初中数学青岛版九年级下期中数学试卷

合集下载

2020-2021青岛市九年级数学下期中试卷(带答案)

2020-2021青岛市九年级数学下期中试卷(带答案)
______. 16.如图,在 2×2 的网格中,以顶点 O 为圆心,以 2 个单位长度为半径作圆弧,交图中 格线于点 A,则 tan∠ABO 的值为_____.
17.在 ABC 中,若 B 45 , AB 10 2 , AC 5 5 ,则 ABC 的面积是______.
18.如图,l1∥l2∥l3,直线 a、b 与 l1、l2、l3 分别相交于点 A、B、C 和点 D、E、F.若 AB=3,DE=2,BC=6,则 EF=______.
9.C
解析:C 【解析】 【分析】 连接 CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得 出∠DOE=2∠ACD=40°即可, 【详解】 连接 CD,如图所示:
D.
7.如图,在△ABC 中,M 是 AC 的中点,P,Q 为 BC 边上的点,且 BP=PQ=CQ,BM 与 AP,AQ 分别交于 D,E 点,则 BD∶DE∶EM 等于
A.3∶2∶1
B.4∶2∶1
8.下列命题是真命题的是( )
C.5∶3∶2
D.5∶2∶1
A.如果两个三角形相似,相似比为 4:9,那么这两个三角形的周长比为 2:3 B.如果两个三角形相似,相似比为 4:9,那么这两个三角形的周长比为 4:9 C.如果两个三角形相似,相似比为 4:9,那么这两个三角形的面积比为 2:3 D.如果两个三角形相似,相似比为 4:9,那么这两个三角形的面积比为 4:9
一、选择题
1.B 解析:B 【解析】 【分析】 运用平行线分线段成比例定理对各个选项进行判断即可. 【详解】
∵AD:DB=2:3,∴ AD = 2 . AB 5
∵DE∥BC,∴ DE = AD ห้องสมุดไป่ตู้ 2 ,A 错误,B 正确; BC AB 5

山东省青岛市九年级下学期期中数学试卷

山东省青岛市九年级下学期期中数学试卷

山东省青岛市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019七下·安陆期末) 在﹣3,,0,1四个数中,是无理数的是()A . ﹣3B .C . 0D . 12. (2分)(2014·海南) 下列式子从左到右变形是因式分解的是()A . a2+4a﹣21=a(a+4)﹣21B . a2+4a﹣21=(a﹣3)(a+7)C . (a﹣3)(a+7)=a2+4a﹣21D . a2+4a﹣21=(a+2)2﹣253. (2分) (2017·江阴模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2016·盐田模拟) 如图是边长为1的六个小正方形组成的平面图形,经过折叠能围成一个正方体,那么点A、B在围成的正方体上相距()A . 0B . 1C .D .5. (2分) (2018九上·重庆开学考) 关于的一元二次方程有一个根为,则的值应为()A .B .C . 或D .6. (2分) (2017八上·台州期末) 工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC,则OC平分∠AOB.由此作法可得△MOC≌△NOC,其依据是()A . SSSB . SASC . ASAD . AAS二、填空题 (共6题;共6分)7. (1分) (2017七上·吉林期末) 如果x-2y=-3,那么5+x-2y=________.8. (1分)(2011·义乌) 某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是S甲2=51、S乙2=12.则甲、乙两选手成绩比较稳定的是________.9. (1分)(2020·衡水模拟) 已知-1是方程x2+ax-b=0的一个根,则a2-b2+2b的值为________.10. (1分)如图,在△ABC中,∠A=40°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是________.11. (1分) (2015七上·莆田期末) 观察下面一组式子:1)1× ;2);3);4)…写出这组式子中的第(n)组式子是________.12. (1分)(2019·大邑模拟) 如图在菱形纸片ABCD中,AB=4,∠B=120°,将菱形纸片翻折,使点A落在边CD的中点G处,折痕为EF ,点E , F分别在边AD , AB上,则sin∠GEF的值为________.三、解答题 (共11题;共93分)13. (5分)若a,b,c为整数,且(a﹣b)2016+(c﹣a)2016=1,试求(a﹣b)2017+(b﹣c)2017+(c ﹣a)2017的值.14. (5分)化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.15. (5分)(2017·普陀模拟) 上海首条中运量公交线路71路已正式开通.该线路西起沪青平公路申昆路,东至延安东路中山东一路,全长17.5千米.71路车行驶于专设的公交车道,又配以专用的公交信号灯.经测试,早晚高峰时段71路车在专用车道内行驶的平均速度比在非专用车道每小时快6千米,因此单程可节省时间22.5分钟.求早晚高峰时段71路车在专用车道内行驶的平均车速.16. (5分)按要求用尺规作图,保留作图痕迹,不写作法(1)请在图①的正方ABCD内,画出一个P满足∠APB=90°(2)请在图②的正方ABCD内(含边),画出满足∠APB=90°的所有的P,并一句话说明理由.17. (5分)如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上.(1)求跳伞运动员一次跳伞落在草坪上的概率;(2)求跳伞运动员两次跳伞都落在草坪上的概率.18. (10分)(2019·荆州模拟) 某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i= ,且O、A、D在同一条直线上.(1)求楼房OB的高度;(2)求小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)19. (15分)(2011·台州) 2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请根据以上提供的信息,解答下列问题:(1)求被抽取部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级800名学生中达到良好和优秀的总人数.20. (11分) (2018八上·裕安期中) 小明和爸爸周末步行去游泳馆游冰,爸爸先出发了一段时间后小明才出发,途中小明在离家1400米处的报亭休息了一段时间后继续按原来的速度前往游泳馆.两人离家的距离y(米)与小明所走时间x(分钟)之间的函数关系如图所示,请结合图象信息解答下列问题:(1)小明出发________分钟后第一次与爸爸相遇;(2)分别求出爸爸离家的距离y1和小明到达报亭前离家的距离y2与时间x之间的函数关系式;(3)求小明在报亭休息了多长时间遇到姗姗来迟的爸爸;21. (10分)(2017·东营模拟) 如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE、CD 相交于点B.(1)求证:直线AB是⊙O的切线.(2)当AC=1,BE=2,求tan∠OAC的值.22. (12分) (2019八上·锦州期末) 我们定义:在一个三角形中,如果一个角的度数是另一个角的度数倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为,,的三角形是“和谐三角形”概念理解:如图,,在射线上找一点,过点作交于点,以为端点作射线,交线段于点(点不与重合)(1)的度数为________, ________(填“是”或“不是”)“和谐三角形”(2)若,求证:是“和谐三角形”.(3)如图,点在的边上,连接,作的平分线交于点,在上取点,使, .若是“和谐三角形”,求的度数.23. (10分)(2011·淮安) 如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y 轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共93分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

