【必考题】九年级数学下期中试卷及答案
九年级下学期期中考试数学试卷(附带有答案)

九年级下学期期中考试数学试卷(附带有答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题)1.下列方程一定是一元二次方程的是()A.3x2+2x−1=0B.5x2﹣6y﹣3=0C.ax2﹣x+2=0D.3x2﹣2x﹣1=02.如图,l1∥l2∥l3,AB=8,BC=12,EF=9,则DE的长为()A.6B.8C.10D.123.已知反比例函数y=4x,下列结论正确的是()A.图象在第二、四象限B.当x>0时,函数值y随x的增大而减小C.图象经过点(﹣2,2)D.图象与x轴的交点为(4,0)4.若n是方程x2﹣x﹣2=0的一个根,则代数式n2﹣n的值是()A.﹣1B.2C.﹣1或2D.﹣1与25.用幻灯机将一个△ABC的边长放大为原来对应边长的4倍,下列说法中错误的是()A.放大后三角形面积是原来的16倍B.放大后周长是原来的4倍C.放大后∠A,∠B,∠C的大小分别是原来对应角大小的4倍D.放大后对应中线长是原来的4倍6.如图,在△ABC中点D是边AB上的一点,∠ADC=∠ACB,AD=1,BD=3,则边AC的长为()A.2B.4C.6D.87.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=−m2x(m为常数,且m≠0)的图象上,则y1,y2与y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y1<y3<y28.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等且互相平分D.对角线相等的四边形是矩形9.某种药品的原来价格是每盒120元,准备进行两次降价,若每次降价的百分率都为x,且第二次比第一次每盒少降价8元,则可列方程()A.120(1﹣x)2=120(1﹣x)+8B.120(1﹣x)x=8C.120(1﹣x)2=112D.120x=120(1﹣x)x+810.如图,在直角坐标系中△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作△OAB的位似图形△OCD,若点D坐标为(﹣1,0),则点C的坐标为()A.(﹣1,﹣1)B.(﹣1,−43)C.(−43,﹣1)D.(﹣2,﹣1)二.填空题(共5小题)11.方程x(2x﹣1)=4x化为一般式是.12.若2a−3ba=1,则ab=.13.已知菱形ABCD的周长为52cm,对角线AC=10cm,则BD=cm.14.在相同条件下选取一定数量的小麦种子做发芽试种,结果如表所示:试种数量200500100015002000发芽的频率0.9660.9730.9730.9710.973在相同的条件下,估计种植一粒该品牌的小麦发芽的概率为.(结果精确到0.01)15.如图,矩形ABCD中AB=2,AD=3.在边AD上取一点E,使BE=BC.过点C作CF⊥BE,垂足为点F,则BF的长为.三.解答题(共8小题)16.(1)如图是由6个同样大小的小正方体搭成的几何体,画出它的左视图和俯视图.(2)解方程:x2﹣7x﹣8=0.17.佛山是珠江三角洲的“美食之乡”,粤菜发源地之一.某学校要举行“我为佛山美食代言”的宣讲活动,主要介绍佛山的民间特色食品,已知学校给定了4个极具特色的主题:A.双皮奶,B.盲公饼,C.大良蹦砂,D.佛山九层糕,参加的选手从这四个主题中随机抽取一个进行宣讲,小明和小红都参加了这项活动.(1)小明抽中“大良蹦砂”的概率是;(2)请用列表法或树状图法中的一种方法,求小明和小红抽中同一个主题的概率.18.小军和小文利用阳光下的影于来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为20米,0A的影长OD为24米,小军的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且OA⊥OD,EF⊥FG.(1)①图中阳光下的影子属于(填“中心投影”或“平行投影”);②线段AD、线段BC与线段EG之间的位置关系为.(2)已知小军的身高E为1.8米,求旗杆的高AB.19.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数y2=k x的图象交于C(1,m),D(n,﹣1).(1)求k的值;(2)根据图象直接写出y1<y2时,x的取值范围.20.某商场销售一批名牌衬衫,当销售价为299元时,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫定价应多少元?21.如图,在▱ABCD中对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=5,BD=6,直接写出BE的长.22.综合与实践【问题情境】如图1,点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)求证:四边形CEGF是正方形.(2)求AGBE的值.【类比探究】(3)如图2,将正方形的CEGF绕点C按顺时针方向旋转α(0°<α<45°),试探究线段AG与BE长度之间的数量关系,并说明理由.23.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.参考答案一.选择题(共10小题)1.D.2.A.3.B.4.B.5.C.6.A.7.B.8.D.9.D.10.C.二.填空题(共5小题)11.2x2﹣5x=0.12.3.13.24.14.0.97.15.√5.三.解答题(共8小题)16.解:(1)如图所示:(2)∵x2﹣7x﹣8=0∴(x﹣8)(x+1)=0则x﹣8=0或x+1=0解得x1=8,x2=﹣1.17.解:(1)∵共有4个主题∴小明抽中“大良蹦砂”的概率是14.故答案为:14.(2)画树状图如下:共有16种等可能的结果,其中小明和小红抽中同一个主题的结果有4种∴小明和小红抽中同一个主题的概率为416=14.18.解:(1)①物体在太阳光的照射下形成的影子是平行投影.故答案为:平行投影;②太阳光是平行光线,则AD∥BC∥EG.故答案为:AD∥BC∥EG(或答“平行”);(2)∵OA⊥OD,EF⊥FG∴∠AOD=∠EFG=90°.∵AD∥EG∴∠D=∠G∴△AOD∽△EFG∴OAEF=ODFG∴OA1.8=242.4∴OA=18同理,△EFG∽△BOCOB EF=OC FG∴OB1.8=202.4∴OB=15∴AB=OA﹣OB=18﹣15=3(米).所以,旗杆AB的长为3米.19.解:(1)把A(0,2)代入y1=x+b得:b=2即一次函数的表达式为y1=x+2把C(1,m),D(n,﹣1)代入得:m=1+2,﹣1=n+2解得m=3,n=﹣3即C(1,3),D(﹣3,﹣1)把C的坐标代入y2=kx 得:3=k1解得:k=3;(2)由图象可知:y1<y2时,x的取值范围是x<﹣3或0<x<1.20.解:设每件衬衫降价x元,则每件衬衫的定价为(299﹣x)元,每件盈利(40﹣x)元,平均每天可售出(20+2x)件依题意,得:(40﹣x)(20+2x)=1200整理,得:x2﹣30x+200=0解得:x1=10,x2=20又∵尽快减少库存∴x=20∴299﹣x=279.答:每件衬衫定价应为279元.21.(1)证明:∵∠CAB=∠ACB∴AB=BC.又∵四边形ABCD是平行四边形∴四边形ABCD是菱形.∴AC⊥BD.(2)解:由(1)可知,▱ABCD是菱形∴OB=OD=12BD=3,AC⊥BD∴∠AOB=∠BOE=90°∴OA=√AB2−OB2=√52−32=4∵BE⊥AB∴∠EBA=90°∴∠BEO+∠BAO=∠ABO+∠BAO=90°∴∠BEO=∠ABO∴△BOE∽△AOB∴BEAB=OBOA即BE5=34解得:BE=154.22.(1)证明:∵四边形ABCD是正方形∴∠BCD=90°,∠BCA=45°∵GE⊥BC、GF⊥CD∴∠CEG=∠CFG=∠ECF=90°∴四边形CEGF是矩形∵∠BCA=45°∴△CEG是等腰直角三角形∴EG=EC∴四边形CEGF是正方形;(2)解:由(1)知四边形CEGF是正方形∴∠CEG=∠B=90°,∠ECG=45°∴CGCE=√2,GE∥AB∴AGBE=CGCE=√2;(3)解:线段AG与BE之间的数量关系为:AG=√2BE,理由如下:连接CG,如图(2)所示:由旋转性质得:∠BCE=∠ACG=α在Rt△CEG和Rt△CBA中CECG=cos45°=√22,CBCA=cos45°=√22∴CGCE=CACB=√2∴△ACG∽△BCE∴AGBE=CACB=√2∴线段AG与BE之间的数量关系为:AG=√2BE.23.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°∵AM平分∠DAH∴∠F AH=45°∴△AFH是等腰直角三角形∴FH=AH,AF=√2AH=√2FH∵AF=√2BE∴FH=AH=BE∴AH+AE=BE+AE∴HE=AB=BC在△FEH和△ECB中{FH=EB∠FHA=∠B=90°HE=BC∴△FEH≌△ECB(SAS)∴CE=EF;(2)解:∵△FEH≌△ECB∴∠FEH =∠ECB∵在Rt △BCE 中∠ECB +∠CEB =90°∴∠FEH +∠CEB =90°∴∠CEF =90°由(1)知,CE =EF∴△CEF 是等腰直角三角形,∠ECF =∠EFC =45°把Rt △CDG 绕点C 逆时针旋转90°至Rt △CBN 位置,如图2所示: 则∠GCN =90°,CG =CN ,DG =BN∴∠NCE =∠GCN ﹣∠GCE =45°∴∠NCE =∠GCE在△CEG 和△CEN 中{CG =CN ∠GCE =∠NCE CE =CE∴△CEG ≌△CEN (SAS )∴GE =NE =EB +BN =EB +DG∴△AEG 的周长=AE +GE +AG =AE +EB +DG +AG =AB +AD =2a ;(3)解:设AE =x由(1)得:FH =BE =a ﹣x则△EAF 的面积=12AE ×FH =12x (a ﹣x )=−12(x −a 2)2+a 28 ∴当x =a 2,即点E 在AB 边中点时,△EAF 的面积最大,最大值为a 28.。
