2019-2020年九年级数学期中试卷及答案

合集下载

2019-2020学年福建省福州九年级上学期期中考试数学试卷及答案解析

2019-2020学年福建省福州九年级上学期期中考试数学试卷及答案解析

第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。

2019-2020学年河北省保定十七中九年级(上)期中数学试卷(附答案详解)

2019-2020学年河北省保定十七中九年级(上)期中数学试卷(附答案详解)

2019-2020学年河北省保定十七中九年级(上)期中数学试卷一、选择题(本大题共17小题,共45.0分)1.下列方程中,是关于x的一元二次方程的是()A. 1x2+1x−2=0 B. ax2+bx+c=0C. 3x2+3x+7=3x2D. 5x2=42.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A. xy =23B. xx−y=3 C. x+yy=53D. xx+y=253.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.4.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=195.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8006.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm7.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A. 25B. 36C. 25或36D. −25或−368.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. OBCD =32B. αβ=32C. S1S2=32D. C1C2=329.若关于x的一元二次方程mx2+6x−9=0有两个实数根,则m的取值范围是()A. m≤1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠010.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个11.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于()A. 5:8B. 3:8C. 3:5D. 2:512.有长为24米的篱笆,一边利用墙(墙的最大可用长度为a=10米),围成如图所示的花圃,则能围成的花圃的最大面积为()平方米.A. 40B. 48C. 1003D. 140313.一个等腰三角形的两条边长分别是方程x2−7x+10=0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或914.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEF=3,则S△BCF为()A. 3B. 6C. 9D. 1215.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a−b+ c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,则mn值为()A. 2B. 0C. −2D. 316.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A. 6B. 8C. 10D. 1217.如图,若干个正三角形的一边在同一条直线a上,这边对的顶点也在同一条直线b上,它们的面积依次为S1,S2,S3,S4…若S1=1,S2=2,则S6等于()A. 16B. 24C. 32D. 不能确定二、填空题(本大题共3小题,共10.0分)18.已知x=1是一元二次方程x2+mx+n=0的一个根,则2−m−n的值为______.19.如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为______ 米.20.如图,已知在Rt△ABC中,AB=AC=3√2,在△ABC内作第一个内接正方形DEFG,则第1个内接正方形的边长______;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为______.三、解答题(本大题共8小题,共76.0分)21.用适当的方法解方程:(1)2x2+3x=1;(2)(x−2)(x+5)=18;(3)(x−1)2=4;(4)x(3x−6)=(x−2)2.22.定义新运算“⊕”如下:当a≥b时,a⊕b=ab−a;当a<b时,a⊕b=ab+b.);(1)计算:(−2)⊕(−12(2)若2x⊕(x+1)=8,求x的值.23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,−1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)B点的对应点B′的坐标是______;C点的对应点C′的坐标是______(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标是______.24.小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.25.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入−维护费用)26.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.27.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2−7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=16,试判断△AOE与△AOD是否相似?并说明理3由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.答案和解析1.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B、当a=0时,不是一元二次方程,故本选项不符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选:D.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】B【解析】【分析】此题主要考查了比例的性质和应用,根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:A.∵2x=3y,∴xy =32,∴选项A不正确;B.∵2x=3y,∴xy =32,∴xx−y =33−2=3,∴选项B正确;C.∵2x=3y,∴xy =32,∴x+yy =3+22=52,∴选项C不正确;D.∵2x=3y,∴xy =32,∴xx+y =33+2=35,∴∴选项D不正确.故选B.3.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.4.【答案】D【解析】【分析】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.5.【答案】C【解析】【分析】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.6.【答案】A【解析】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比.理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.7.【答案】C【解析】解:设这个两位数的个位数字为x,那么十位数字应该是x−3,由题意得10(x−3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选:C.可设这个数的个位数为x,那么十位数字应该是x−3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴OBOD =32,A错误;∴S1S2=94,C错误;∴C 1C 2=32,D 正确; 不能得出αβ=32,B 错误;故选:D . 9.【答案】D【解析】解:∵关于x 的一元二次方程mx 2+6x −9=0有两个实数根,∴△≥0且m ≠0,∴36+36m ≥0且m ≠0,∴m ≥−1且m ≠0,故选:D .根据一元二次方程的定义以及根的判别式的意义可得△=36+36m ≥0且m ≠0,求出m 的取值范围即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a,b,c 为常数)根的判别式△=b 2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.【答案】C【解析】【分析】本题考查了相似三角形及相似多边形的判定,以及位似图形的概念;解题关键是熟练掌握相似三角形及相似多边形的性质及判定.解题时,根据相似三角形和相似多边形的判定方法进行判定即可.注意:对于菱形,矩形等多边形,即使角度对应相等,但边长的比例不确定,不能判断其相似.【解答】解:①中两个角对应相等,为相似三角形,故①正确;②顶角相等且为等腰三角形,即底角也相等,是相似三角形,故②正确;③菱形的角不确定,所以不一定相似,故③错误;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,故④正确;所以①②④正确,故选C.11.【答案】A【解析】【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE//BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF//AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE//BC,∴CE:AC=BD:AB=5:8,∵EF//AB,∴CF:CB=CE:AC=5:8.故选:A.12.【答案】D【解析】解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.24−3x≤10,x≥143,这时面积S=x(24−3x)=−3x2+24x=−3(x−4)2+48(143≤x<8),当x=143时,S有最大值是1403,∴能围成的花圃的最大面积为1403平方米,故选:D.可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,求出最大值即可.本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.13.【答案】A【解析】【分析】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2−7x+10=0,(x−2)(x−5)=0,x−2=0,x−5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+ 5=12;即等腰三角形的周长是12.故选A.14.【答案】D【解析】【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.利用平行四边形的性质得到AD//BC,AD=BC,则DE=1BC,再证明△DEF∽△BCF,然后根据相似三角形的性质计算S△BCF的值.2【答案】解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∵点E是边AD的中点,∴DE=1BC,2∵DE//BC,∴△DEF∽△BCF,∴S△DEFS△BCF =(DEBC)2=14,∴S△BCF=4×3=12.故选:D.15.【答案】B【解析】解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为−1,所以一元二次方程2x2+mx+n=0的根为1和−1,所以2+m+n=0,2−m+n=0,解得m=0,n=−2,所以mn=0.故选:B.根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为−1,则2+m+n=0,2−m+n=0,然后求出m、n的值后计算mn的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】B【解析】【分析】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE//BF//DG//CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE//DF//CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴ABAD =BQMD=12,BQCH=ABAC=13,∴△BPQ∽△DKM∽△CNH,∴QBMD =12,∴S1S2=14,S1S3=19,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.17.【答案】C【解析】解:∵△AEF、△BFG、△CGH 都是等边三角形,∴∠AFE=∠BGF=60°,∠BFG=∠CGH=60°,∴AF//BG,BF//CG,∴∠BAF=∠CBG,∠ABF=∠BCG,∴△ABF∽△BCG,∴AFBG =BFCG.∵△AEF、△BFG、△CGH都是等边三角形,∴△AEF∽△BFG∽△CGH,∴S△AEFS△BFG =(AFBG)2,S△BFGS△CGH=(BFCG)2,∴S△AEFS△BFG =S△BFGS△CGH,∴S1S2=S2S3,∴S22=S1⋅S3.∵S1=1,S2=2,∴S3=4.同理S32=S2⋅S4,则有S4=8;S42=S3⋅S5,则有S5=16;S52=S4⋅S6,则有S6=32.故选:C.易证△ABF∽△BCG,则有AFBG =BFCG.易得△AEF∽△BFG∽△CGH,则有S△AEFS△BFG=(AFBG)2,S△BFG S△CGH =(BFCG)2,从而可得S22=S1⋅S3,同理S32=S2⋅S4,S42=S3⋅S5,S52=S4⋅S6,就可求出S6,从而解决问题.本题主要考查了等边三角形的性质、相似三角形的判定与性质、三角形的面积等知识,运用相似三角形的面积比等于相似比的平方是解决本题的关键.18.【答案】3【解析】【分析】本题考查了一元二次方程的解.正确理解方程的解的含义是解答此类题目的关键.根据一元二次方程的解的定义,将x=1代入一元二次方程x2+mx+n=0,求得m+n 的值,即可得出答案.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴x=1满足一元二次方程x2+mx+n=0,∴1+m+n=0,∴m+n=−1,∴2−m−n=2−(m+n)=2+1=3.故答案是:3.19.【答案】4【解析】解:如图,∵两次日照的光线互相垂直,∴∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,又∵∠CDE=∠FDC=90°,∴△CDE∽△FDC,∴CDDF =DECD,由题意得,DE=2,DF=8,∴CD8=2CD,解得CD=4,即这颗树的高度为4米.故答案为:4.在图形标注字母,然后求出△CDE和△FDC相似,根据相似三角形对应边成比例可得CD DF =DECD,然后代入数据进行计算即可得解.本题考查了相似三角形的应用,平行投影,确定出相似三角形是解题的关键,标注字母更便于叙述.20.【答案】2122018【解析】解:∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=13BC,∴DE=2,即第1个内接正方形的边长为2.∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴EIKI =PFEF=12,∴EI=12KI=12HI,∵DH=EI,∴HI=12DE=(12)2−1×2,第n个内接正方形的边长为:2×(12)n−1,则第n个内接正方形的面积为14n−2.∴第2020个内接正方形的边长为122018.故答案为:2;122018.首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.21.【答案】解:(1)2x 2+3x −1=0,∵a =2,b =3,c =−1,∴Δ=b 2−4ac =32−4×2×(−1)=17>0,∴x =−b±√b 2−4ac 2a=−3±√174, ∴x 1=−3+√174,x 2=−3−√174;(2)(x −2)(x +5)=18;∵x 2+3x −28=0,∴(x +7)(x −4)=0,即x +7=0或x −4=0,∴x 1=−7,x 2=4;(3)∵x −1=±2,∴x −1=2或x −1=−2,∴x 1=3,x 2=−1;(4)x(3x −6)=(x −2)2,∵3x 2−6x =x 2−4x +4,∴x 2−x −2=0,∴(x −2)(x +1)=0,即x −2=0或x +1=0,∴x 1=2,x 2=−1.【解析】(1)先化为一般式2x 2+3x −1=0,可得a =2,b =3,c =−1,即可算出根的判别式△的值,根据求根公式计算即可得出答案;(2)先应用多项式乘法法则进行计算,再化为一般式,再应用十字相乘法进行分解即可得出答案;(3)应用直接开平方法进行求解即可得出答案;(4)先化为一般式,再应用十字相乘法进行求解即可得出答案.本题主要考查了解一元二次方程,熟练应用解一元二次方程的方法进行求解是解决本题的关键.22.【答案】解:(1)(−2)⊕(−12)=(−2)×(−12)+(−12)=1+(−12)=12;(2)当2x ≥x +1时,即:x ≥1时,2x(x +1)−2x =8,解得:x =±2,∵x ≥1,∴x =2;当2x <x +1时,即:x <1时,2x(x +1)+x +1=8,2x 2+3x −7=0解得:x 1=−3+√654,x 2=−3−√654, ∵x <1,∴x =−3−√654.【解析】(1)首先根据a ⊕b =ab −a ,认真分析找出规律,即可求出(−2)⊕(−12)的值;(2)首先分两种情况进行讨论,当2x ≥x +1和2x <x +1时,分别解出x 的取值范围,即可得出x 的值.此题考查了解一元二次方程−公式法,本题属于新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.23.【答案】(1)如图,△OB′C′为所作;(2)(−6,2)(−4,−2)(3)(−2x,−2y)【解析】解:(1)见答案(2)B点的对应点B′的坐标是(−6,2);C点的对应点C′的坐标是(−4,−2);故答案为:(−6,2),(−4,−2)(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标为(−2x,−2y).故答案为:(−2x,−2y).(1)(2)把B、C点的横纵坐标都乘以−2得到B′、C′点的坐标,然后描点即可;(3)把P点的横纵坐标都乘以−2得到P′点的坐标.本题考查了作图−位似变换:利用关于原点为位似中心的对应点的坐标之间的关系先写出对应的坐标,然后描点画图.24.【答案】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:1;3;故答案为:13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;∴建议小明在第一题使用“求助”.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)60−x 10;200+x ;(60−x 10)×20;(2)依题意得:(200+x)(60−x 10)−(60−x 10)×20=14000,整理,得x 2−420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60−x 10=28(间).当x =100时,有游客居住的客房数量是:60−x 10=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为x 10,∴入住的房间数量=60−x 10,房间价格是(200+x)元,总维护费用是(60−x 10)×20.故答案为:60−x 10;200+x ;(60−x 10)×20;(2)见答案.(1)住满为60间,x 表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为x 10,入住量=60−房间空闲个数,列出代数式;(2)用每天的房间纯收入=每间房实际定价×入住量−总维护费用,每间房实际定价=200+x ,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】48 6n 91 [n ×3(n −1)+1=3n 2−3n +1]【解析】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n 中黑点的个数分别是48,6n ;故答案为:48,6n ;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n 个点阵中有圆圈个数为:n ×3(n −1)+1=3n 2−3n +1.故答案为:91;n ×3(n −1)+1=3n 2−3n +1.(2)会;第11个点阵.3n 2−3n +1=331整理得,n 2−n −110=0解得n 1=11,n 2=−10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2−3n+1=331,整理得,n2−n−110=0,解得n1=11,n2=−10(负值舍去),进而得结论.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.27.【答案】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO于点M,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC =AMAD,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)如图2,过点O作OH⊥BC交BC于点H,则OH=12CD=12AB=3cm,由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE(ASA),∴BE=PD=8−t,则S△BOE=12BE⋅OH=12×3(8−t)=12−32t.∵FQ//AC,∴△DFQ∽△DOC,相似比为DQDC =t6,∴S△DFQS△DOC =t236,∵S△DOC=14S矩形ABCD=14×6×8=12cm2,∴S△DFQ=12×t236=t23,∴S五边形OECQF =S△DBC−S△BOE−S△DFQ=12×6×8−(12−32t)−t23=−13t2+32t+12;∴S与t的函数关系式为S=−13t2+32t+12;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF :S△ACD=(−13t2+32t+12):24=9:16,解得t=3,或t=32,∴t=3或32时,S五边形OECQF:S△ACD=9:16.【解析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.(3)根据题意列方程得到t=3或t=32,可求解.本题是四边形综合题,考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.【答案】解:(1)x2−7x+12=0,因式分解得,(x−3)(x−4)=0,由此得,x−3=0,x−4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=12×4⋅OE=163,解得OE=83,∵OEOA =834=23,OAOD=46=23,∴OEOA =OAOD,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6−3=3,由勾股定理得,AC=√OA2+OC2=√42+32=5,易求直线AB的解析式为y=43x+4,设点F的坐标为(a,43a+4),则AF2=a2+(43a+4−4)2=259a2,CF2=(a−3)2+(43a+4)2=259a2+143a+25,①若AF=AC,则259a2=25,解得a=±3,a=3时,43a+4=43×3+4=8,a=−3时,43a+4=43×(−3)+4=0,所以,点F的坐标为(3,8)或(−3,0);②若CF=AC,则259a2+143a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=−4225,4 3a+4=43×(−4225)+4=4425,所以,点F的坐标为(−4225,4425),③若AF=CF,则259a2=259a2+143a+25,解得a=−7514,4 3a+4=43×(−7514)+4=−4414,所以,点F的坐标为(−7514,−227),综上所述,点F的坐标为(3,8)或(−3,0)或(−4225,4425)或(−7514,−227)时,以A、C、F为顶点的三角形是等腰三角形.【解析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=43x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.本题是四边形综合题型,主要利用了解一元二次方程,三角形的面积,相似三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,利用勾股定理表示出△ACF的三条边求解更简便.。