新编整理初中数学(青岛版)九年级下册期中数学试卷

新编整理初中数学(青岛版)九年级下册期中数学试卷

初中数学青岛版九年级下册期中数学试卷一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y= C.y= D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2 B.﹣2或1 C.1 D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3 B.y=x2+2x+3 C.y=﹣x2+2x﹣3 D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数 1 2 3 4 5 6 7 8 9 10黑棋数 2 5 1 5 4 7 4 3 3 6根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A 30 0.1B 90 0.3C m 0.4D 60 n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD 交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x 轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OF•BF=3AE•3OE=9AE•OE,∵B点在反比例函数y=(x>0)的图象上,∴OF•BF=9AE•OE=3,∴AE•OE=,设A(a,b),∵OE=﹣a,AE=b,∴AE•OE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13 x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0 ∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)•y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).。

青岛版2020届九年级下册数学期中测试卷

青岛版2020届九年级下册数学期中测试卷

青岛版2020届九年级下册数学期中测试卷姓名:________ 班级:________ 成绩:________一、单选题1 . 反比例函数具有的性质是()A.当时,B.在每个象限内,随的增大而减小C.图象分布在第二、四象限D.图象分布在第一、三象限2 . 下列函数中,y是x的反比例函数的是()A.=﹣1B.xy=﹣C.y=x-pD.y=﹣53 . 如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:①;②;③当时,随的增大而增大;④方程的根为,,;⑤其中正确结论是()A.①③④B.①②③C.②③④D.③④⑤4 . 与图中实物图相类似的立体图形按从左到右的顺序依次是()A.圆柱、圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、棱柱D.棱柱、圆锥、棱柱、长方体5 . 若是二次函数,则等于()A.B.C.D.或6 . “十二五”以来,北京市人口增长过快导致城市不堪重负,是造成交通拥堵,能源匮乏等“大城市病”的根源之一.右图是根据北京市统计局近年各年末常住人口增长率及常住人口数的相关数据制作的统计图.有下面四个判断:①从2011年至2016年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③2015年末全市常住人口比2014年末增加18.9万人;④从2011年到2016年全市常住人口的年增长率连续递减.其中合理的是()A.①②B.①④C.②③D.③④7 . 在平面直角坐标系中,抛物线y2与直线y1均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x<2时,y2>y1;②y2随x的增大而增大的取值范围是x<2;③使得y2大于4的x值不存在;④若y2=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个8 . 地球上陆地与海洋面积的比是3∶7,宇宙中一块陨石进入地球,落在陆地的概率是()A.B.C.D.9 . 如图抛物线的对称轴是直线,且图像经过点,则的值为()A.B.C.D.10 . 抛掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,小明掷一次骰子,观察向上的一面的点数,下列属必然事件的是()A.出现的点数小于7B.出现的点数是3C.出现的点数大于8D.出现的点数是偶数11 . 如图,反比例函数y=的图象过矩形OABC的顶点B,OA,OC分别在x轴,y轴的正半轴上,OC:OA=2:5,若直线y=kx+3(k≠0)平分矩形OABC面积,则k的值为()A.B.C.D.或12 . 在一定温度下向一定量的水中不断加入食盐(NaCl),那么能表示食盐溶液的溶质质量分数y与加入的食盐(NaCl)的量x之间的变化关系的图象大致是()A.A B.B C.C D.D二、填空题13 . 以下叙述中,其中正确的有_________(请写出所有正确叙述的序号)(1)若等腰三角形的一个外角为,则它的底角为(2)“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。