九年级(下)期中数学试卷附答案

九年级(下)期中数学试卷一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=04.不等式组的解集在数轴上表示为()A.B.C.D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.96.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A .△EGH 为等腰三角形B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形12.二次函数y=x 2﹣2x +4化为y=a (x ﹣h )2+k 的形式,下列正确的是( ) A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=xB .y=xC .y=xD .y=x14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=.16.计算:﹣(a+1)=.17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.21.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】15:绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【考点】JA:平行线的性质.【分析】如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=0【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】结合选项分别进行幂的乘方和积的乘方、负整数指数幂、零指数幂等运算,然后选项正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算错误,故本选项错误;C、(﹣)﹣2=4,原式计算正确,故本选项正确;D、(sin30°﹣π)0=1,原式计算错误,故本选项错误.故选C.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.9【考点】I8:专题:正方体相对两个面上的文字.【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选C.6.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【考点】X5:几何概率;MI:三角形的内切圆与内心.【分析】由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,=AC•BC=×12×9=54,∴S△ABCS圆=9π,∴小鸟落在花圃上的概率==,故选B.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%【考点】AD:一元二次方程的应用.【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1﹣x)倍,连降两次就是降到原来的(1﹣x)2倍.则两次降价后的价格是150×(1﹣x)2,即可列方程求解.【解答】解:设平均每次降价的百分率为x,由题意得150×(1﹣x)2=96,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:平均每次降价的百分率是20%.故选:B.8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】先证得△OBC是等腰直角三角形,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解答】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴S阴影=S扇形OBC﹣S△OBC=π×22﹣×2×2=π﹣2.故选A.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.12.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【考点】H9:二次函数的三种形式.【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x【考点】FI:一次函数综合题.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B 过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴OB•AB=5,∴AB=, ∴OC=,由此可知直线l 经过(,3), 设直线方程为y=kx ,则3=k ,k=, ∴直线l 解析式为y=x ,故选C .14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A.0 B.1 C.2 D.3【考点】G2:反比例函数的图象;G4:反比例函数的性质.【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM 的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=(x2+6)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x2+6)(x2﹣6)=(x2+6)(x+)(x﹣),故答案为:(x2+6)(x+)(x﹣)16.计算:﹣(a+1)=.【考点】6B:分式的加减法.【分析】根据分式的运算即可求出答案.【解答】解:原式=﹣=故答案为:17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【考点】LE:正方形的性质;KW:等腰直角三角形;T7:解直角三角形.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为x2+y2=1.【考点】D5:坐标与图形性质.【分析】根据以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y ﹣b)2=r2进行判断即可.【解答】解:∵以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∴以原点为圆心,过点P(1,0)的圆的标准方程为(x﹣0)2+(y﹣0)2=12,即x2+y2=1,故答案为:x2+y2=1.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170+|1﹣sin30°|﹣()﹣1+=1+﹣3+4=221.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=30%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=30%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;30;(3)36.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】先过点C作CD⊥AB,垂足为点D,设BD=x海里,得出AD=海里,在Rt△BCD中,根据tan45°=,求出CD,再根据BD=CD求出BD,在Rt△BCD中,根据cos45°=,求出BC,从而得出答案.【解答】解:过点C作CD⊥AB,垂足为点D,设BD=x海里,则AD=海里,∵∠ABC=45°,∴BD=CD=x,∵∠BAC=30°,∴tan30°=,在Rt△ACD中,则CD=AD•tan30°=,则x=,解得,x=100﹣100,即BD=100﹣100,在Rt△BCD中,cos45°=,解得:BC=100﹣100,则÷4=25(﹣)(海里/时),则该可疑船只的航行速度约为25(﹣)海里/时.23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.【考点】MD:切线的判定.【分析】(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=,求出BC,在RT△ABC中,根据=求出AB即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°,∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°∴∠ABC=90°∴AB⊥BC,∴AB是圆的切线.(2)解:在RT△AEB中,tan∠AEB=,∴=,即AB=BE=,在RT△ABC中,=,∴BC=AB=10,∴圆的直径为10.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B 种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为棵,则a≥3,解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.75+7200=8550(元).即当a=75时,y最小值=18×答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=3.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)【考点】MR:圆的综合题.