2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷(解析版)

2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷(解析版)

2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷一、选择题(每题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)“明年的11月8日是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件2.(4分)将抛物线y=x2向下平移一个单位,得到的抛物线解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2 3.(4分)如图,已知A,B,C在⊙O上,的度数为300°,∠C的度数是()A.30°B.40°C.50°D.60°4.(4分)黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.85.(4分)抛物线y=x2﹣2x﹣m2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A.πB.πC.D.π7.(4分)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.8.(4分)在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个点在圆内,则r的取值范围为()A.2B.C.3D.59.(4分)已知抛物线y=x2+1具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线y=x2+1上一动点,则△PMF周长的最小值是()A.5B.9C.11D.1310.(4分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m11.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个12.(4分)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根二、填空题(每空4分,共24分)13.(4分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为.14.(4分)已知⊙O的半径为1,则其内接正六边形的边长为.15.(4分)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C坐3号座位的概率是.16.(4分)过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为.17.(4分)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)18.(4分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).若l经过这九个格点中的三个,则满足这样条件的抛物线条数为条.三、解答题(19题7分,20题9分,21-23题8分,24-25题12分,26题14分,共78分)19.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20.(9分)已知抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,与x轴交于另一点A,顶点为B.求:(1)抛物线的解析式;(2)△AOB的面积;(3)要使二次函数的图象过点(10,0),应把图象沿x轴向右平移个单位.21.(8分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°.求(1)⊙D的半径;(2)圆中阴影部分的面积(结果保留根号和π)22.(8分)在﹣2,﹣1,0,1,2这五个数中任意取两个数m,n,已知有二次函数y=(x ﹣m)2+n.(1)先取m=1,则从余下的数中任意取n,求二次函数图象与y轴交于负半轴的概率;(2)任意取两个数m,n,求二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率.23.(8分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中作出圆心O.24.(12分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.25.(12分)某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了40%,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=45;x=42时,y=38.(1)求一次函数y=kx+b的表达式;(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.26.(14分)已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.2019-2020学年浙江省宁波市慈溪市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)“明年的11月8日是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.【解答】解:“明年的11月8日是晴天”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题主要考查了必然事件、不可能事件、随机事件的概念.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.2.(4分)将抛物线y=x2向下平移一个单位,得到的抛物线解析式为()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=x2向下平移一个单位得到解析式:y=x2﹣1.故选:B.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.3.(4分)如图,已知A,B,C在⊙O上,的度数为300°,∠C的度数是()A.30°B.40°C.50°D.60°【分析】首先得到的度数,进而可得∠AOB的度数,再根据圆周角定理可得答案.【解答】解:∵的度数为300°,∴的度数为:360°﹣300°=60°,∴∠AOB=60°,∴∠C=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角是圆心角的一半.4.(4分)黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.8【分析】由共摸了1000次,其中200次摸到红球,则有800次摸到白球,所以摸到红球与摸到白球的次数之比可求出,再用总球的个数乘以红球所占的百分比即可得出答案.【解答】解:共摸了1000次,其中200次摸到红球,则有800次摸到白球,∴红球与白球的数量之比为1:4,∴红球有10×=2(个).故选:A.【点评】本题考查的利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解答此题的关键是要计算出口袋中红色球所占的比例..5.(4分)抛物线y=x2﹣2x﹣m2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据抛物线的顶点式求出抛物线y=x2﹣2x﹣m2(m是常数)的顶点坐标,再根据各象限内点的坐标特点进行解答.【解答】解:∵y=x2﹣2x﹣m2=(x﹣1)2+(﹣m2﹣1),∴顶点坐标为:(1,﹣m2﹣1),∵1>0,﹣m2﹣1<0,∴顶点在第四象限.故选:D.【点评】本题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键.6.(4分)钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A.πB.πC.D.π【分析】从9点到9点15分分针扫过的扇形的圆心角是90°,利用扇形的面积公式即可求解.【解答】解:从9点到9点15分分针扫过的扇形的圆心角是90°,则分针在钟面上扫过的面积是:=π.故选:B.【点评】本题考查了扇形的面积公式,正确理解公式是关键.7.(4分)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是()A.B.C.D.【分析】根据树形图即可求概率.【解答】解:根据树形图,可知蚂蚁可选择食物的路径有6条,即有6种等可能的结果,有食物的有两条.所以概率是.所以它获取食物的概率.故选:B.【点评】本题考查了用列表法与树形图法求概率,解决本题的关键是画出树形图.8.(4分)在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个点在圆内,则r的取值范围为()A.2B.C.3D.5【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.∵AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴3<r≤5时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有4个在圆内.故选:C.【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A 的距离是解题的关键.9.(4分)已知抛物线y=x2+1具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线y=x2+1上一动点,则△PMF周长的最小值是()A.5B.9C.11D.13【分析】过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,由PF=PE结合三角形三边关系,即可得出此时△PMF周长取最小值,再由点F、M的坐标即可得出MF、ME的长度,进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF周长最小值,∵F(0,2)、M(3,6),∴ME=6,FM==5,∴△PMF周长的最小值=ME+FM=6+5=11.故选:C.【点评】本题考查了二次函数的性质以及三角形三边关系,根据三角形的三边关系确定点P的位置是解题的关键.10.(4分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:作OE⊥AB于E,反向延长交CD于F,∵CD∥AB,∴EF⊥CD,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了1.4m,∴OF=1.4﹣0.8=0.6m,∴CF===0.8m,∴CD=2CF=1.6m,∴此时排水管水面宽为1.6m,故选:C.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.11.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选:B.【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.12.(4分)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根【分析】利用抛物线经过点(0,0.37)得到c=0.37,根据抛物线的对称性得到抛物线的对称轴为直线x=2,抛物线经过点(,﹣1),由于方程ax2+bx+1.37=0变形为ax2+bx+0.37=﹣1,则方程ax2+bx+1.37=0的根理解为函数值为﹣1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为x1=,x2=4﹣.【解答】解:由抛物线经过点(0,0.37)得到c=0.37,因为抛物线经过点(0,0.37)、(4,0.37),所以抛物线的对称轴为直线x=2,而抛物线经过点(,﹣1),所以抛物线经过点(4﹣,﹣1),所以二次函数解析式为y=ax2+bx+0.37,方程ax2+bx+1.37=0变形为ax2+bx+0.37=﹣1,所以方程ax2+bx+0.37=﹣1的根理解为函数值为﹣1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为x1=,x2=4﹣.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(每空4分,共24分)13.(4分)如图,在矩形纸片上作随机扎针试验,针头扎在阴影区域内的概率为.【分析】用阴影区域所占的面积除以总面积即可得出答案.,【解答】解:观察发现:图中阴影部分面积=S矩形∴针头扎在阴影区域内的概率为;故答案为:.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.14.(4分)已知⊙O的半径为1,则其内接正六边形的边长为1.【分析】如图,六边形ABCDEF是⊙O的内接正六边形,证明△OAB是等边三角形即可解决问题.【解答】解:如图,∵ABCDEF是⊙O的内接正六边形,∴∠AOB=60°,∵OA=OB=1,∴△ABO是等边三角形,∴AB=OA=1.故答案为1.【点评】本题考查正多边形和圆,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(4分)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C坐3号座位的概率是.【分析】画树状图展示所有6种等可能的结果数,再找出学生B坐在2号座位且C坐3号座位的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中学生B坐在2号座位且C坐3号座位的结果数为1,所以学生B坐在2号座位的概率=.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.16.(4分)过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为20°.【分析】首先连接DE,由过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,根据圆的内接四边形的性质可得:∠C+∠AED=180°,继而可求得∠C=90°+∠B,又由三角形内角和定理,即可求得答案.【解答】解:连接DE,∵过D、A、C三点的圆的圆心为E,∴∠C+∠AED=180°,∵过B、E、F三点的圆的圆心为D,∴∠BED=∠B=∠B,∴∠AED=180°﹣∠B,∴∠C=90°+∠B,∵∠A+∠C+∠B=180°,∴60°+90°+∠B+∠B=180°,解得:∠B=20°.故答案为:20°.【点评】此题考查了圆周角定理以及三角形内角和定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.17.(4分)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)【分析】根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.【解答】解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.【点评】本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.18.(4分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).若l经过这九个格点中的三个,则满足这样条件的抛物线条数为8条.【分析】分两种情况把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c 的值,然后把格点坐标代入解析式即可判断.【解答】解:当n为偶数,则抛物线l的解析式为y=x2+bx+c,若经过O(0,0)和A (1,0),则,解得,∴抛物线为y=x2﹣x,点D(2,2)满足函数解析式,若经过B(2,0)和A(1,0),则,解得∴抛物线为y=x2﹣3x+2,点F(0,2)满足函数解析式,若经过A(1,0)和C(2,1),则,解得,∴抛物线为y=x2﹣2x+1,点H(0,1)满足函数解析式,抛物线为y=x2﹣2x+1向上平移一个单位得y=x2﹣2x+2,点F(0,2),G(1,1),D(2,2)满足函数解析式,当n为奇数,则抛物线l的解析式为y=﹣x2+bx+c,若经过F(0,2)和E(1,2),则,解得,∴抛物线为y=﹣x2+x+2,点B(2,0)满足函数解析式,若经过E(1,2)和D(2,2),则,解得∴抛物线为y=﹣x2+3x,点O(0,0)满足函数解析式,若经过E(1,2)和C(2,1),则,解得,∴抛物线为y=﹣x2+2x+1,点H(0,1)满足函数解析式,抛物线为y=﹣x2﹣2x+1向下平移一个单位得y=﹣x2+2x,点O(0,0),G(1,1),B(2,0)满足函数解析式,综上,满足条件的抛物线条数为8条.故答案为8.【点评】本题考查了待定系数法求函数的解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意抛物线有开口向上和开口向下两种情况.三、解答题(19题7分,20题9分,21-23题8分,24-25题12分,26题14分,共78分)19.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10元购物券,至多可得到50元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【分析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):0102030第二次第一次0﹣﹣1020301010﹣﹣3040202030﹣﹣5030304050﹣﹣(以下过程同“解法一”)【点评】本题主要考查概率知识.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)已知抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,与x轴交于另一点A,顶点为B.求:(1)抛物线的解析式;(2)△AOB的面积;(3)要使二次函数的图象过点(10,0),应把图象沿x轴向右平移个单位.【分析】(1)根据抛物线y=x2+(n﹣3)x+n+1经过坐标原点O,可把O(0,0)代入此解析式求出n的值.(2)利用(1)中的函数解析式求得点A、B的坐标,进而求得相关线段的长度,利用三角形的面积公式求解即可;(3)根据平移规律解答.【解答】解:(1)由题得:n+1=0,n=﹣1.∴抛物线解析式为:y=x2﹣4x;(2)y=x2﹣4x=(x﹣2)2﹣4,∴顶点B的坐标(2,﹣4),点A的坐标(0,4),所以△AOB的面积是:×4×4=8;(3)设抛物线y=(x﹣2)2﹣4的图象沿x轴向右平移a个单位,则平移后抛物线解析式是:y=(x﹣2﹣a)2﹣4,把(10,0)代入,得=(10﹣2﹣a)2﹣4=0.解得a=6或a=10.即图象沿x轴向右平移6或10 个单位.【点评】考查了抛物线与x轴的交点,二次函数的性质,二次函数图象与几何变换以及待定系数法确定函数关系式等知识点,难度不大.21.(8分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°.求(1)⊙D的半径;(2)圆中阴影部分的面积(结果保留根号和π)【分析】(1)连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA =∠C=30°,由锐角三角函数的定义得出OA及AB的长,则可得出圆D的半径长;(2)根据S阴影=S半圆﹣S△ABO即可得出结论.【解答】解:(1)连结AB,∵∠AOB =90°,∴AB 为⊙D 直径∵∠ABO 与∠C 是同弧所对圆周角,∴∠ABO =∠C =30°∴AB =2OA ,∵B 点坐标为(0,),∴OB =, 在直角三角形AOB 中,AB 2=OA 2+OB 2,∴AB 2=(AB )2+(2)2∵AB >0,∴AB =4,即⊙D 的半径为2;(2)圆中阴影部分的面积为:S 阴影=S 半圆﹣S △ABO =﹣×2×2=2π﹣2. 【点评】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(8分)在﹣2,﹣1,0,1,2这五个数中任意取两个数m ,n ,已知有二次函数y =(x ﹣m )2+n .(1)先取m =1,则从余下的数中任意取n ,求二次函数图象与y 轴交于负半轴的概率;(2)任意取两个数m ,n ,求二次函数y =(x ﹣m )2+n 的顶点在坐标轴上的概率.【分析】(1)由概率公式即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:(1)先取m =1,则从余下的数中任意取n ,m 2+n 为负数的结果有1个为﹣2,∴二次函数图象与y 轴交于负半轴的概率为;(2)画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中作出圆心O.【分析】(1)延长BA、CA分别交半圆于F、E,利用圆周角定理得到∠E=∠B=∠C =∠F,则EF∥BC;(2)延长BE、CF交于G,连结GA并延长与直径交点即为圆心.【解答】解:(1)如图,EF为所作;(2)如图,点O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和圆周角定理.24.(12分)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.【分析】(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;(2)①由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE 是菱形;②当∠ABC为60度时,∠DBE也为60度,△BDE为等边三角形,求得DE=DA,于是得到结论.【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵,∴△ABD≌△CBE(SAS);(2)解:四边形BDCE是菱形.证明如下:同(1)可证△ABD≌△CBE,∴CE=AD,∵点D是△ABC外接圆圆心,∴DA=DB=DC,又∵BD=BE,∴BD=BE=CE=CD,∴四边形BDCE是菱形;②当∠ABC为60度时,∠DBE也为60度,△BDE为等边三角形,∴DE=DA,点E在圆D上.【点评】本题考查的是三角形的外接圆与外心、全等三角形的判定与性质及菱形的判定定理,先根据题意判断出△ABD≌△CBE是解答此题的关键.25.(12分)某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了40%,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数y=kx+b,且x=35时,y=45;x=42时,y=38.(1)求一次函数y=kx+b的表达式;(2)若该商户每天获得利润(不计加工费用)为W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?(3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.【分析】(1)待定系数法求解可得;(2)先根据加工过程中质量损耗了40%求出宁波白茶的实际成本,再根据“总利润=每千克的利润×销售量”列出函数解析式,由“销售单价不低于成本单价,且每千克获利不得高于成本单价的60%”得出x的范围,结合二次函数与的性质即可得函数的最值;(3)根据“每天获得利润不低于225元”列出不等式,解不等式后结合30≤x≤48可得答案.【解答】解:(1)将x=35、y=45和x=42、y=38代入y=kx+b,得:,解得:,∴y=﹣x+80;(2)根据题意得:W=(x﹣30)(﹣x+80)=﹣(x﹣55)2+625,解得30<x≤48,所以x=55不在此范围内当x=48时,最大利润为576元;(3)当W=225时W=﹣(x﹣55)2+625=225,解得x=35 或x=75,由30<x≤48得,∴35≤x≤48.【点评】本题主要考查待定系数法求函数解析式及二次函数的应用,理解题意找到题目蕴含的相等关系是解题的关键.26.(14分)已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.【分析】(1)证明△AHB≌△AGC(AAS),则点B(4,0),将点A、B的坐标代入二次函数y=ax2+bx+2,即可求解;(2)设圆的圆心为N,则点N在OC和OH中垂线的交点上,即点N(2,1),则圆的半径为,NQ==,即可求解;(3)设旋转中心P的坐标为:(m,n),由中点公式得:点O旋转后O′的坐标为(2m,2n),同理点A、C旋转后对应点A′、C′的坐标分别为:(2m﹣3,2n﹣3)、(2m,2n﹣2),再分点O′、A′在抛物线上,点C′、A′在抛物线上点C′,O′在抛物线上三种情况,分别求解即可.。

