩托车的速度为20÷0.5=40(km/h),所以乙摩托车的速度较快,选项A正确;甲摩托车0.3 h走×0.3=10(km),所以经过0.3 h甲摩托车行驶到A,B两地的中点,选项B正确;经过0.25 h甲摩托车距A地×0.25=(km),乙摩托车距A地=10(km),所以两摩托车没有相遇,选项C不正确;乙摩托车到A地用了0.5 h,此时甲摩托车距A地×0.5=(km),选项D正确.4.A 解析:由题意可知,故.5.D 解析:由一次函数的函数值随的增大而减小,知;由它的图象与轴的负半轴相交,知.6.C 解析:由题意知,此函数的图象应分为三段:当0≤t≤4时,两车之间的距离在逐渐缩小,两车经过4小时相遇,即当t=4时,两车之间的距离y=0;当两车相遇后再经过小时,特快车将到达甲地,即当4<t≤时,两车之间的距离在增大;而当<t≤10时,特快车已经到达了甲地,只有快车还在行驶,两车之间的距离虽在增大,但不如当4<t≤时增大得快.综上所述,正确的选项为C.7.B 解析:A.只能用频率估计概率;B正确;C.概率是定值;D.可以相等,如“抛硬币实验”,可得到正面向上的频率为,与概率相同.8.C 解析:为了抢到,必须抢到35,那么不论另一个人报还是,你都能胜.游戏的关键是报数先后顺序,并且每次报数的个数和对方合起来是三个,即对方报个数,你就报个数.抢数游戏,它的本质是一个能否被“”整除的问题.谁先抢到35,对方无论报36还是36,37,你都获胜.9.B 解析:二次函数为y=x2-4x+a,对称轴为直线x=2,图象开口向上,则:A.当x<1时,y随x的增大而减小,故选项A正确;B.若图象与x轴有交点,即Δ=16-4a≥0,则a≤4,故选项B错误;C.当a=3时,不等式x2-4x+a<0的解集是1<x<3,故选项C正确;D.原式化为y=(x-2)2-4+a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2-3+a ,又函数图象过点(1,-2),代入解析式得a =-3,故选项D 正确.10. C 解析:①c 是二次函数y =ax 2+bx +c 的图象与y 轴交点的纵坐标,所以当c =0时,函数的图象经过原点.②c >0时,二次函数y =ax 2+bx +c 与y 轴的交点在y 轴的正半轴,又因为函数的图象开口向下,所以方程ax 2+bx +c =0必有两个不相等的实根.③当a <0时,函数图象最高点的纵坐标是;当a >0时,函数图象最低点的纵坐标是.由于a 值不确定,故无法判断最高点或最低点.④当b =0时,二次函数y =ax 2+bx +c 变为y =ax 2+c ,又因为y =ax 2+c 的图象与y =ax 2的图象相同,所以当b =0时,函数的图象关于y 轴对称.命题①②④正确,故选C .11.A 解析:由k 2>0知,函数y =的图象分别位于第一、三象限;由k 1<0知,函数y =k 1x -1经过第二、三、四象限.故选A.12.B 解析:当k >0时,由图象知首先排除A ,B ,再由二次函数图象的对称轴大于0知C ,D 也不正确;当k <0时,由图象知首先排除C ,D ,再由二次函数图象的对称轴大于0知A 不正确,故选B.13.四 解析:由题意,得⎩⎨⎧=+-=+-,,212b k b k 解得⎩⎨⎧==,,11b k 所以这个函数的解析式为1+=x y ,所以这个函数的图象不经过第四象限. 14.1 正比例 解析:由函数的图象经过点,知,所以所以函数的解析式为此时函数为正比例函数.15.21 解析:圆形地面被分成面积相等的八部分,其中阴影占四部分,所以小球落在黑色石子区域内的概率是21. 16. 不公平 解析:画树状图如图所示,可知甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.17. 解析:熟记函数图象的平移规律:左加右减,上加下减.18. -3<<1 解析:根据抛物线的图象可知:抛物线的对称轴为直线,已知一个交点为(1,0),根据轴对称性,则另一个交点为(-3,0),所以时,的取值范围是-3<<1. 19.B 解析:由于反比例函数中的系数,所以只要点的两个坐标的乘积大于0即可,因此点B可能在反比例函数的图象上. 20. 解析:将木块随机投掷在水平桌面上,正方体的六个面都可能与桌面接触,因为A 是正方体小木块三个面的交点,所以当这三个面中的任一面与桌面接触时,顶点A 都与桌面接触.所以P (顶点A 与桌面接触)==.21.解:(1)把点的坐标代入中,得,所以. 将点,的坐标分别代入中, 得2,21,k b k b +=⎧⎨-+=-⎩解得⎩⎨⎧==,,11b k 所以这个函数的解析式为1+=x y .(2)当时,所以点的坐标为. (3)在中,当时,,所以, 所以△的面积为.12121=⨯⨯=S 22. 分析:本题考查了概率的计算与实际应用,利用列表法或树状图法列出两张牌的牌面数字之积的所有等可能结果,利用概率计算公式可求两张牌的牌面数字之积为奇数的概率.