【分析】(1)代入结论:AC+BC=CD,直接计算即可;(2)如图3,作辅助线,根据直径所对的圆周角是直角得:∠ADB=∠ACB=90°,由弧相等可知所对的弦相等,得到满足图1的条件,所以AC+BC=CD,代入可得CD的长;(3)介绍两种解法:解法一:作辅助线,构建如图3所示的图形,由AC+BC=D1C,得D1C=,在直角△CDD1,利用勾股定理可得CD的长;解法二:如图5,根据小吴同学的思路作辅助线,构建全等三角形:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,得△BCD≌△AED,证明△CDE是等腰直角三角形,所以CE=CD,从而得出结论.【解答】解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;故答案为:3;(2)如图3,连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵=,∴AD=BD,∵AB=13,BC=12,∴由勾股定理得:AC=5,由图1得:AC+BC=CD,5+12=CD,∴CD=;(3)解法一:以AB为直径作⊙O,连接DO并延长交⊙O于点D1,连接D1A、D1B、D1C、CD,如图4,由(2)得:AC+BC=D1C,∴D1C=,∵D1D是⊙O的直径,∴∠D1CD=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+DC2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;解法二:如图5,∵∠ACB=∠DB=90°,∴A、B、C、D在以AB为直径的圆上,∴∠DAC=∠DBC,将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,∴△BCD≌△AED,∴CD=ED,∠ADC=∠ADE,∴∠ADC﹣∠ADC=∠ADE﹣∠ADC,即∠ADB=∠CDE=90°,∴△CDE是等腰直角三角形,所以CE=CD,∵AC=m,BC=n=AE,∴CE=n﹣m,∴CD=.26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a的值即可得到抛物线解析式;然后利用待定系数法求直线BC的解析式;(2)易得△ABE只能是以E点为直角顶点的三角形,利用勾股定理的逆定理可证明ACB=90°,再证明△ACB∽△COB,所以当点E在点C时满足条件;当E为点C在抛物线上的对称点时也满足条件,然后利用对称性写出E点坐标即可.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣4),把C(0,2)代入得a•1•(﹣4)=2,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2;(2)存在.由图象可得以A或B点为直角顶点的△ABE不存在,∴△ABE只能是以E点为直角顶点的三角形,∵AC2=12+22=5,BC2=42+22=20,AB2=52=25,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°,∵∠ABC=∠CBO,∴△ACB∽△COB∴当点E在点C时,以A、B、E为顶点的三角形与△COB相似;∵点C关于直线x=的对称点的坐标为(3,2),∴点E的坐标为(3,2)时,以A、B、E为顶点的三角形与△COB相似,综上所述,点E的坐标为(0,2)或(3,2).。
2024年最新人教版初三数学(下册)期中考卷及答案(各版本)

2024年最新人教版初三数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是3,则这个数是()A. 9B. 27C. 9D. 272. 下列各式中,正确的是()A. $ \sqrt{9} = 3 $B. $ \sqrt[3]{8} = 2 $C. $ \sqrt{16} = 4 $D. $ \sqrt[3]{27} = 3 $3. 下列各式中,错误的是()A. $ 3^2 = 9 $B. $ (3)^2 = 9 $C. $ 3^3 = 27 $D.$ (3)^3 = 27 $4. 下列各式中,正确的是()A. $ 2^4 = 16 $B. $ 2^5 = 32 $C. $ 2^6 = 64 $D. $ 2^7 = 128 $5. 下列各式中,错误的是()A. $ 5^2 = 25 $B. $ 5^3 = 125 $C. $ 5^4 = 625 $D.$ 5^5 = 3125 $6. 下列各式中,正确的是()A. $ 10^2 = 100 $B. $ 10^3 = 1000 $C. $ 10^4 = 10000 $D. $ 10^5 = 100000 $7. 下列各式中,错误的是()A. $ 2^0 = 1 $B. $ 3^0 = 1 $C. $ 4^0 = 1 $D. $ 5^0 = 1 $8. 下列各式中,正确的是()A. $ 0^2 = 0 $B. $ 0^3 = 0 $C. $ 0^4 = 0 $D. $ 0^5 = 0 $9. 下列各式中,正确的是()A. $ (1)^2 = 1 $B. $ (1)^3 = 1 $C. $ (1)^4 = 1 $D. $ (1)^5 = 1 $10. 下列各式中,错误的是()A. $ (2)^2 = 4 $B. $ (2)^3 = 8 $C. $ (2)^4 = 16 $D. $ (2)^5 = 32 $二、填空题(每题3分,共30分)11. 若一个数的平方根是5,则这个数是__________。
九年级数学下册期中考试卷及答案【完美版】

九年级数学下册期中考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,与6是同类二次根式的是()A.12B.18C.23D.302.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.33.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-14.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个5.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.36.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣210.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:39a a-=_______.3.函数2y x=-x的取值范围是__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是__________.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分) 1.解方程:311(1)(2)x x x x -=--+2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、A6、B7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、a(a+3)(a-3)3、2x ≥4、3x <-或1x >.5、836、3三、解答题(本大题共6小题,共72分)1、原方程无解.2、-11x +,-14. 3、(1)略;(2)略;(3)10.4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)100,50;(2)10.。
九年级数学下册期中测试卷及答案【完整版】

九年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是( )A .12-B .12C .2D .2-2.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,物品的价格为y 元,可列方程(组)为( )A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.3487x x+-=D.3487y y-+=7.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°10.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:3x -x=__________.3.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解方程:22142x x x +=--2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、C5、B6、A7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、x(x+1)(x-1)3、114、(4,3)5、x=26、5三、解答题(本大题共6小题,共72分)1、x=-32、(1)3a2-ab+7;(2)12.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)2ACπ=5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.。
九年级数学下册期中考试卷(及答案)