2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷含答案

2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷含答案

2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)若=,则的值为()A.1B.C.D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相平分且相等的四边形是正方形4.(3分)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m5.(3分)书架上有3本小说、2本散文,从中随机抽取1本恰好是小说的概率是()A.B.C.D.6.(3分)若关于x的一元二次方程x2+x﹣3m=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<C.m>D.m<7.(3分)对于反比例函数,下列说法不正确的是()A.点(﹣3,1)在它的图象上B.它的图象在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小8.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°9.(3分)已知点C是线段AB的黄金分割点,且AC>BC,AB=200,则AC的长度是()A.200(﹣1)B.100(﹣1)C.100(3﹣)D.50(﹣1)10.(3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=3,BC=4.点P为AB 边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个二、填空题(共4小题,每小题4分,满分16分)11.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是.12.(4分)已知x=2是关于x一元二次方程x2+kx﹣6=0的一个根,则另一根是.13.(4分)如图,在▱ABCD中,E在AD上,=,CE交BD于F,则S△BCF:S△DCF=.14.(4分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.三、解答题(共54分)15.(10分)(1)解方程:x2+2x﹣8=0.(2)解方程:(2x﹣1)2﹣2(2x﹣1)=0.16.(8分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.17.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).18.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘出“五一“长假期间旅游情况统计图,根据以下信息解答下列问题.(1)“五一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)甲、乙两个旅行团在A,B,D三个景点中进行选择,求同时选择去同一景点的概率为多少?(请用画树状图或列表法加以说明)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC=4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣<0的解集.20.(10分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2019的值为.22.(4分)从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数作为m的值,则使函数y=(5﹣m2)x 的图象经过第一、第三象限,且使关于x的方程(m+1)x2+mx+1=0有实数根的概率是.23.(4分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.24.(4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点A的坐标是.25.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是.(写出所有正确结论的序号)五、解答题(共3小题,满分30分)26.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.28.(12分)如图,已知在平面直角坐标系中,四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),A为x负半轴上一点,AD=CD.(1)求直线AC的解析式;(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.2019-2020学年四川省成都市武侯区西川中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若=,则的值为()A.1B.C.D.【解答】解:∵=,∴==.故选:D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从前面看可得到左边有2个正方形,右边有1个正方形,所以选A.3.(3分)下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相平分且相等的四边形是正方形【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行边形是菱形,所以B选项错误;C、顺次连接四边形的各边中点所得的四边形是平行四边形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.故选:C.4.(3分)如图,测得BD=120m,DC=60m,EC=50m,则河宽AB为()A.120m B.100m C.75m D.25m【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴=,∴AB===100(米).则两岸间的大致距离为100米.故选:B.5.(3分)书架上有3本小说、2本散文,从中随机抽取1本恰好是小说的概率是()A.B.C.D.【解答】解:∵书架上有3本小说、2本散文,共有5本书,∴从中随机抽取1本恰好是小说的概率是;故选:D.6.(3分)若关于x的一元二次方程x2+x﹣3m=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<C.m>D.m<【解答】解:∵a=1,b=1,c=﹣3m,∴Δ=b2﹣4ac=12﹣4×1×(﹣3m)=1+12m>0,解得m>.故选:C.7.(3分)对于反比例函数,下列说法不正确的是()A.点(﹣3,1)在它的图象上B.它的图象在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【解答】解:A、∵﹣=1,∴点(﹣3,1)在它的图象上,故本选项正确;B、k=﹣3<0,∴它的图象在第二、四象限,故本选项正确;C、k=﹣3<0,当x>0时,y随x的增大而增大,故本选项正确;D、k=﹣3<0,当x<0时,y随x的增大而增大,故本选项错误.故选:D.8.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°【解答】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选:B.9.(3分)已知点C是线段AB的黄金分割点,且AC>BC,AB=200,则AC的长度是()A.200(﹣1)B.100(﹣1)C.100(3﹣)D.50(﹣1)【解答】解:∵点C是线段AB的黄金分割点,且AC>BC,∴AC=AB,而AB=200,∴AC=×200=100(﹣1).故选:B.10.(3分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=3,BC=4.点P为AB 边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设AP的长为x,则BP长为7﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(7﹣x)=3:4,解得:x=3②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(7﹣x),解得:x=4或3.∴满足条件的点P的个数是2个,故选:B.二、填空题(共4小题,每小题4分,满分16分)11.(4分)若两个相似三角形的周长比为2:3,则它们的面积比是4:9.【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:9.故答案为:4:9.12.(4分)已知x=2是关于x一元二次方程x2+kx﹣6=0的一个根,则另一根是﹣3.【解答】解:设方程的另一个根为x2,则2x2=﹣6,解得x2=﹣3,故答案为:﹣3.13.(4分)如图,在▱ABCD中,E在AD上,=,CE交BD于F,则S△BCF:S△DCF=3:1.【解答】解:∵,∴,∵四边形ABCD是平行四边形,∴AD∥BC,AD=CB,∴△DEF∽△BCF,∴,∴.故答案为:3:1.14.(4分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.【解答】解:由题意得:OA=OB,则S△AOM=S△BOM,设A(a,b)(a>0,b>0),故OM=a,AM=b,将x=a,y=b代入反比例函数y=得:b=,即ab=3,又∵AM⊥OM,即△AOM为直角三角形,∴S△BOM=S△AOM=OM•AM=ab=.故答案是:.三、解答题(共54分)15.(10分)(1)解方程:x2+2x﹣8=0.(2)解方程:(2x﹣1)2﹣2(2x﹣1)=0.【解答】解:(1)∵x2+2x﹣8=0,∴(x+4)(x﹣2)=0,则x+4=0或x﹣2=0,解得x1=﹣4,x2=2;(2)令2x﹣1=a,则a2﹣2a=0,∴a(a﹣2)=0,∴a=0或a﹣2=0,解得a=0或a=2,当a=0时,2x﹣1=0,解得x=0.5;当a=2时,2a﹣1=2,解得x=1.5;综上,x1=0.5,x2=1.5.16.(8分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.【解答】解:(1)图中点O为所求;(2)△ABC与△A′B′C′的位似比等于2:1;(3)△A″B″C″为所求;A″(6,0);B″(3,﹣2);C″(4,﹣4).17.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米18.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘出“五一“长假期间旅游情况统计图,根据以下信息解答下列问题.(1)“五一”期间,该市周边景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.(2)甲、乙两个旅行团在A,B,D三个景点中进行选择,求同时选择去同一景点的概率为多少?(请用画树状图或列表法加以说明)【解答】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),故答案为:50,108°;补全条形统计图如下:(2)画树状图可得:共有9种等可能的结果,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率为=.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x<0)的图象交于第二象限内的A、B两点,过点A作AC⊥x轴于点C,OA=5,OC=4,点B的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)写出kx+b﹣<0的解集.【解答】解:(1)在Rt△AOC中,AC===3,故点A的坐标为(﹣4,3),将A(﹣4,3)代入y=得m=﹣12,∴反比例函数的解析式为y=﹣;∵当y=6时,x=﹣2,∴B(﹣2,6),将A(﹣4,3),B(﹣2,6)代入y=kx+b得,解得,∴一次函数的解析式为y=x+9;(2)设一次函数交x轴于点R,把y=0代入y=x+9得:x=﹣6,即R的坐标是(﹣6,0),OR=6,S△AOB=S△BOR﹣S△AOR=6×6﹣×6×3=9;(3)由图象知kx+b﹣<0的解集为:x<﹣4或﹣2<x<0.20.(10分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠DAF=∠DCE=90°,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS)∴∠ADF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADF+∠ADE=90°,即∠FDE=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GEF=∠GFE,∴GE=GF,∵△BGE的周长为16∴BE+GB+GE=16∴BE+GB+GF=16∴BE+BA+AF=16∵CE=AF,∴BA+CB=16,∴BC=BA=8,∴S四边形DEBF=S四边形DEBA+S△ADF=S四边形DEBA+S△DCE=S正方形ABCD=AB2=64;(3)过点H作HP⊥HC交CB的延长线于点P,∵GF=GE,DF=DE,∴DG垂直平分EF,∵∠FDE=90°,∴DH=EH,∠DHE=∠PHC=90°,∴∠DHE﹣∠EHC=∠PHC﹣∠EHC,即∠DHC=∠EHP,∵在四边形DHEC中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC,在△HDC和△HEP中,,∴△HDC≌△HEP(ASA)∴DC=PE=8,CH=HP=5,∴在Rt△PHC中,PC=10,∴EC=PC﹣PE=2,∴AF=2,BE=6,在Rt△BGE中,设EG=x,则BG=10﹣x,由勾股定理得,(10﹣x)2+62=x2解得:x=,∴AG=GF﹣AF=.四、填空题(共5小题,每小题4分,满分20分)21.(4分)已知x2﹣2x﹣2=0,代数式(x﹣1)2+2019的值为2022.【解答】解:∵x2﹣2x﹣2=0,即x2﹣2x=2,∴x2﹣2x+1=3,即(x﹣1)2=3,则原式=3+2019=2022.故答案为:2022.22.(4分)从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数作为m的值,则使函数y=(5﹣m2)x 的图象经过第一、第三象限,且使关于x的方程(m+1)x2+mx+1=0有实数根的概率是.【解答】解:∵所得函数的图象经过第一、三象限,∴5﹣m2>0,∴m2<5,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=﹣4<0,无实数根;将m=﹣1代入(m+1)x2+mx+1=0中得,﹣x+1=0,x=1,有实数根;将m=﹣2代入(m+1)x2+mx+1=0中得,x2+2x﹣1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为;故答案为:.23.(4分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.24.(4分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点A的坐标是(8,4).【解答】解:∵点D的坐标为(6,8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10,0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8,4),故答案是:(8,4).25.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②=;③DP2=PH•PB;④=.其中正确的是①③④.(写出所有正确结论的序号)【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD∠ABC=90°,∴∠ABE=∠DCF=30°,在△ABE与△CDF中,,∴△ABE≌△DCF(ASA),故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,∴===,故②错误;∵∠PDH=∠PCD=30°,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴PD2=PH•CD,∵PB=CD,∴PD2=PH•PB,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,S△BPD=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=.故答案为:①③④.五、解答题(共3小题,满分30分)26.(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.27.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y.∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣x,将x=2﹣2,代入y=x+2.解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.28.(12分)如图,已知在平面直角坐标系中,四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),A为x负半轴上一点,AD=CD.(1)求直线AC的解析式;(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形OBCD为矩形,B点的坐标为(5,0),D的坐标为(0,4),∴CD=5,DO=4,∴AD=CD=5,在Rt△AOD中,由勾股定理得:AO===3.∴A(﹣3,0),C(5,4).设直线AC的解析式为,y=kx+b,由题意得,解得:.故直线AC的解析式为:y=x+.(2)∵当x=0时,y=,∴E(0,),∴OE=,∴DE=.在Rt△CDE和Rt△AOE中,由勾股定理得:CE=,AE=,∴AC=4.∵OA=3,OB=5,∴AB=8,∵BC=4,∴tan∠BAC=,sin∠BAC=,∴当0<t<时,S=﹣=﹣t2+t;当<t≤4时,S=﹣=t2﹣t.综上所述,S=;(3)①如图1,作NH⊥CD与H,MG⊥AB与G,QR⊥AB与R,∴∠MHN=∠MGP=∠PRQ=90°,∵四边形QPMN为正方形,∴MP=MN=PQ,∠NMP=∠MPQ=90°,∴∠NMH=∠GMP=∠QPR,在△MHN和△PRQ中,,∴△MHN≌△PRQ(AAS).∴NH=QR.在△GMP和△RPQ中,,∴△GMP≌△RPQ(AAS),∴GM=RP,GP=QR,∵GM=OD=4cm,∴RP=4cm.∵=,∴AR=8﹣2t,∴PR=8﹣2t﹣2t=4,∴t=1,∴AR=6,AP=2,∴PO=1,∵=,∴QR=3,∴GO=4,∴HN=3,MH=4,∴H、O在同一直线上,∴N(0,7);②如图2,作NS⊥CD于S,QH⊥AB于H,MR⊥AB于R,∴∠NSM=∠QHP=∠PRM=90°,∵四边形PQNM是正方形,∴∠QPM=∠PMN=90°,PQ=PM=MN,∴∠HPQ=∠PMR=∠NMS,∴同①可以得出△NSM≌△QHP≌△PRM,∴NS=QH=PR,HP=MR=SM=4,∵=,∴=,∴AH=8﹣2t,∴2t﹣(8﹣2t)=4,∴t=3,∴AH=2,HO=1,∴QH=SN=1,OR=4,∴SM=OR,∴S在y轴上,∴N(0,5).综上所述,N点的坐标为:(0,7)或(0,5).。