解:∴ P (积为奇数)=,P (积为偶数)=.∴ 小明得分:×2=(分),小刚得分:×1=(分).∵ ≠ ,∴ 这个游戏对双方不公平.点拨:判断游戏的公平性关键是计算每个事件的概率,如果概率相等就公平,否则就不公平.此类题型一般通过比较概率的大小求解.概率计算公式为:P (A )=.23. 解:(1)∵点(13)A ,在k y x =的图象上,∴3k =,∴3y x=. 又∵点(1)B n -,在3y x=的图象上,3n ∴=-,即(31)B --, . 由点A ,B 在y mx b =+的图象上,知313m b m b =+⎧⎨-=-+⎩,解得1,2.m b =⎧⎨=⎩ 所以反比例函数的解析式为3y x=,一次函数的解析式为2y x =+. (2)从图象上可知,当3x <-或01x <<时,反比例函数的值大于一次函数的值.24.解:(1)依题意,设. 因为函数图象过和两点, 所以,, 所以,所以. (2)当时,, 即该营销员5月份的收入为元.25.解:(1)当时,设. 根据题意,得⎩⎨⎧+=+=,,b k b k 303000102000解得⎩⎨⎧==,,150050b k 所以当时,与之间的函数解析式是. 所以当时,. 当时,根据题意,得,即. 所以当时,与之间的函数解析式是. (2)当时,与之间的函数解析式是. 解,得,所以应从第45天开始进行人工灌溉.26.解:(1)()().434111=-=-=取到红球取到白球P P (2)设袋中的红球有x 只,则有1184x x =+ 或183184x =+,解得6x =. 所以袋中的红球有6只.27.解:(1)由题意,知甲店有B 型产品(70)x -件, 乙店有A 型产品(40)x -件,有B 型产品(10)x -件,则200170(70)160(40)150(10)W x x x x =+-+-+-2016 800x =+. 由⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥,,,,010*******x x x x 得.4010≤≤x (2)由.403838560 17800 1620≤≤≥≥+=x x x W ,所以,得 所以有三种不同的分配方案:①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件; ②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件; ③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意,有(20)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16 800a x =-+. ①若020a <<,当40x =时,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大;②若20a =,当4010≤≤x 时,即符合题意的各种方案,使总利润都相同; ③若2030a <<,当10x =时,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大.28. 解:(1)∵ 点P 与P ′(1,3)关于x 轴对称, ∴ 点P 的坐标为(1,﹣3).∵ 抛物线y=a (x ﹣1)2+c 过点A(10),顶点是P (1,﹣3),∴22(11)0,(11)3,a c a c ⎧-+=⎪⎨-+=-⎪⎩解得1,3.a c =⎧⎨=-⎩ 则抛物线的解析式为y =(x ﹣1)2﹣3,即y =x 2﹣2x ﹣2.(2)∵ CD 平行x 轴,点P ′(1,3)在CD 上, ∴ C ,D 两点的纵坐标为3.由(x ﹣1)2﹣3=3,解得11x =,21x =,∴ C ,D两点的坐标分别为(13),(1+3). ∴ CD=∴ “W ”图案的高与宽(CD )的比=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版九年级数学下册期中试卷一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S=8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC ﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OF•BF=3AE•3OE=9AE•OE,∵B点在反比例函数y=(x>0)的图象上,∴OF•BF=9AE•OE=3,∴AE•OE=,设A(a,b),∵OE=﹣a,AE=b,∴AE•OE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)•y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).。