青岛市九年级下学期期中数学试卷

青岛市九年级下学期期中数学试卷

青岛市九年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若分式有意义,则x的取值范围是()A . x≠0B .C .D .2. (2分)(2017·宜兴模拟) 下列各式运算中,正确的是()A . (a+b)2=a2+b2B .C . a3•a4=a12D .3. (2分) (2017九下·江阴期中) 下列调查方式中适合的是()A . 要了解一批节能灯的使用寿命,采用普查方式B . 调查你所在班级同学的身高,采用抽样调查方式C . 环保部门调查沱江某段水域的水质情况,采用抽样调查方式D . 调查全市中学生每天的就寝时间,采用普查方式4. (2分)(2017·薛城模拟) 图中所示几何体的俯视图是()A .B .C .D .5. (2分) (2017九下·江阴期中) 如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A . ∠1=∠3B . ∠2+∠3=180°C . ∠2+∠4<180°D . ∠3+∠5=180°6. (2分) (2017九下·江阴期中) 关于抛物线y=(x﹣1)2+2,下列结论中不正确是()A . 对称轴为直线x=1B . 当x<1时,y随x的增大而减小C . 与x轴没有交点D . 与y轴交于点(0,2)7. (2分)下列图形中,是轴对称图形但不是中心对称图形的是()A . 等边三角形B . 平行四边形C . 矩形D . 圆8. (2分) (2017九下·江阴期中) 晓明家到学校的路程是3500米,晓明每天早上7:30离家步行去上学,在8:10(含8:10)至8:20(含8:20)之间到达学校.如果设晓明步行的速度为x米/分,则晓明步行的速度范围是()A . 70≤x≤87.5B . x≤70或x≥87.5C . x≤70D . x≥87.59. (2分) (2017九下·江阴期中) 如图,已知菱形OABC的顶点O(0,0),B(﹣2,﹣2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A . (1,﹣1)B . (﹣1,﹣1)C . (1,1)D . (﹣1,1)10. (2分)(2017·宁波模拟) 当m,n是实数且满足m﹣n=mn时,就称点Q(m,)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y= 的图象上,点O是平面直角坐标系原点,则△OAB的面积为()A . 1B .C . 2D .二、填空题 (共8题;共9分)11. (2分)4349精确到0.01的近似数是________ ,30609精确到万位是________ ;12. (1分) (2017九下·东台开学考) 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为________元.13. (1分) (2017九下·江阴期中) 若一个多边形的内角和比外角和大360°,则这个多边形的边数为________.14. (1分) (2017九下·江阴期中) 一组数据1,2,a,4,5的平均数是3,则这组数据的方差为________.15. (1分) (2017九下·江阴期中) 有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是________.16. (1分) (2017九下·江阴期中) 如图,△ABC中,DE∥FG∥BC,AD:DF:FB=2:3:4,若EG=4,则AC=________.17. (1分) (2017九下·江阴期中) 如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.18. (1分) (2017九下·江阴期中) 如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是________.三、解答题 (共10题;共120分)19. (10分)(2017·咸宁)(1)计算:|﹣ |﹣ +20170;(2)解方程: = .20. (10分) (2017九下·江阴期中) 计算。

2020-2021学年青岛版数学九年级下册期中测试题及答案(共3套)

2020-2021学年青岛版数学九年级下册期中测试题及答案(共3套)