九年级数学下册期中考试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >22.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为 ( )A .180B .182C .184D .1869.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.分解因式:2218x -=______.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A ,点B (3,0).点P 是直线BC 上方的抛物线上一动点.(1)求二次函数y=ax 2+2x+c 的表达式;(2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP ′C ,若四边形POP ′C 为菱形,请求出此时点P 的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、D6、B7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、2(3)(3)x x +-3、(1,8)4、45、x ≤1.6、8﹣2π三、解答题(本大题共6小题,共72分)1、x=12、(1)3a 2-ab +7;(2)12.3、(1)y=﹣x 2+2x+3(2)(2,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758 4、(1)略;(2)112.5°.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
初三数学下学期期中考试试卷含答案(共3套)

九年级(下册)期中考试数学试卷一.选择题(共10小题)1.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化2.如图是一个螺母零件的立体图形,它的左视图是()A.B.C.D.3.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到△AEF,若AC=,则阴影部分的面积为()A.1 B.C.D.5.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.6.已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°8.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A.1 B.C.D.9.在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为()A.6.93米B.8米C.11.8米D.12米10.从﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一个数作为k的值,则能使分式方程有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的概率为()A.B.C.D.0二.填空题(共4小题)11.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为.12.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为.13.如图,△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,点O为△ACD的内切圆圆心,则∠AOB=.14.如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C 重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB =30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为.三.解答题(共9小题)15.有9张卡片,分别写有1﹣9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,求关于x的不等式组有解的概率.16.如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,画出它的左视图并求其面积.17.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m的值.18.(1)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图(1)所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x+y=.(2)如图(2),是由若干个完全相同的小正方体组成的一个几何体.①请画出这个几何体的左视图和俯视图;(用阴影表示)②如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体?19.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动;第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)求所画图形的周长(结果保留π);(3)求所画图形的面积(结果保留π).20.如图所示,灯在距地面6米的A处,与灯柱AB相距3米的地方有一长3米的木棒CD直立于地面.(1)在图中画出木棒CD的影子,并求出它的长度;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化有什么规律?你能求出其影长的取值范围吗?21.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠AED的度数;(2)若⊙O的半径为2,则的长为多少?(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O的内接正n边形的一边,求n的值.22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.23.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.参考答案与试题解析一.选择题(共10小题)1.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【分析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.【解答】解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.2.如图是一个螺母零件的立体图形,它的左视图是()A.B.C.D.【分析】从左边看螺母零件的立体图形,确定出左视图即可.【解答】解:如图是一个螺母零件的立体图形,它的左视图是,故选:D.3.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.4.如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到△AEF,若AC=,则阴影部分的面积为()A.1 B.C.D.【分析】首先求得∠FAD的度数,然后利用三角函数求得DF的长,然后利用三角形面积公式即可求解.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,又∵∠CAF=15°,∴∠FAD=30°,又∵在直角△ADF中,AF=AC=,∴DF=AF•tan∠FAD=×=1,∴S阴影=AF•DF=××1=.故选:C.5.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【分析】根据有理数的定义可找出在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,再根据概率公式即可求出抽到有理数的概率.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选:C.6.已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选:B.7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.8.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是()A.1 B.C.D.【分析】由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.【解答】解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选:A.9.在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为()A.6.93米B.8米C.11.8米D.12米【分析】作出图形,先根据同时同地物高与影长成正比求出台阶的高落在地面上的影长EH,再求出落在台阶上的影长在地面上的长,从而求出大树的影长假设都在地面上的长度,再利用同时同地物高与影长成正比列式计算即可得解【解答】解:如图,∵=,∴EH=0.3×0.6=0.18,∴AF=AE+EH+HF=4.42+0.18+0.2=4.8,∵=,∴AB==8(米).故选:B.10.从﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一个数作为k的值,则能使分式方程有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x轴无交点的概率为()A.B.C.D.0【分析】①解分式方程,使x≥0且x≠1,求出k的取值;②因为二次函数y=x2+2x﹣k﹣1的图象与x轴无交点,所以△<0,列不等式,求出k的取值;③综合①②求公共解并求其整数解;④根据概率公式即可得出答案.【解答】解:,去分母,方程两边同时乘以x﹣1,﹣k+2(x﹣1)=3,x=≥0,∴k≥﹣5①,∵x≠1,∴k≠﹣3②,由y=x2+2x﹣k﹣1的图象与x轴无交点,则4﹣4(﹣k﹣1)<0,k<﹣2③,由①②③得:﹣5≤k<﹣2且k≠﹣3,∴k的整数解为:﹣5、﹣4,∴图象与x轴无交点的概率为=;故选:C.