2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷 解析版

2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷  解析版

2019-2020学年九年级(上)期中数学试卷一、选择题1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.15.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥18.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y39.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为.x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 613.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=.(用含a的代数式表示).15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.参考答案一、选择题:本题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同【分析】根据题意的函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵二次函数y=2x2与y=﹣x2+1,∴函数y=2x2的开口向上,对称轴是y轴,顶点坐标为(0,0);函数y=﹣x2+1的开口向下,对称轴是y轴,顶点坐标为(0,1);故选项A、C错误,选项D正确;∵二次函数y=2x2中的a=2,y=﹣x2+1中的a=﹣,∴它们的开口大小不一样,故选项B错误;故选:D.2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r【分析】直接根据点与圆的位置关系即可得出结论.解:∵⊙O的半径为r,点P到圆心的距离为d,P点在圆外,∴d>r,故选:A.3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°【分析】由点A,B,C在⊙O上,∠BOC=72°,直接利用圆周角定理求解即可求得答案.解:∵点A,B,C在⊙O上,∠BOC=72°,∴∠BAC=∠BOC=36°.故选:B.4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.解:设两双只有颜色不同的手套的颜色为红和绿,列表得:(红,绿)(红,绿)(绿,绿)﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.5.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点【分析】根据圆心角,弧,弦之间的关系解决问题即可.解:∵AB=CD=EF,∴==,故选:B.7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥1【分析】根据函数解析式可知,开口方向向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧,y随x的增大而增大.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.8.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y3【分析】先求出二次函数y=﹣x2﹣4x+m的图象的对称轴,然后判断出A(﹣,y1),B(﹣1,y2),C(,y3)在抛物线上的位置,再根据二次函数的增减性求解.解:∵二次函数y=﹣x2﹣4x+m中a=﹣1<0,∴开口向下,对称轴为x=﹣=﹣2,∵A(﹣,y1)到对称轴的距离大于B(﹣1,y2)到对称轴的距离,∴y1<y2,又∵B(﹣1,y2),C(,y3)都在对称轴的右侧,而在对称轴的右侧,y随x得增大而减小,故y2>y3.∵A(﹣,y1)到对称轴的距离小于C(,y3)到对称轴的距离,∴y1>y3,∴y2>y1>y3.故选:D.9.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【分析】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动【分析】先分别求出当b=﹣1、0、1时函数图象的顶点坐标即可得出答案.解:当b=﹣1时,此函数解析式为:y=x2+x+1,顶点坐标为:(﹣,);当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2﹣x+1,顶点坐标为:(,).故函数图象应先往右上方移动,再往右下方移动.故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得相应的概率.解:由题意可得,所列树状图如下图所示,故甲、乙两人位置恰好相邻的概率是,故答案为:.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为x>3或x<﹣2 .x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 6【分析】本题通过描点画出图象,即可根据图象在x轴上部的那部分得出不等式ax2+bx+c >0的解集.解:通过描点作图如下,从图中可看出不等式ax2+bx+c>0的解集为x>3或x<﹣2.13.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为6acm.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故答案为6cm.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=a.(用含a的代数式表示).【分析】先根据垂径定理得出AE=PE,PF=BF,故可得出EF是△APB的中位线,再根据中位线定理即可得出EF∥AB,EF=AB即可.解:连接AB,∵OE⊥AP于E,OF⊥PB于F,∴AE=PE,PF=BF,∴EF是△APB的中位线,∴EF∥AB,EF=AB=,故答案为:a.15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为15°或75°.【分析】根据圆的轴对称性知有两种情况:两弦在圆心的同旁;两弦在圆心的两旁.根据垂径定理和三角函数求解.解:过点O作OM⊥AC于M,在直角△AOM中,OA=r.根据OM⊥AC,则AM=AC=r,所以cos∠OAM=,则∠OAM=30°,同理可以求出∠OAB=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45°﹣30°=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45°+30°=75°.故答案为15°或75°.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.【分析】根据二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3),可以设该函数的交点式,然后根据与y轴交于点(0,3),即可求得a的值,从而可以得到该函数的解析式.解:设二次函数的解析式为y=a(x+1)(x﹣3),∵该二次函数的图象与y轴交于点(0,3),∴3=a(0+1)×(0﹣3),解得,a=﹣1,∴该函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即这个二次函数表达式是y=﹣x2+2x+3.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.【分析】连接AE,根据圆周角定理可得∠AEB=90°,再根据等腰三角形三线合一可得∠BAE=∠CAE,进而可得弧BE=弧DE,根据等弧所对的弦相等可得结论.【解答】证明:连接AE,∵AB是直径,∴∠AEB=90°,∵AB=AC,∴BE=CE,∠BAE=∠CAE,∴弧BE=弧DE,∴BE=ED,∴ED=EC19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.【分析】(1)根据函数图象中的数据可以得到方程ax2+bx+c=0(a≠0)的实数解;(2)根据图象中的数据可以得到方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围;(3)根据图象中的数据可以得到当0<x<3时,函数值y的取值范围..解:(1)由图象可得,当y=0时,x=﹣1或x=3,故方程ax2+bx+c=0(a≠0)的实数解是x1=﹣1,x2=3;(2)由图象可知,函数y=ax2+bx+c(a≠0)的最小值是y=﹣4,故方程ax2+bx+c=k有两个不相等的实数根,k的取值范围是k>﹣4;(3)由图象可知,当0<x<3时,函数值y的取值范围﹣4≤y<0.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?【分析】(1)由概率公式计算即可;(2)列举得出所有等可能的情况数,找出两次都是白球的情况数,即可求出所求的概率;(3)由题意得出方程,解方程即可.解:(1)将“恰好是白球”记为事件A,则P(A)==.(2)画树状图如图所示:共有12个等可能的结果,从中任意摸出2个球,“2个都是白球”记为事件B,则P(B)==.(3)设放入n个黑球,由题意得=,解得n=10,即放入了10个黑球.21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.【分析】(1)由在⊙O中,弦BC垂直于半径OA,根据垂径定理可得=,则可求得∠AOC的度数;(2)首先连接OB,由弦BC=6cm,可求得半径的长,继而求得图中劣弧的长.解:(1)∵在⊙O中,弦BC垂直于半径OA,∴=,∴∠AOC=2∠ADB=2×30°=60°;(2)连接OB,∴∠BOC=2∠AOC=120°,∵弦BC=6cm,OA⊥BC,∴CE=3cm,∴OC==2cm,∴劣弧的长为:=π.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.【分析】(1)根据a+3>a作出判断;(2)联立方程组,通过解方程组求得答案;(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入求值.解:(1)因为a+3>a,所以经过B、D、C的图象是y=(a+3)x2+(b﹣15)x+c+18的图象.(2)解方程组解得x1=2,x2=3,∴点B,D的横坐标分别为2,3.(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入,解得a=2,即y=2x2﹣12x+16,因此左边抛物线的解析式为y=﹣x2+3x﹣2.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.【分析】(1)如图1中,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS),推出△DFC为等边三角形即可解决问题.(2)①结论:AC=CD+CB,如图2,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS)即可解决问题.②结论:BD=2DP.如图3,过点D作DF⊥AC于点F,证明△DFE≌△CBE(AAS),△ADE≌△BDP(ASA)即可解决问题.【解答】(1)证明:如图1中,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=60°,∴△DFC为等边三角形,∴DC=FC,∴AC=AF+FC=BC+CD.(2)①解:结论:AC=CD+CB.理由:如图2,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=90°,∴△DFC为等腰直角三角形,∴FC=DC,∴AC=AF+FC=CD+CB.②解:结论:BD=2DP.理由:如图3,过点D作DF⊥AC于点F,∵∠ACD=∠ABD=45°,∴△CFD是等腰直角三角形,∴CD=DF,∵CD=CB,∴DF=CB,在△DFE和△CBE中,,∴△DFE≌△CBE(AAS),∴DE=BE=BD,在△ADE和△BDP中,,∴△ADE≌△BDP(ASA),∴DP=DE=BE=BD,即BD=2DP.。