青岛版数学九年级下册期中测试题(一)(时间:120分钟 分值:120分)一、选择题1.(2014•杭州中考)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .13162.某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,则恰好选中两名男生的概率是( ) A.B.C.D.3. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张奖金(元) 1 000 500 100 50 10 2 数量(个)10401504001 00010 000如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是( ) A.B.C.D.4.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为,则小圆与大圆的半径比值为( ) A.B.4C.D.25. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过 多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( ) A.5个B.10个C.15个D.30个6.若y=mx 2+nx ﹣p (其中m ,n ,p 是常数)为二次函数,则( )第1题图第9题图A. m,n,p均不为0B. m≠0,且n≠0C. m≠0D. m≠0,或p≠07.下列各式中,y是x的二次函数的是()A. y=B. y=x2+x﹣2C. y=2x+1D. y2=x2+3x8.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( ).A. y=3(x+2)2-1B. y=3(x-2)2+1C. y=3(x-2)2-1D. y=3(x+2)2+l9.已知点()、()、()在双曲线上,当时,、、的大小关系是( )A. B. C. D.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个11.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位12.下列函数中,不是二次函数的是()A. y=1﹣x2B. y=2x2+4C. y=(x﹣1)(x+4)D. y=(x﹣2)2﹣x2二、填空题13.已知y与成反比例,当y=1时,x=4,则当x=2时,y=________.14.对某班的一次数学测验成绩进行统计分析,各分数段的人数如图所示(分数取正整数,满分为100分).请根据图形回答下列问题:该班有名学生,70~79分这一组的频数是,频率是.15.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是 .批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1).17.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n 的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为________ .18.若函数y=4x与y=的图象有一个交点是(, 2),则另一个交点坐标是________19.反比例函数y=﹣,当y的值小于﹣3时,x的取值范围是________.20.如图,一次函数与反比例的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是________.21.二次函数的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(为实数)在﹣1<x<4的范围内有解,则t的取值范围是________.三、解答题22. 随着我国汽车产业的发展,城市道路拥堵问题日益严峻.某部门对15个城城市项目北京太原杭州沈阳广州深圳上海桂林南通海口南京温州威海兰州中山上班花费时间(分钟)523334344846472324243725242518上班堵车时间(分钟)1412121212111177665550(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=×100%.比如:北京的堵车率=×100%≈36.8%;沈阳的堵车率=×100%≈54.5%.某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.23. A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.24.袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.25.如图,抛物线y=ax2+bx+c交x轴于A(﹣4,0),B(1,0),交y轴于C 点,且OC=2OB.(1)求抛物线的解析式;(2)在直线BC上找点D,使△ABD为以AB为腰的等腰三角形,求D点的坐标.(3)在抛物线上是否存在异于B的点P,过P点作PQ⊥AC于Q,使△APQ与△ABC相似?若存在,请求出P点坐标;若不存在,请说明理由.答案解析一、选择题1.C解析:两个指针分别落在某两个数所表示的区域,两个数的和的各种可能性列表如下:的和是3的倍数的结果有5种;既是2的倍数,又是3的倍数的结果有3种,故两个数的和是2的倍数或是3的倍数的结果有10种.根据概率计算公式得P =105168=. 2. A .∵共有6种等可能的结果,其中恰好选中两名男学生有2种,∴恰好选中两名男学生的概率为2163=.3. D 解析:10万张彩票中设置了10个1 000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为.4. C 解析:由题意可知小圆的面积是大圆面积的,从而小圆的半径是大圆半径的.5.C 解析:由于知道有5个黑球,又黑球所占的比例为1-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个). 6.C 7. B 8.A 9.B 10.B 11.B 12.D 二、填空题 13.两数和第 二 个 1 2 3 41 2 3 4 5 2 3 4 5 6 345674 5 6 7 8第 一 个第7题答图14.60180.3解析:该班有学生,70~79分这一组的学生人数为18,所以频数是18,频率为.15.解析:(方法1)列表法:1 2第一盒第二盒1 1,1 1,22 2,1 2,23 3,1 3,2共有种,所以P(两张卡片标号恰好相同).