二.填空题(共4小题)11.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宣传画上世界杯图案的面积为 3.2(m2).【分析】利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.【解答】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故答案为:3.2(m2).12.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为240°.【分析】设圆锥的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到40π=,然后解方程即可.【解答】解:设圆锥的侧面展开图的圆心角的度数为n°,根据题意得40π=,解得n=240.故答案为240°.13.如图,△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,点O为△ACD的内切圆圆心,则∠AOB=135°.【分析】本题求的是∠AOB的度数,而题目却没有明确告诉任何角的度数,因此要从隐含条件入手;CD 是AB边上的高,则∠ADC=90°,那么∠BAC+∠ACD=90°;O是△ACD的内心,则AO、CO分别是∠DAC 和∠DCA的角平分线,即∠OAC+∠OCA=45°,由此可求得∠AOC的度数;再根据∠AOB和∠AOC的关系,得出∠AOB.【解答】解:如图.连接CO,并延长AO到BC上一点F,∵CD为AB边上的高,∴∠ADC=90°,∴∠BAC+∠ACD=90°;又∵O为△ACD的内切圆圆心,∴AO、CO分别是∠BAC和∠ACD的角平分线,∴∠OAC+∠OCA=(∠BAC+∠ACD)=×90°=45°,∴∠AOC=135°;在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴∠AOB=∠AOC=135°.故答案为:135°.14.如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C 重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB =30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为②③.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CP•CQ=CA2,据此即可判断;【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,故④错误;故答案为:②③.三.解答题(共9小题)15.有9张卡片,分别写有1﹣9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,求关于x的不等式组有解的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为.16.如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,画出它的左视图并求其面积.【分析】直接利用几何体的形状得出左视图,再利用其高度得出左视图的面积.【解答】解:如图所示:其面积为:3×6=18.17.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值 4 2、3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m的值.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;∵m>1,当摸出2个或3个红球时,摸到黑球为随机事件,事件A必然事件随机事件m的值 4 2、3故答案为:4;2、3.(2)依题意,得,解得m=2,所以m的值为2.18.(1)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图(1)所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x+y=4或5 .(2)如图(2),是由若干个完全相同的小正方体组成的一个几何体.①请画出这个几何体的左视图和俯视图;(用阴影表示)②如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加 4 个小正方体?【分析】(1)俯视图中的每个数字是该位置小立方体的个数,结合主视图2列中的个数,分析其中的数字,从而求解.(2)①由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.②根据题意结合左视图与俯视图不变得出答案.【解答】解:(1)由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3,则x+y=4或x+y=5,故答案为:4或5.(2)①如图所示:②可在最底层第二列第三行加一个,第三列第二行加2个,第三列第三行加1个,共4个.故答案为:4.19.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动;第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)求所画图形的周长(结果保留π);(3)求所画图形的面积(结果保留π).【分析】(1)根据旋转变换的定义分别作图可得;(2)利用弧长公式计算可得;(3)根据所画图形的面积=S 半圆++﹣S矩形,利用扇形的面积公式计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)所画图形的周长为++=2π;(3)所画图形的面积=S 半圆++﹣S矩形=•π•42++﹣4×8=8π+4π+4π﹣32=16π﹣32.20.如图所示,灯在距地面6米的A处,与灯柱AB相距3米的地方有一长3米的木棒CD直立于地面.(1)在图中画出木棒CD的影子,并求出它的长度;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化有什么规律?你能求出其影长的取值范围吗?【分析】(1)根据中心投影即可在图中画出木棒CD的影子,根据三角形相似即可求出它的长度;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化先变长,后变短,根据相似三角形的性质即可求出其影长的取值范围.【解答】解:如图,(1)DE即为木棒CD的影子,根据题意,得AB=6,CD=3,BD=3,∵CD∥AB,∴=即=,解得DE=3.所以影子DE的长度为3米;(2)当木棒绕其与地面的固定端点D按顺时针方向旋转到地面时,其影子的变化规律为:先变长,后变短;当木棒CD与经过C′点的光线垂直时,影子DE′最长.如图DC′⊥AE′,∴∠E′C′D=∠ABE′=90°,∠C′E′D=∠AE′B,∴△E′C′D∽△E′BA,∴=即BE′=2C′E′设C′E′=x,则BE′=2x,∴DE′=BE′﹣BD=2x﹣3,在Rt△DE′C′中,根据勾股定理,得(2x﹣3)2=32+x2解得x=0或4,∴DE′=5,所以其影长的取值范围是:大于或等于3米,小于或等于5米.21.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠AED的度数;(2)若⊙O的半径为2,则的长为多少?(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O的内接正n边形的一边,求n的值.【分析】(1)连接BD,根据圆的内接四边形的性质得出∠BAD的度数,由AB=AD,可证得△ABD是等边三角形,求得∠ABD=60°,再利用圆的内接四边形的性质,即可求得∠E的度数;(2)连接OA,由圆周角定理求出∠AOD的度数,由弧长公式即可得出的长;(3)首先连接OA,由∠ABD=60°,利用圆周角定理,即可求得∠AOD的度数,继而求得∠AOE的度数,即可得出结果.【解答】解:(1)连接BD,如图1所示:∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)∵∠AOD=2∠ABD=120°,∴的长==;(3)连接OA,如图2所示:∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,∴n==12.22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=100 ,n=35 ;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.23.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵CD⊥AD,∴∠D=90°,∵四边形OABC是平行四边形,∴AD平行OC,∴∠D=∠OCE=90°,∴CO⊥DE,∴DE是⊙O的切线.(2)①连接BF.∵四边形OABC是平行四边形,∴BC∥AF,AB=OC,∴∠AFB=∠CBF,∴=,∴AB=CF,∴CF=OC.②∵CF=OC=OF,∴△COF是等边三角形,∴∠COF=60°,在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.九年级下学期期中考试数学试题一.选择题(共10小题)1.﹣3的绝对值是()A.﹣3 B.3 C.D.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.下列计算正确的是()A.4a﹣2a=2 B.2x2+2x2=4x4C.﹣2x2y﹣3yx2=﹣5x2y D.2a2b﹣3a2b=a2b4.下列图形中,不是轴对称图形的是()A.B.C.D.5.