2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分.1.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图2.一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10 3.下列判定错误的是()A.平行四边形的对边相等B.对角线互相垂直的平行四边形是菱形C.对角线相等的四边形是矩形D.正方形既是轴对称图形,又是中心对称图形4.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.5.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”6.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°7.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91008.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a10.如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.1D.111.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.B.C.D.12.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE ⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4C.2D.8二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为.14.若x:y=1:2,则.15.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为.三.解答题:解答要写出必要的文字说明或演算步骤.19.解方程(1)16x2+8x=3(公式法)(2)(3x+2)(x+3)=x+14(配方法)20.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)21.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?23.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.2019-2020学年山东省枣庄市台儿庄区九年级(上)期中数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共36分.1.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.2.一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10【解答】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故选:B.3.下列判定错误的是()A.平行四边形的对边相等B.对角线互相垂直的平行四边形是菱形C.对角线相等的四边形是矩形D.正方形既是轴对称图形,又是中心对称图形【解答】解:A、平行四边形的对边相等,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、对角线相等的平行四边形是矩形,故原说法错误,符合题意;D、正方形既是轴对称图形,又是中心对称图形,正确,不合题意;故选:C.4.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.B.C.D.【解答】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为,故选:C.5.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”【解答】解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.6.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【解答】解:∵CD⊥AB,F为边AC的中点,∴DF AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.7.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.8.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴30°,∠F AE=60°,∵A(4,0),∴OA=4,∴2,∴,EF,∴OF=AO﹣AF=4﹣1=3,∴,.故选:D.9.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.10.如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.1D.1【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DCB=∠COD=∠BOC=90°,OD=OC,∴BD AB=2,∴OD=BO=OC=1,∵将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,∴DE=DC,DF⊥CE,∴OE1,∠EDF+∠FED=∠ECO+∠OEC=90°,∴∠ODM=∠ECO,在△OEC与△OMD中,,△OEC≌△OMD(ASA),∴OM=OE1,故选:D.11.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD 于点N,则下列式子一定正确的是()A.B.C.D.【解答】解:∵在▱ABCD中,EM∥AD∴易证四边形AMEN为平行四边形∴易证△BEM∽△BAD∽△END∴,A项错误,B项错误,C项错误,D项正确故选:D.12.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE ⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4C.2D.8【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE2×22×1=2+1=3,∴S△ACB=4,故选:B.二、填空题:本题共6小题,每小题填对得4分,共24分.只要求填最后结果.13.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为x1=1,x2=﹣5.【解答】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣5,故答案为:x1=1,x2=﹣5.14.若x:y=1:2,则.【解答】解:设x=k,y=2k,∴.15.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为1.【解答】解:∵x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个实数根,∴x1+x2=﹣(3k+1),x1x2=2k2+1.∵(x1﹣1)(x2﹣1)=8k2,即x1x2﹣(x1+x2)+1=8k2,∴2k2+1+3k+1+1=8k2,整理,得:2k2﹣k﹣1=0,解得:k1,k2=1.∵关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,∴△=(3k+1)2﹣4×1×(2k2+1)>0,解得:k<﹣3﹣2或k>﹣3+2,∴k=1.故答案为:1.16.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD AC×BD=24,∴AC=6,∴OC AC=3,∴BC5,∵S菱形ABCD=BC×AH=24,∴AH;故答案为:.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(﹣8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为(,)或(﹣4,3).【解答】解:∵点P在矩形ABOC的内部,且△APC是等腰三角形,∴P点在AC的垂直平分线上或在以点C为圆心AC为半径的圆弧上;①当P点在AC的垂直平分线上时,点P同时在BC上,AC的垂直平分线与BO的交点即是E,如图1所示:∵PE⊥BO,CO⊥BO,∴PE∥CO,∴△PBE∽△CBO,∵四边形ABOC是矩形,A点的坐标为(﹣8,6),∴点P横坐标为﹣4,OC=6,BO=8,BE=4,∵△PBE∽△CBO,∴,即,解得:PE=3,∴点P(﹣4,3);②P点在以点C为圆心AC为半径的圆弧上,圆弧与BC的交点为P,过点P作PE⊥BO于E,如图2所示:∵CO⊥BO,∴PE∥CO,∴△PBE∽△CBO,∵四边形ABOC是矩形,A点的坐标为(﹣8,6),∴AC=BO=8,CP=8,AB=OC=6,∴BC10,∴BP=2,∵△PBE∽△CBO,∴,即:,解得:PE,BE,∴OE=8,∴点P(,);综上所述:点P的坐标为:(,)或(﹣4,3);故答案为:(,)或(﹣4,3).三.解答题:解答要写出必要的文字说明或演算步骤.19.解方程(1)16x2+8x=3(公式法)(2)(3x+2)(x+3)=x+14(配方法)【解答】解:(1)∵16x2+8x=3,∴a=16,b=8,c=﹣3,∴△=64﹣4×16×(﹣3)=256,∴x,∴x或x;(2)原方程化为:3x2+10x﹣8=0,∴x2,∴(x)2,∴x±20.我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是200人,m=35,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)【解答】解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为.21.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书(300﹣10x)本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:(300﹣10x).(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.23.如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.。

2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷(解析版)

2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷(解析版)

2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷一、选择题(下列各小题均有四个选项,其中只有一个是正确的,请将其序号填涂在答题卡上.每小题3分,共30分.)1.二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x>2.下列各式中,与是同类二次根式的是()A.B.C.D.3.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是()A.2B.﹣2C.2或﹣2D.4.下列四条线段a、b、c、d不是成比例线段的是()A.a=4,b=8,c=5,d=10B.a=1.1cm,b=2.2cm,c=3.3cm,d=4.4cmC.a=2,b=,c=,d=D.a=0.8,b=3,c=0.64,d=2.45.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,则以下所添加的条件不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.=D.=6.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断7.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A.B.C.D.8.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1759.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.810.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12B.13C.14D.15二、填空题(每小题3分,共15分)11.计算:﹣=.12.若方程x2﹣2x﹣3=0可化为(x+m)2=k的形式,则m=.13.已知:,则=.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本题含8个小题,共75分)16.计算:(1)3÷×(﹣)(2)|2﹣|+(﹣)+17.解下列方程(1)(3x﹣8)2=4(2x﹣3)2(2)5x(x﹣3)=6﹣2x18.如图,在4×4的正方形网格纸中,△ABC和△DEF的顶点都在边长为1的小正方形的格点上.(1)求证:△ABC∽△DEF;(2)直接写出△ABC和△DEF的周长比和面积比.19.已知关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.(1)当k取何值时,方程有两个不相等的实数根?(2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.20.数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.21.如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.22.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.2019-2020学年河南省南阳市方城县九年级(上)期中数学试卷参考答案与试题解析一、选择题(下列各小题均有四个选项,其中只有一个是正确的,请将其序号填涂在答题卡上.每小题3分,共30分.)1.二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x>【解答】解:由题意得:2x﹣5≥0,解得:x≥,故选:C.2.下列各式中,与是同类二次根式的是()A.B.C.D.【解答】解:A、=3,与不是同类二次根式;B、,与不是同类二次根式;C、,与不是同类二次根式;D、=,与是同类二次根式;故选:D.3.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,则m的值是()A.2B.﹣2C.2或﹣2D.【解答】解:原方程可变形为(m﹣2)x2+3x+(m+2)(m﹣2)=0,把x=0代入可得到(m+2)(m﹣2)=0,解得m=2或m=﹣2,当m=2时,m﹣2=0,一元二次方程不成立,故舍去,所以m=﹣2.故选:B.4.下列四条线段a、b、c、d不是成比例线段的是()A.a=4,b=8,c=5,d=10B.a=1.1cm,b=2.2cm,c=3.3cm,d=4.4cmC.a=2,b=,c=,d=D.a=0.8,b=3,c=0.64,d=2.4【解答】解:A、4×01=5×8,成比例线段,所以选项不符合题意;B、1.1×4.4≠2.2×3.3,不成比例线段,所以选项符合题意;C、2×5=2×,成比例线段,所以选项不符合题意;D、0.8×2.4=3×0.64,成比例线段,所以选项不符合题意;故选:B.5.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,需添加一个条件,则以下所添加的条件不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.=D.=【解答】解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故C正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故D错误.故选:D.6.已知关于x的方程(x﹣1)(x﹣2)=m2,则该方程的解的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.无法判断【解答】解:方程整理得:x2﹣3x+2﹣m2=0,∵△=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,故选:B.7.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:∴=,故选:B.8.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175【解答】解:设平均每月的增长率为x,则二月份工业产值为50(1+x)亿元,三月份工业产值为50(1+x)2亿元,依题意,得:50+50(1+x)+50(1+x)2=175.故选:D.9.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:D.10.已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12B.13C.14D.15【解答】解:作CF⊥AB于点F,设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E,∵DE∥AB,∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.二、填空题(每小题3分,共15分)11.计算:﹣=4.【解答】解:原式=﹣3×=5﹣=4.故答案为:4.12.若方程x2﹣2x﹣3=0可化为(x+m)2=k的形式,则m=﹣1.【解答】解:∵x2﹣2x﹣3=0,∴x2﹣2x+1=4,∴(x﹣1)2=4,∴m=﹣1,k=4,故答案为:﹣1.13.已知:,则=.【解答】解:∵,∴=(更比定理),∴=(合比定理),即=.故答案是:.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是.【解答】解:如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三、解答题(本题含8个小题,共75分)16.计算:(1)3÷×(﹣)(2)|2﹣|+(﹣)+【解答】解:(1)原式=3×2×(﹣)×=﹣;(2)原式=﹣2+﹣+=﹣2+﹣+=0.17.解下列方程(1)(3x﹣8)2=4(2x﹣3)2(2)5x(x﹣3)=6﹣2x【解答】解:(1)∵(3x﹣8)2=4(2x﹣3)2,∴3x﹣8=2(2x﹣3)或3x﹣8=﹣2(2x﹣3),解得x=2或x=﹣2;(2)∵5x(x﹣3)=﹣2(x﹣3),∴5x(x﹣3)+2(x﹣3)=0,∴(x﹣3)(5x+2)=0,则x﹣3=0或5x+2=0,解得x=3或x=﹣0.4.18.如图,在4×4的正方形网格纸中,△ABC和△DEF的顶点都在边长为1的小正方形的格点上.(1)求证:△ABC∽△DEF;(2)直接写出△ABC和△DEF的周长比和面积比.【解答】(1)证明:∵AB=2,BC==2,AC==2,DE==,EF=2,DF==,∴===,∴△ABC∽△DEF;(2)解:△ABC和△DEF的周长比==,△ABC和△DEF的面积比=()2=2.19.已知关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0.(1)当k取何值时,方程有两个不相等的实数根?(2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.【解答】解:(1)∵关于x的一元二次方程2x2﹣(4k+3)x+2k2+k=0有两个不相等的实数根,∴△=[﹣(4k+3)]2﹣4×2×(2k2+k)=16k+9>0,解得:k>﹣.∴当k>﹣时,方程有两个不相等的实数根;(2)根据题意,得:k=0,∴原方程为2x2﹣3x=0,即x(2x﹣3)=0,解得:x1=0,x2=.∴方程的根为x1=0,x2=.20.数学兴趣小组的同学们,想利用自己所学的数学知识测量学校旗杆的高度:下午活动时间,兴趣小组的同学们来到操场,发现旗杆的影子有一部分落在了墙上(如图所示).同学们按照以下步骤进行测量:测得小明的身高1.65米,此时其影长为2.5米;在同一时刻测量旗杆影子落在地面上的影长BC为9米,留在墙上的影高CD为2米,请你帮助兴趣小组的同学们计算旗杆的高度.【解答】解:作DH⊥AB于H,如图,易得四边形BCDH为矩形,∴BH=CD=2,DH=BC=9,∵小明的身高1.65米,此时其影长为2.5米,∴=,∴AH==5.94,∴AB=AH+BH=5.94+2=7.94.答:旗杆的高度为7.94m.21.如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.【解答】解:(1)根据题意,得(10﹣2x)2=81解得x1=0.5,x2=9.5(不符合题意,舍去)答:所剪去的小正方形的边长为0.5cm.(2)根据题意,得S=4x(10﹣2x)=﹣8x2+40x(0<x<5)答:S与x的函数关系式为S=﹣8x2+40x,x的取值范围为0<x<5.(3)答:不能.理由如下:﹣8x2+40x=60,整理得2x2﹣5x+15=0∵△=25﹣120=﹣95<0,∴此方程无解,答:长方体盒子的侧面积为S的值不能是60cm2.22.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==1,∴=1,故答案为1.(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==,∴=,故答案为.②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴=,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴==,∴=.(3)由(2)有,△ADE∽△CDF,∵==,∴===,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF===2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图4﹣1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.【解答】解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).。