(方法2)画树状图如图所示:共有6种情况,两张卡片标号恰好相同的情况有2种,第15题答图所以P(两张卡片标号恰好相同).16.0.8解析:由表知,玉米种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.17. 818.19. 0<x<120. x<﹣1或0<x<221. ﹣1≤t<8三、解答题22.分析:本题考查了统计与概率的综合应用.(1)上班花费时间在30至40分钟的城市有4个,上班花费时间在40至50分钟的城市有3个;(2)每个城市平均上班堵车时间=;(3)从4个城市中任意选取两个作为出发目的地共有6种不同选择.解:(1)补全频数分布直方图如图所示(阴影部分).(2)15个城市的平均上班堵车时间==≈8.3(分钟).(3)上海的堵车率=×100%≈30.6%,温州的堵车率=×100%=25.0%.4个城市中堵车率超过30%的城市有北京、沈阳和上海.从四个城市中选两个的所有方法有6种:(北京,沈阳),(北京,上海),(北京,温州),(沈阳,上海),(沈阳,温州),(上海,温州).其中两个城市堵车率都超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海),所以选取的两个城市堵车率都超过30%的概率P ==.23.解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A,每种结果发生的可能性相等,球恰在B手中的结果只有一种,所以两次传球后,第23题答图球恰在B 手中的概率是(2)由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这2种,所以三次传球后,球恰在A 手中的概率是 =.24.解:(1)分别用R1,R2表示2个红球,G1,G2表示2个绿球,列表如下:第二次 第一次 R 1 R 2 G 1 G 2R 1 (R 1,R 1) (R 1,R 2) (R 1,G 1) (R 1,G 2) R 2 (R 2,R 1) (R 2,R 2) (R 2,G 1) (R 2,G 2) G 1 (G 1,R 1) (G 1,R 2) (G 1,G 1) (G 1,G 2) G 2(G 2,R 1) (G 2,R 2) (G 2,G 1) (G 2,G 2)①其中第一次摸到绿球,第二次摸到红球的结果有4种, ∴ P (第一次摸到绿球,第二次摸到红球)=41=164.②其中两次摸到的球中有1个绿球和1个红球的结果有8种, ∴ P (两次摸到的球中有1个绿球和1个红球)=81=162.(2)23.25. (1)解:∵B (1,0),OC=2OB , ∴C (0,﹣2),设抛物线解析式为y=a (x+4)(x ﹣1),把C (0,﹣2)代入得a•4•(﹣1)=﹣2,解得a= , ∴抛物线的解析式为y= (x+4)(x ﹣1),即y= x 2+ x ﹣2 (2)解:AB=1﹣(﹣4)=5, 设直线BC 的解析式为:y=kx+b , 把B (1,0),C (0,﹣2)代入得 ,解得,∴直线BC 的解析式为y=2x ﹣2, 设D (m ,2m ﹣2),∵△ABD 为以AB 为腰的等腰三角形, ∴BD=BA=5或AD=AB=5,当BD=BA 时,即(m ﹣1)2+(2m ﹣2)2=52 , 解得m 1=1+ ,m 2=1﹣ ,此时D 点坐标为(1+,2),(1﹣,﹣2),当AD=AB 时,即(m+4)2+(2m ﹣2)2=52 , 解得m 1=1(舍去),m 2=﹣1,此时D 点坐标为(﹣1,﹣4), 综上所述,满足条件的D 点坐标为(1+,2),(1﹣,﹣2),(﹣1,﹣4)(3)解:AB 2=25,BC 2=12+22=5,AC 2=42+22=20, ∵AB 2=BC 2+AC 2 ,∴△ABC 为直角三角形,∠ACB=90°, ∵∠BAC=∠CAO ,∴△ACO∽△ABC,∵△APQ与△ABC相似,∴∠CAP=∠OAC,∴AC平分∠BAP,设直线AP交y轴于E,作CF⊥AE于F,则CF=CO=2,∵∠CEF=∠AEO,∴△ECF∽△EAO,∴= = = ,在Rt△AOE中,∵OE2+OA2=AE2,∴(2+CE)2+42=(2CE)2,解得CE=﹣2(舍去)或CE= ,∴E(0,﹣),设直线AE的解析式为y=mx+n,把A(﹣4,0),E(0,﹣)得,解得,∴直线AE的解析式为y=﹣x﹣,解方程组,解得或,∴P(﹣,﹣).青岛版数学九年级下册期中测试题(二)一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S=8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于 5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数2515474336根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A300.1B900.3C m0.4D60n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC ﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OF•BF=3AE•3OE=9AE•OE,∵B点在反比例函数y=(x>0)的图象上,∴OF•BF=9AE•OE=3,∴AE•OE=,设A(a,b),∵OE=﹣a,AE=b,∴AE•OE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)•y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).青岛版数学九年级下册期中测试题(三)(时间:120分钟分值:120分)一、选择题1.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=()A. ﹣1.3B. ﹣2.3C. ﹣0.3D. ﹣3.32.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a<0②b<0③c>0④4a+2b+c=0,⑤b+2a=0⑥ b2-4ac>0其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个3.若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y的最大值为﹣4D.抛物线的对称轴是直线x=14.下列图形中阴影部分面积相等的是()A. ①②B. ②③C. ①④D. ③④5.