如图,直线a∥b,CD⊥AB于点D,若∠1=36°,则∠2等于()A.54°B.126°C.136°D.144°6.下列二次根式中是最简二次根式的是()A.B.C.D.7.计算﹣的结果是()A.B.x C.3 D.08.如图,矩形ABCD中,对角线AC,BD交于O点.若∠AOB=60°,AC=8,则AB的长为()A.4 B.C.3 D.59.如图,在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,,若S△ADE=2,则S△ABC的值是()A.6 B.8 C.18 D.3210.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A.当x<2时,y随x增大而增大B.a﹣b+c<0C.拋物线过点(﹣4,0)D.4a+b+c=0二.填空题(共8小题)11.分解因式:a2b﹣8ab+16b=.12.2sin30°+(π﹣3.14)0+(﹣1)2018=.13.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=°.14.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于度.15.若x=1是一元二次方程x2+3x+m=0的一个根,则m=.16.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x≥kx+2的解集为.17.如图,在Rt△ABC中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则与线段AD围成的弓形面积是.18.符号“f”表示一种运算,它对一些数的运算结果如下:f(1)=0;f(2)=1;f(3)=2;f(4)=3;…f()=3;f()=4;f()=5;f()=6;…利用以上规律计算:f()﹣f(2019)=.三.解答题(共10小题)19.解不等式组20.如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:(1)作△ABC的角平分线AE;(2)根据你所画的图形求∠BAE的度数.21.我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,其中《孙子算经》中记载了这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?22.小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的水平距离CD的长度,小明从自己家的窗户C处测得∠DCA=37°,∠DCB=48°(DC平行于地面).求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°=,tan37°=,sin48°=,tan48°=)23.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.(1)张华用“微信”支付的概率是.(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)24.小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表项目男(人数)女(人数)广场舞7 9健步走m 4器械 2 2跑步 5 n根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?25.如图,线段OA与反比例函数y=在第一象限的图象相交于点B(4,3),点B是OA的中点,AC∥x 轴交图象于点C.求:(1)m的值;(2)求AC的长.26.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△AEC≌△DFB;(2)若∠EBD=60°,BE=BC,求证:四边形BFCE是菱形.27.如图,已知AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,AD=2BD,ED与AB的延长线相交于点F,连接AD.(1)求证:DE为⊙O的切线.(2)求证:△FDB∽△FAD;(3)若BF=2,求⊙O的半径.28.如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.。
九年级(下)期中数学试卷(含解析)

九年级(下)期中数学试卷一.选择题(共12小题)1.﹣的倒数是()A.3B.﹣3C.D.﹣2.下列计算正确的一个是()A.a3+a3=a6B.a3•a2=a6C.(a+b)2=a2+b2D.(a2)3=a63.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A.25°B.35°C.45°D.65°4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>05.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)8.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE =1,则DE的长是()A.B.2C.2D.9.如果a=b+2,那么代数式(﹣b)•的值为()A.B.2C.3D.410.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.511.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米12.如图是二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)图象的一部分,它与x轴的一个交点A在点(2,0)和点(3,0)之间,图象的对称轴是x=1,对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二.填空题(共6小题)13.因式分解:a3﹣2a2b+ab2=.14.已知关于x的分式方程的解是非正数,则m的取值范围是.15.如图,ABCDEF为⊙O的内接正六边形,AB=2,则图中阴影部分的面积是.16.将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29…根据以上排列规律,数阵中第25行的第20个数是.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.三.解答题(共4小题)19.计算:20.阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.21.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.22.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.23.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠F AB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.24.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.﹣的倒数是()A.3B.﹣3C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.2.下列计算正确的一个是()A.a3+a3=a6B.a3•a2=a6C.(a+b)2=a2+b2D.(a2)3=a6【分析】根据合并同类项的法则,同底数幂的乘法,完全平方公式以及积的乘方的性质,即可求得答案.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a5,故本选项错误;C、(a+b)2=a2+2ab+b2,故本选项错误;D、(a2)3=a6,故本选项正确.故选:D.3.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠1=65°,则∠2的度数是()A.25°B.35°C.45°D.65°【分析】过点C作CD∥l1,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥l1,则∠1=∠ACD.∵l1∥l2,∴CD∥l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.4.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵c>b,∴c﹣b>0,∴B正确;又∵a<0,c>0,∴ac<0,∴C不正确;又∵a<﹣3,c<3,∴a+c<0,∴D不正确;故选:B.5.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选:D.8.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE =1,则DE的长是()A.B.2C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.9.如果a=b+2,那么代数式(﹣b)•的值为()A.B.2C.3D.4【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:(﹣b)•=•=•=,∵a=b+2,∴a﹣b=2,∴原式==.故选:A.10.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∴GH EF,∴∠GHN=∠EFM,在△GHN和△EFM中,∴△GHN≌△EFM(AAS),∴HN=MF=HD,∴AD=AH+HD=HM+MF=HF,HF===20,∴AD=20厘米.故选:C.12.