2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷试题及答案(解析版)

2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1.下列方程中,属于一元二次方程的是( )A .21x y +=B .20ax bx c ++=C .134x x +=D .220x -=2.下列命题中,真命题是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质3.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .54.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .145.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:96.已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,点A的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(1,1)C .D .(2,2)8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,CH AF ⊥于点H ,那么CH 的长是( )A B C D 10.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB 于E ,若点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为( )(1)OGE ∆是等边三角形;(2)3DC OG =;(3)12OG BC =; (4)16AOE ABCD S S ∆=矩形A .1个B .2个C .3个D .4个二、填空题(共4小题,每小题3分,计12分)11.线段AB 长为10cm ,点C 是AB 的黄金分割点,则AC 的长为 (结果精确到0.1)cm .12.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 粒.13.如图,一电线杆AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长MF 为0.5米,量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,则电线杆AB 的高为 米.14.如图,菱形ABCD 中,2AB =,120A ∠=︒,点E 、F 分别在边AB 、AD 上且AE DF =,则AEF ∆面积的最大值为 .三、解答题(共11小题,计78分,解答题应写出文字说明、证明过程或演算步骤)15.解方程:23(5)2(5)x x -=-16.先化简:242()222x x x x x++÷--,再从2,2-,1,0,1-中选择一个合适的数进行计算. 17.已知:ABC ∆中,36A ∠=︒,AB AC =,用尺规在AC 上找一点D ,使得到的BCD ∆与ABC ∆相似.(保留作图痕迹,不写作法)18.已知关于x 的方程220x ax a ++-=(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.19.(7分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知1DE=米,0.5DG=米,到旗杆的水平EF=米,测点D到地面的距离3距离40DC=米,求旗杆的高度.20.(7分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)D的一个景点去游玩,他们各自在这四C、李庄古镇(记为)个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.21.(7分)如图,正方形ABCD的对角线AC与BD交于点O,过点C作//CE BD,过点D 作//DE AC,CE与DE交于点E.求证:四边形OCED是正方形.22.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?23.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D ,舍利塔的塔尖点B 正好在同一直线上,测得4EC =米,将标杆CD 向后平移到点C 处,这时地面上的点F ,标杆的顶端点H ,舍利塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与塔底处的点A 在同一直线上),这时测得6FG =米,53GC =米.请你根据以上数据,计算舍利塔的高度AB .24.如图,在ABC ∆中.AB AC =,AD BC ⊥于D ,作DE AC ⊥于E ,F 是AB 中点,连EF 交AD 于点G .(1)求证:2AD AB AE =;(2)若3AB =,2AE =,求AD AG的值.25.已知:如图,在平面直角坐标系中,ABC ∆是直角三角形,90ACB ∠=︒,点A ,C 的坐标分别为(3,0)A -,(1,0)C ,34BC AC = (1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ ∆与ADB ∆相似?如存在,请求出m 的值;如不存在,请说明理由.2019-2020学年陕西省汉中市城固县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1.下列方程中,属于一元二次方程的是( )A .21x y +=B .20ax bx c ++=C .134x x +=D .220x -=【解答】解:A 、含有2个未知数,故错误;B 、当0a =时不是一元二次方程,故错误;C 、为分式方程,故错误;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,正确;故选:D .2.下列命题中,真命题是( )A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质【解答】解:A 、可判断为菱形,故本选项错误,B 、对角线相等的菱形是正方形,故本选项正确,C 、正方形的两条对角线相等,且互相垂直平分,故本选项错误,D 、菱形的对角线不一定相等,故本选项错误,故选:B .3.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为( )A .2B .3C .4D .5 【解答】解:根据题意得:20.42n =+, 解得:3n =,则n 的值为3,4.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .14【解答】解:菱形ABCD 的周长为28,2847AB ∴=÷=,OB OD =, H 为AD 边中点,OH ∴是ABD ∆的中位线,117 3.522OH AB ∴==⨯=. 故选:A .5.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:9【解答】解:两个相似三角形对应边之比是1:3, 又相似三角形的对应高、中线、角平分线的比等于相似比,∴它们的对应中线之比为1:3.故选:A .6.已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( )A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解【解答】解:关于x 的方程2(1)10kx k x +--=,A 、当0k =时,10x -=,则1x =,故此选项错误;B 、当1k =时,210x -=方程有两个实数解,故此选项错误;C 、当1k =-时,2210x x -+-=,则2(1)0x -=,此时方程有两个相等的实数解,故此选D 、由C 得此选项错误.故选:C .7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(1,1)C .D .(2,2)【解答】解:四边形OABC 是正方形,点A 的坐标为(1,0),∴点B 的坐标为(1,1),正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2,E ∴点的坐标为(2,2),故选:D .8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+【解答】解:由题意可得, 21000(1)1000440x +=+,故选:A .9.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,3CE =,CH AF ⊥于点H ,那么CH 的长是( )ABCD【解答】解:1CD BC ==,312GD ∴=-=,ADK FGK ∆∆∽, ∴DK AD GK GF=, 即13DK GK =, 14DK DG ∴=, 11242DK ∴=⨯=,33242GK =⨯=,KF ∴== CHK FGK ∆∆∽, ∴CH CK GF FK=,∴3CH =,CH ∴=. 方法二:连接AC 、CF ,利用面积法:AC CF CH AF =; 故选:A .10.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB于E ,若点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为( )(1)OGE ∆是等边三角形;(2)3DC OG =;(3)12OG BC =;(4)16AOE ABCD S S ∆=矩形A .1个B .2个C .3个D .4个 【解答】解:EF AC ⊥,点G 是AE 中点,12OG AG GE AE ∴===,30AOG ∠=︒,30OAG AOG ∴∠=∠=︒,90903060GOE AOG ∠=︒-∠=︒-︒=︒,OGE ∴∆是等边三角形,故(1)正确;设2AE a =,则OE OG a ==,由勾股定理得,AO ===, O 为AC 中点,2AC AO ∴==,1122BC AC ∴==⨯=,在Rt ABC ∆中,由勾股定理得,3AB a ==,四边形ABCD 是矩形,3CD AB a ∴==,3DC OG ∴=,故(2)正确;OG a =,12BC =,12BC BC ∴≠,故(3)错误; 21332AOE S a a a ∆==, 23333ABCD S aa a ==, 16AOE ABCD S S ∆∴=,故(4)正确; 综上所述,结论正确是(1)(2)(4),共3个.故选:C .二、填空题(共4小题,每小题3分,计12分) 11.线段AB 长为10cm ,点C 是AB 的黄金分割点,则AC 的长为 6.2cm 或3.8cm (结果精确到0.1)cm .【解答】解:点C 是线段AB 的黄金分割点,当AC BC >时,AC AB ∴=, 而10AB cm =,105) 6.2AC cm ∴==≈. 当AC BC <时,10 6.2 3.8AC cm =-=故答案为6.2cm 或3.8cm ..12.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为 1250 粒.【解答】解:设瓶子中有豆子x 粒豆子,根据题意得:1001008x =, 解得:1250x =,答:估计瓶子中豆子的数量约为1250粒.故答案为:1250.13.如图,一电线杆AB 的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN ,量得其影长MF 为0.5米,量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD的高为2米,则电线杆AB的高为8米.【解答】解:过C点作CG AB⊥于点G,3GC BD∴==米,2GB CD==米.90NMF AGC∠=∠=︒,//NF AC,NFM ACG∴∠=∠,NMF AGC∴∆∆∽,∴NM MFAG GC=,1360.5NM GCAGMF⨯∴===,628AB AG GB∴=+=+=(米),答:电线杆子的高为8米.