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的近似解为()A. x1≈﹣2.1,x2≈0.1B. x1≈﹣2.5,x2≈0.5C. x1≈﹣2.9,x2≈0.9D. x1≈﹣3,x2≈16.质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件.由此估计这一批次产品中的次品件数是()A.5B.100C.500D.10 0007.已知一个样本的数据个数是,在样本的频率分布直方图中各个小长方形的高的比依次为,则第二小组的频数为()A.4B.12C.9D.88.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A .16B.14C .13D.129.下列说法正确的是()A.在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚质地均匀的骰子,朝上一面的点数和为6D.在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是113 10.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()A.2B.4C.12D.16二、填空题11.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1 200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有________人.每周课外阅读时间(小时)0~1 1~2(不含1)2~3(不含2)超过3人数7 10 14 1912.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是 .13.为了解小学生的体能情况,抽取了某小学同年级50名学生进行跳绳测试,将所得数据整理后,画出频率分布直方图,已知图中从左到右各小组的频率分别是,,,,则第四小组的频率是_____,频数是______.14.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为________ 米.第3题图15.二次函数y=4x 2+3的顶点坐标为________ .16.把二次函数的表达式y=x 2-4x+6化为y=a (x -h )2+k 的形式,那么h+k=________.17.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.18. 有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.三、解答题19.在对某班的一次英语测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分分). (1)该班有多少名学生? (2)分这一组的频数是多少?频率是多少?20.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制分数段(分数为x 分)频数 百分比 60≤x <708 20% 70≤x <80a 30% 80≤x <9016 b % 90≤x <1004 10% (1)表中的a =_______,b =_________,请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的第17题图 第20题图圆心角的度数是________;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学,学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为_______.21.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率.(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.22.y是x的反比例函数,下表给出了x与y的一些值:x ﹣2 ﹣1 ﹣ 1 3y 2 ﹣1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.23.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象上的点A(1,0)及B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b(x-2)2+m的x的取值范围.24.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A,B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点25.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率. (2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?答案解析1.D2. D3. C4. D5. B6. C 解析:估计这一批次产品中的次品件数=10 000×5100=500(件).7.B 解析:因为各个小长方形的高的比依次为, 所以第二小组的频率为, 所以第二小组的频数为,故选B .8. D 解析:这6张扑克牌中点数为偶数的有3张,根据概率计算公式得到点数为偶数的概率为3162. 9.D10.B 解析:设黄球的个数为,则由题意得,解得.11. 240 解析:被调查的学生人数为7+10+14+19=50(人),样本中每周课外阅读时间在1~2(不含1)小时的学生所占的百分比为10010%20%50,由此来估计全体学生1 200人中每周课外阅读时间在1~2(不含1)小时的学生人数为1 200×20%=240(人).朝上的点数 1 2 3 4 5 6出现的次数 7 9 6 8 20 1012.10解析:由题意可得=0.2,解得n=10.13.0.210解析:已知图中从左到右前三个小组的频率分别是则第四小组的频率,频数是14. 315. (0,3)16. 417.12解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是12.18. 45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是4 5 .19.解:(1)答:该班有60名学生.(2)由题图,知分这一组的频数是,频率是34÷60=.20.解:(1)12 40补全频数分布直方图如图.(2)108°(3)21. 解:(1)P(选到女生)=123205.(2)不公平. 画树状图如图:列表如下:第21题答图第20题答图。