如图是二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)图象的一部分,它与x轴的一个交点A在点(2,0)和点(3,0)之间,图象的对称轴是x=1,对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二.填空题(共6小题)13.因式分解:a3﹣2a2b+ab2=a(a﹣b)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(a2﹣2ab+b2)=a(a﹣b)2.故答案为:a(a﹣b)2.14.已知关于x的分式方程的解是非正数,则m的取值范围是m≤3且m≠2.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为非正数确定出m的范围即可.【解答】解:分式方程去分母得:m﹣2=x+1,解得:x=m﹣3,由分式方程的解为非正数,得到m﹣3≤0,且m﹣3≠﹣1,解得:m≤3且m≠2,故答案为:m≤3且m≠2.15.如图,ABCDEF为⊙O的内接正六边形,AB=2,则图中阴影部分的面积是﹣.【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:∵正六边形的边长为2,∴⊙O的半径为2,∴⊙O的面积为π×22=4π,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×2×2×sin60°=,∴正六边形面积为6,∴阴影面积为(π×22﹣6)×=﹣,故答案为:﹣.16.将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29…根据以上排列规律,数阵中第25行的第20个数是639.【分析】由三角形数阵,知3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,21+23+25+27+29=125=53,进而得出方程可得答案.【解答】解:根据三角形数阵可知,3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,21+23+25+27+29=125=53,设第25行中间的数是x,可得:253=25x,解得:x=625,即第13个数是625,第20个数=x+2×7=625+14=639,故答案为:639.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE =∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为.【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a DE•AD=a∴DE=2,当点F从D到B时,用,∴BD=,Rt△DBE中,BE==1,∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=.故答案为:三.解答题(共4小题)19.计算:【分析】直接利用负指数幂的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣+2﹣2﹣+1=3.20.阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0的距离.(2)若点P2(1,0)到直线x+y+C=0的距离为,求实数C的值.【分析】(1)根据点到直线的距离公式即可求解;(2)根据点到直线的距离公式,列出方程即可解决问题.【解答】解:(1)d==1;(2)=,∴|C+1|=2,∴C+1=±2,∴C1=﹣3,C2=1.21.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).22.如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB=,OB=2,反比例函数y=的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.【分析】(1)过点B作BD⊥OA于点D,设BD=a,通过解直角△OBD得到OD=2BD.然后利用勾股定理列出关于a的方程并解答即可;(2)欲求直线AM的表达式,只需推知点A、M的坐标即可.通过解直角△AOB求得OA=5,则A(5,0).根据对称的性质得到:OM=2OB,结合B(4,2)求得M(8,4).然后由待定系数法求一次函数解析式即可.【解答】解:(1)过点B作BD⊥OA于点D,设BD=a,∵tan∠AOB==,∴OD=2BD.∵∠ODB=90°,OB=2,∴a2+(2a)2=(2)2,解得a=±2(舍去﹣2),∴a=2.∴OD=4,∴B(4,2),∴k=4×2=8,∴反比例函数表达式为:y=;(2)∵tan∠AOB=,OB=2,∴AB=OB=,∴OA===5,∴A(5,0).又△AMB与△AOB关于直线AB对称,B(4,2),∠ABO=90°,∴∠ABM=∠ABO=90°,∴O、B、M共线,∴OM=2OB,∴M(8,4).把点M、A的坐标分别代入y=mx+n,得,解得,故一次函数表达式为:y=x﹣.23.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠F AB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.【考点】KF:角平分线的性质;M5:圆周角定理;MD:切线的判定;MO:扇形面积的计算.【专题】15:综合题.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠F AC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD 是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,∴S扇形OBC==(2)∵AC平分∠F AB,∴∠F AC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠F AC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线24.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.【考点】LO:四边形综合题.【专题】15:综合题.【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【解答】解:(1)思路一、如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)把点A、B、C的坐标分别代入抛物线解析式,列出关于系数a、b、c的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△MBN与t的函数关系式S△MBN=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;(3)根据余弦函数,可得关于t的方程,解方程,可得答案.【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得,解得,所以该抛物线的解析式为:y=﹣x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴,即=,∴HN=t.∴S△MBN=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,当△MBN存在时,0<t<2,∴当t=1时,S△MBN最大=.答:运动1秒使△MBN的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.当∠MNB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BMN=90°时,cos∠B===(在图2中,当∠BM'N'=90°时,cos∠B=)化简,得19t=30,解得t=,综上所述:t=或t=时,△MBN为直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】九年级数学下期中试卷及答案一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)3.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;4.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDFVV,那么S EAFS EBCVV的值是()A .12B .13C .14D .196.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似7.观察下列每组图形,相似图形是( )A .B .C .D .8.在同一直角坐标系中,函数k y x=和y=kx ﹣3的图象大致是( ) A . B . C .D .9.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .910.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m11.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 12.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题13.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.14.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且43OE EA =,则FG BC=______.15.