故答案为:8.14.如图,菱形ABCD中,2AB=,120A∠=︒,点E、F分别在边AB、AD上且AE DF=,则AEF∆【解答】解:过点E作EM AD⊥交DA的延长线于点M,设AE x=,则AE DF x==,四边形ABCD 是菱形,120A ∠=︒,2AB AD ∴==,60MAE ∠=︒,2AF x ∴=-,sin 60EM AE ∴=︒=,211(2)1)22AEF S AF EM x x ∆∴==-=-+,AEF ∴∆三、解答题(共11小题,计78分,解答题应写出文字说明、证明过程或演算步骤)15.解方程:23(5)2(5)x x -=-【解答】解:原方程可变形为:23(5)2(5)x x -=-23(5)2(5)0x x ---=(5)[3(5)2]0x x ---= (5)(133)0x x --=则15x =,2133x =. 16.先化简:242()222x x x x x++÷--,再从2,2-,1,0,1-中选择一个合适的数进行计算. 【解答】解:原式242()222x x x x x+=-÷-- 24222x x x x-+=÷- (2)(2)222x x x x x +-=-+ 2x =,20x -≠、0x ≠、20x +≠,2x ∴≠、0x ≠、2x ≠-,将1x =代入,得原式212=⨯=.17.已知:ABC ∆中,36A ∠=︒,AB AC =,用尺规在AC 上找一点D ,使得到的BCD ∆与ABC ∆相似.(保留作图痕迹,不写作法)【解答】解:如图,BDC ∆即为所求.18.已知关于x 的方程220x ax a ++-= (1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【解答】解:(1)将1x =代入方程220x ax a ++-=得,120a a ++-=,解得,12a =; 方程为213022x x +-=,即2230x x +-=,设另一根为1x ,则1312x =-,132x =-.(2)△22224(2)48444(2)40a a a a a a a =--=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根. 19.(7分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知1DE =米,0.5EF =米,测点D 到地面的距离3DG =米,到旗杆的水平距离40DC =米,求旗杆的高度.【解答】解:ADC FDE∠=∠,90ACD FED∠=∠=︒,ACD FED∴∆∆∽,∴AC CD EF DE=,即40 0.51 AC=,解得20AC=,AB BG⊥,DG BG⊥,DC AB⊥,90ABG BGD DCB∴∠=∠=∠=︒,∴四边形BGDC是矩形,3BC DG∴==,20323AB AC BC∴=+=+=米.答:旗杆AB的高度是23米20.(7分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)C、李庄古镇(记为)D的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为4.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.【解答】解:(1)小明准备到宜宾的蜀南竹海(记为)A、兴文石海(记为)B、夕佳山民居(记为)C、李庄古镇(记为)D的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率14 =,故答案为:14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率116 =.21.(7分)如图,正方形ABCD的对角线AC与BD交于点O,过点C作//CE BD,过点D 作//DE AC,CE与DE交于点E.求证:四边形OCED是正方形.【解答】证明://CE BD,//DE AC,∴四边形CODE是平行四边形,正方形ABCD的对角线AC与BD交于点O,OD OC∴=,90DOC∠=︒,∴四边形CODE是正方形.22.(7分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?【解答】解:设每件衬衫应降价x元,由题意得:(40)(202)1200x x-+=,即22604000x x-+=,2302000x x∴-+=,(10)(20)0x x∴--=,解得:10x=或20x=为了减少库存,所以20x=.故每件衬衫应应降价20元.23.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C 处垂直于地面竖立了高度为2米的标杆CD ,这时地面上的点E ,标杆的顶端点D ,舍利塔的塔尖点B 正好在同一直线上,测得4EC =米,将标杆CD 向后平移到点C 处,这时地面上的点F ,标杆的顶端点H ,舍利塔的塔尖点B 正好在同一直线上(点F ,点G ,点E ,点C 与塔底处的点A 在同一直线上),这时测得6FG =米,53GC =米.请你根据以上数据,计算舍利塔的高度AB .【解答】解:EDC EBA ∆∆∽,FHG FBA ∆∆∽, ∴GH FG BA FA =,DC EC BA EA =,DC HG =, ∴FG EC FA EA =, ∴64594CA CA =++, 106CA ∴=(米),DC EC BA EA=, ∴244106BA =+, 55AB ∴=(米),答:舍利塔的高度AB 为55米.24.如图,在ABC ∆中.AB AC =,AD BC ⊥于D ,作DE AC ⊥于E ,F 是AB 中点,连EF 交AD 于点G .(1)求证:2AD AB AE =;(2)若3AB =,2AE =,求AD AG的值.【解答】(1)证明:AD BC ⊥于D ,作DE AC ⊥于E , 90ADC AED ∴∠=∠=︒,DAE DAC ∠=∠,DAE CAD ∴∆∆∽, ∴AD AE CA AD=, 2AD AC AE ∴=,AC AB =,2AD AB AE ∴=.(2)解:如图,连接DF .3AB =,90ADB ∠=︒,BF AF =,1322DF AB ∴==, AB AC =,AD BC ⊥,BD DC ∴=,//DF AC ∴, ∴33224DFDG AEAG ===, ∴74AD AG =. 25.已知:如图,在平面直角坐标系中,ABC ∆是直角三角形,90ACB ∠=︒,点A ,C 的坐标分别为(3,0)A -,(1,0)C ,34BC AC =(1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP DQ m ==,问是否存在这样的m ,使得APQ ∆与ADB ∆相似?如存在,请求出m 的值;如不存在,请说明理由.【解答】解:(1)(3,0)A -,(1,0)C ,4AC ∴=, 34BC AC =, 3434BC ∴=⨯=, (1,3)B ∴,设直线AB 的解析式为y kx b =+,∴303k b k b +=⎧⎨+=⎩, ∴3494k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为3944y x =+;(2)若ADB ∆与ABC ∆相似,过点B 作BD AB ⊥交x 轴于D ,90ABD ACB ∴∠=∠=︒,如图1, 此时AB AD AC AB=,即2AB AC AD =. 90ACB ∠=︒,4AC =,3BC =, 5AB ∴=,254AD ∴=,254AD ∴=, 2513344OD AD AO ∴=-=-=, ∴点D 的坐标为13(4,0).(3)AP DQ m ==,254AQ AD QD m ∴=-=-. Ⅰ、若APQ ABD ∆∆∽,如图2,则有AP AQ AB AD =, AP AD AB AQ ∴=, ∴25255()44m m =-, 解得259m =; Ⅱ、若APQ ADB ∆∆∽,如图3,则有AP AQ AD AB =, AP AB AD AQ ∴=, 25255()44m m ∴=-, 解得:12536m =, 综上所述:符合要求的m 的值为12536或259.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年九年级数学期中试卷及答案
注意: 本试卷共三大题25小题,共4页,满分150分.考试时间120分钟.
1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.
2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.
4.考生可以..
使用计算器.必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷(100分)
一、细心选一选 (本题有10个小题, 每小题3分, 满分30分,下面每小题给出的四个选项中, 只有一
个是正确的.)
1、要使2-x 有意义,则字母x 应满足的条件是( ).
A. x =2
B. x <2
C. x ≤2
D. x ≥2
2.下列二次根式中与2是同类二次根式的是( ).
A.
B. C.
D. 3.方程x x =2
的解是( ).
A. 0
B. 1
C. 无解
D. 0和1
4. 某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,
则列出方程正确的是( ).
A. 2
580(1+)=1185x B. 2
1185(1-)=580x
C. 2580(1-)=1185x
D. 2
1185(1+)=580x 5. 已知012=-++b a ,那么()2007
b a +的值为( ).
A. -1
B. 1
C. 20073
D. 2007
3-
6. 两个相似三角形的面积比为1:2,则它们周长的比为( )
A. 1:4
B. 1:2
C.
2 D. 4
7.如图1,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,AB=6,则DE ∶BC 的值为( ).
A. 32
B. 2
1
C. 43
D. 5
3
8. 如图2,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为()b a ,,那么
大“鱼”上对应“顶点”的坐标为( ).
A. ()b a 2,--
B. ()b a --,2
C. ()b a 2,2--
D. ()a b 2,2--
9.如图3,在大小为4×4的正方形网格中,是相似三角形的是( ).
① ② ③ ④ A. ①和②
B. ②和③
C. ①和③
D. ②和④
10. 如果关于x 的一元二次方程0962
=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).
A. k <1
B. k ≠0
C. k >1
D. k <1且k ≠0
二、耐心填一填 (本题有6个小题, 每小题3分, 共18分) 11. 方程()03=-x x 的解为 . 12. 已知:若
3
2y
x =,则y x y x -+2= .
13.方程2
230x ax -+=有一个根是1,则a 的值是 .
14. 如图4,将线段AB 平移,使B 点到C 点,则平移后A 点的坐标为 . 15. 如图5,当_________=∠AED 时,ADE ∆与ABC ∆相似.
图4
图2
图3
A
B
C
D
E
图1
图5
16. 如图6,c b a ,,在数轴上的位置如图所示,则()()=+-
-2
2
c b b a
三、用心答一答(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤) 17. (本题满分共10分,每小题5分)
(1)化简:4
69325x x x +-
(2)解方程:1)3)(1(=+-x x
18.(本题满分10分)
某工程队在我市旧城改造过程中承包了一项拆迁工程,原计划每天拆迁12502
m ,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了14402
m 。