青岛版2021-2022学年度第二学期九年级期中质量检测数学试卷

青岛版2021-2022学年度第二学期九年级期中质量检测数学试卷

青岛版2021-2022学年度第二学期九年级期中质量检测数学试卷题号 一 二 三 总分 得分评卷人 得分一、选择题(共30分)1.(本题3分)变量x 与y 之间的关系是21y x =+,当5y =时,自变量x 的值是( ) A .13B .5C .2D .32.(本题3分)下列图象中,表示y 是x 的函数的是( )A .B .C .D .3.(本题3分)如图所示的工件中,该几何体的俯视图是( )A .B .C .D .4.(本题3分)如图是一个可以转动的转盘.盘面上有6个全等的扇形区域,其中1个是红色,2个是黄色,3个是白色.用力转动转盘,当转盘停止后,指针对准黄色区域的可能性是( )A .16B .13C .12 D .235.(本题3分)下列函数中,y 随x 的增大而减小的是( ) A .2y x = B .3y x =- C .()20=>y x xD .()242y x x x =->6.(本题3分)已知直线y x =与双曲线ky x=相交于A ,B 两点,若点A 的坐标为()2,2,则点B 的坐标为( )A .()2,2-- B .()2,2- C .()2,2- D .()2,2 7.(本题3分)下列物体的影子中,不正确的是( )A .B .C .D .8.(本题3分)育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据: 抽查小麦粒数 100 300 800 1000 2000 3000 发芽粒数 962877709581923a则a 的值最有可能是( )A .2700B .2780C .2880D .29409.(本题3分)如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,△ABC 绕AC 所在直线旋转一周,所形成的圆锥侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .15πcm 210.(本题3分)如图,在Rt ABC 中,90ACB ∠=︒,10AB =,8AC =,E 是ABC 边上一动点,沿A C B →→的路径移动,过点E 作ED AB ⊥,垂足为D .设AD x =,ADE 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .评卷人 得分二、填空题(共32分) 11.(本题4分)如图,是体检时的心电图,其中横坐标x 表示时间,纵坐标y 表示心脏部位的生物电流,它们是两个变量.在心电图中,y___(填“是”或“不是” )x的函数.12.(本题4分)两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.13.(本题4分)时隔十三年,奥运圣火再次在北京点燃.北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”.墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是________.14.(本题4分)已知圆柱的底面半径为2cm,母线长为3cm,则这个圆柱的全面积为_________2cm.15.(本题4分)下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为_____.16.(本题4分)为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°.17.(本题4分)如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.x=-,根据图中信息可求得该二18.(本题4分)二次函数的图像如图所示,对称轴为直线1次函数的解析式为______.评卷人得分三、解答题(共58分)19.(本题8分)画出如图所示物体的主视图、左视图、俯视图.20.(本题8分)已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.21.(本题10分)已知正比例函数y=mx与反比例函数y=nx交于点(3,2)和点(3a﹣1,2﹣b).(1)求正比例函数和反比例函数的解析式.(2)求a、b的值.22.(本题10分)太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率.(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率.23.(本题10分)如图,旗杆AB 的影子一部分在地面上,另一部分在某一建筑的墙上,小亮测得旗杆AB 在地面上的影长BD 为9.6 m ,在墙面上的影长CD 为2 m ,同一时刻,小亮又测得竖立于地面1 m 长的标杆的影长为1.2 m ,请帮助小亮求出旗杆AB 的高度.解:24.(本题12分)如图,在平面直角坐标系xOy 中,已知抛物线2y x bx =+经过点A (2,0)和点()1,B m -,顶点为点D .(1)求直线AB 的表达式; (2)求tan ∠ABD 的值;(3)设线段BD 与x 轴交于点P ,如果点C 在x 轴上,且ABC 与ABP △相似,求点C 的坐标.参考答案:1.解:当y =5时,5=2x +1,解得:x =2,故选:C .2.解:根据函数的定义可知,每给定自变量x 一个值,都有唯一的函数值y 与之相对应, 所以A 、C 、D 不合题意.故选:B .3.解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B .4.解:因为指针可以指向6个区域的任何一个,所以有6个等可能的结果,而指向黄色区域的结果数有2种,所以当转盘停止后,指针对准黄色区域的可能性是:21=.63故选B5.解:A .在2y x =中,y 随x 的增大而增大,故选项A 不符合题意; B .在3y x =-中,y 随x 的增大与增大,不合题意; C .在()20=>y x x中,当x >0时,y 随x 的增大而减小,符合题意; D .在()242y x x x =->,x >2时,y 随x 的增大而增大,故选项D 不符合题意;故选:C .6.解:把A ()2,2代入k y x =,得:22k = ∴k =4∴4y x = 联立方程组4y xy x =⎧⎪⎨=⎪⎩解得,121222,22x x y y ==-⎧⎧⎨⎨==-⎩⎩ ∴点B 坐标为(-2,-2)故选:A 7.B 8.∵96100%=96%100⨯,2877709581923100%96%100%96%100%96%100%96%30080010002000⨯≈⨯≈⨯≈⨯≈,,,, ∴300096%⨯=2880,故选:C .9.解:S rl π=侧,35r BC l AB ====、23515cm S rl πππ∴==⨯⨯=侧故选D .10.解:∵90ACB ∠=︒,10AB =,8AC =,∴BC =226AB AC -=, 过CA 点作CH ⊥AB 于H ,∴∠ADE =∠ACB =90°,∵11681022CH ⨯⨯=⨯⋅,∴CH =4.8,∴AH =22 6.4AC CH -=,当0≤x ≤6.4时,如图1,∵∠A =∠A ,∠ADE =∠ACB =90°,∴△ADE ∽△ACB ,∴AD DE AC BC =,即86x DE =,解得:x =34x ,∴y =12•x •34x =38x 2;当6.4<x ≤10时,如图2,∵∠B =∠B ,∠BDE =∠ACB =90°,∴△BDE ∽△BCA ,∴BDDE BC AC, 即1068x DE -=,解得:x =4043x -,∴y =12•x •4043x -=222033x x -+;故选:D . 11.解:两个变量x 和y ,变量y 随x 的变化而变化,且对于每一个x ,y 都有唯一值与之对应,y ∴是x 的函数.