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是______________.16.如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.17.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)20.如图,l 1∥l 2∥l 3,AB=25AC ,DF=10,那么DE=_________________.三、解答题21.如图,等边ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 上的点,连接CD 、EF 交于点G ,且60CGF ∠=︒.(1)请直接写出图中所有与BDC ∆相似的三角形(任选一对证明);(2)若45EF DC =,试求AE EC 的值.22.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)23.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AB =米,坡度为1:3AB 的高度AE 降低20AC =米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)24.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.25.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.求证:四边形AFGE与四边形ABCD相似.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.4.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.【详解】过A作AM⊥x轴于M,过B作BN⊥x轴于N,则∠AMO=∠BNC=90°,∵四边形AOCB是菱形,∴OA=BC=AB=OC,AB∥OC,OA∥BC,∴∠AOM=∠BCN,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM和△BCN中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 6.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.7.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.8.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.9.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE10.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .二、填空题13.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个. 点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.14.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD 与四边形EFGH 位似其位似中心为点O 且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键 解析:47【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q四边形ABCD与四边形EFGH位似,其位似中心为点O,且OE4 EA3=,OE4 OA7∴=,则FG OE4 BC OA7==,故答案为:47.【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.15.5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况有两种情况:①B′FC∽△ABC时B′FAB=CF/BC又因为AB=AC=8BC=10BF=BF所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况,有两种情况:① B′FC∽△ABC时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF,所以10810BF BF-=,解得BF=;②△B′CF∽△BCA时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF,BF=B′F,又BF+FC=10,即2BF=10,解得BF=5.故BF的长度是5或.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD 然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA于D则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD 中,∠BAD=60°,∴BD=ABsin60°=15, ∴△ABC 面积=12×AC×BD=225.又因为每平方米造价为30元, ∴总造价为30×225=6750(元). 【点睛】 此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB V V ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.20.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC∴∴∵DF=10∴∴DE=4 解析:【解析】试题解析::∵l 1∥l 2∥l 3, ∴AB DE AC DF=. ∵AB=25AC , ∴25AB AC =, ∴25DE DF =. ∵DF=10, ∴2105DE =, ∴DE=4. 三、解答题21.(1)GFC CFE ∆∆、;(2)14 【解析】【分析】(1)根据等边三角形的性质及∠CGF=60°,可以得出∠B=∠ACB=∠CGF=60°,可以得出△BDC ∽△GFC ∽△CFE ;(2)由(1)△BDC ∽△CFE 可以得出EF CE DC BC = ,再根据条件45EF DC =和三角形ABC是等边三角形和线段的转化,就可以得出AE EC的值. 【详解】解:(1)GFC CFE ∆∆、∵等边ABC ∆,∴∠B=∠ACB =60°∵60CGF ∠=︒∴∠B=∠ACB=∠CGF又∵∠DCB=∠FCG∴GFC BDC ∆∆∽∵∠EFC=∠GFC∴GFC CFE ∆∆∽∴GFC CFE BDC ∆∆∽∽△(2)∵△BDC ∽△CFE 454541,54EF CE DC BCEF DC CE BC CE AE AC EC ∴==∴=∆∴∴==Q Q 等边ABC AC=BC即【点睛】 本题考查了相似三角形的判定与性质,等边三角形的性质.22.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠, ∴sin 6040sin 60203DO BO =⋅=⨯=o o ,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.斜坡CD 的长是8017【解析】【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为1:3, ∴3tan 3ABE ∠==, ∴30ABE ∠=︒, ∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4,∴14CE DE =, 即8014ED =, 解得,320ED =,∴22803208017CD =+=米,答:斜坡CD 的长是8017米.【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.(1)证明见解析;(2).【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB ,根据相似三角形的判定定理证明; (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得 到 CE=AE ,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵AC 平分∠DAB ,∴∠DAC=∠CAB ,∵AC 2=AB•AD ,∴= , ∴△ADC ∽△ACB ;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点 E 为 AB 的中点,∴CE=AE= AB= ,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点睛】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.证明见解析.【解析】【分析】由正方形的性质可知;AC平分∠DAB,然后由角平分线的性质可知GE=GF,从而可证明四边形EGFA为正方形,故此四边形AFGE与四边形ABCD相似;【详解】解:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°.又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG.∴AE=EG=FG=AF,∴四边形AFGE为正方形.∴AFAB=FGBC=GECD=AEAD,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC.∴四边形AFGE与四边形ABCD相似.。