(1)求该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.
19. (本题满分12分)
在图中的网格中每个单位长度为1,将△ABC 作下列变化,请画出相应 的图形,并写出相应三个顶点的坐标。

(1)向右平移4个单位,得到△A 1B 1C 1;
(2)以C 点为位似中心,作为△A 2B 2C 2,使之与原三角形的相似比为2.
20.(本题满分8分)
已知x 满足方程062
=--x x ,试求式子4(1)(1)x x x -+- 的值.
21.(本题满分12分)
在ABC △中,AD 平分∠CAB ,∠BAC=2∠B , (1)求证AD BC AC AB ⋅=⋅ (2) 若 AC=6,CD=4,求BC 的长.
第19题图
图6
第21题图
第Ⅱ卷(50分)
22.(本题满分10分)
已知:关于x 的方程2
30x x m +-=。

(1)若-1是此方程的一个根,求m 和另一根的值; (2)当m 满足什么条件时,方程总有实数根.
23.(本题满分12分)在正方形ABCD 中, AB = 2, P 是BC 边上与 B 、C 不重合的任意点,DQ ⊥AP 于Q. (1)求证:ΔDQA ∽ΔABP.
(2)当P 点在BC 上变化时,线段 DQ 也随之变化.,设PA= x , DQ= y ,求 y 与 x 之间的函数关系式.
24、(本题满分14分)已知,如图,Rt △ABC 中,∠ACB=90º,AB=5,两直角边AC 、BC 的长是关于x 的
方程()0652
=++-m x m x 的两个实数根。

①求m 的值及AC 、BC 的长(BC>AC );
②在线段BC 的延长线上是否存在点D ,使得以D 、A 、C 为顶点的三角形与△ABC 相似?若存在,写出CD 的长;若不存在,请说明理由.
25、(本题满分14分)如图,已知直线l 的函数表达式为4
83
y x =-
+,且l 与x 轴、y 轴分别交于A 、B 两点,动点Q 从B 点开始在线段BA 上以每秒2个单位的速度向点A 移动,同时动点P 从A 点开始在线段AO 上以每秒1个单位的速度向O 点移动,设点Q 、P 移动时间为t 秒。

(1)求点A 、B 的坐标.
第23题图
第24题图
B
O
P
A
x
l
Q
y 第25题图
第24题图
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)求出(2)中当以点A、P、Q为顶点的三角形与△AOB相似时,线段PQ的长度.。

相关文档
最新文档