故答案为:是. 12.解:画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种, 所以两人手势不相同的概率=6293=,故答案为:23.13.解:列树状图如下:由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种, ∴两人同坐2号车的概率19=,故答案为:19.14.解:∵圆柱的底面半径为2cm ,母线长为3cm ,∴22=4cm S r ππ=底,224312cm S r h πππ=⋅=⨯=侧,∴2220cm S S S π=+=全侧底,故答案为:20π.15.解:西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②, 故答案是:③④①②.16.解:阅读时间不少于6小时的频数为50-7-13-24=6,∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是636050︒⨯=43.2°,故答案为:43.2. 17.解:如图,连接AC ,DF ,根据平行投影的性质得DF ∥AC ,ACB DFE ∴∠=∠,90ABC DEF ∠=∠=︒,D F ABC E ~∴,AB BCDE EF∴=, 634DE ∴=,8()DE m ∴=.故答案为:8. 18.由图象知:当x =1时,y =0,当x =0时,y =3,又对称轴为直线x =-1,则312a b ccba⎧⎪++=⎪=⎨⎪⎪-=-⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为y=-x2-2x+3,故答案为:y=-x2-2x+3.19.如图所示:20.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x -2 -1 0 1 2 y=x2﹣1 3 0 -1 0 3 描点可画出其图象如图所示:21.解:正比例函数y=mx与反比例函数y=nx交于点(3,2),解得:2,6,3m n所以正比例函数为:2,3y x反比例函数为:6yx=.(2)解: 正比例函数y =mx 与反比例函数y =nx交于点(3,2)和点(3a ﹣1,2﹣b ),,A B ∴关于原点成中心对称,解得:234a b ,22解:(1)列表如下:所有等可能的情况数为16种,两人抽到同一景点的结果有4种, 所以两人抽到同一景点的概率为41164=. (2)列表如下:所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种, 所以两人抽到动物园和森林公园的概率为21126=. 23.解:作DE ∥AC ,交AB 于E ,则AE=CD=2米. 根据在同时同地物高与影长成比例,可得11.2BE BD = 所以,BE=119.681.2 1.2BD ⨯=⨯= ;所以AB=AE+BE=2+8=9米.试卷第5页,共5页 24.(1)解:∵抛物线2y x bx =+经过点A (2,0),∴2220b += ,解得:2b =- , ∴抛物线解析式为22y x x =-,当1x =- 时,3y = ,∴点B 的坐标为()1,3B - , 设直线AB 的解析式为()0y kx m k =+≠ ,把A (2,0),()1,3B -,代入得:203k m k m +=⎧⎨-+=⎩ ,解得:12k m =-⎧⎨=⎩ ,∴直线AB 的解析式为2y x =-+; (2)如图,连接BD ,AD ,∵()22211y x x x =-=--,∴点D 的坐标为()1,1D - ,∵A (2,0),()1,3B -∴()()()()()22222222212318,2112,111320AB AD BD =--+==-+-==--+--= ∴222AB AD BD += ,∴△ABD 为直角三角形,∴21tan 318AD ABD AB ∠===; (3)设直线BD 的解析式为()1110y k x b k =+≠ ,把点()1,1D -,()1,3B -代入得: 111113k b k b +=-⎧⎨-+=⎩ ,解得:1121k b =-⎧⎨=⎩ ,∴直线BD 的解析式为21y x =-+ , 当0y = 时,12x = ,∴点P 的坐标为1,02P ⎛⎫ ⎪⎝⎭,当△ABP ∽△ABC 时,∠ABC =∠APB , 如图,过点B 作BQ ⊥x 轴于点Q ,则BQ =3,OQ =1,∵△ABP ∽△ABC ,∴∠ABD =∠BCQ ,由(2)知1tan 3ABD ∠=,∴1tan 3BCQ ∠=,∴13BQ CQ = ,∴CQ =9,∴OC =OQ +CQ =10, ∴点C 的坐标为()10,0C - ;当△ABP ∽△ABC 时,∠APB =∠ACB ,此时点C 与点P 重合,∴点C 的坐标为1,02C ⎛⎫ ⎪⎝⎭, 综上所述,点C 的坐标为()10,0C -或1,02⎛⎫ ⎪⎝⎭.。

2019年春青岛版九年级下学期期中考试数学试卷 (含解析)

2019年春青岛版九年级下学期期中考试数学试卷 (含解析)

2019年春青岛版九年级下学期期中考试数学试卷一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S =8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数2515474336根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A300.1B900.3C m0.4D60n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC ﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OFBF=3AE3OE=9AEOE,∵B点在反比例函数y=(x>0)的图象上,∴OFBF=9AEOE=3,∴AEOE=,设A(a,b),∵OE=﹣a,AE=b,∴AEOE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学青岛版九年级下期中数学试卷一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc >0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC 中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数2515474336根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A300.1B900.3C m0.4D60n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC 的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x 轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B 正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OF•BF=3AE•3OE=9AE•OE,∵B点在反比例函数y=(x>0)的图象上,∴OF•BF=9AE•OE=3,∴AE•OE=,设A(a,b),∵OE=﹣a,AE=b,∴AE•OE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)•y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0),∴,解得∴直线AC的解析式为.∵PM∥y轴,∴M(t,).∴PM=﹣()+(﹣)=﹣.∴当t=5时,PM有最大值为10.∴所求的P点坐标为(5,﹣6).。

相关文档
最新文档