九年级上学期期中考试数学试题(人教版)及答案

合集下载

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。

A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。

人教版九年级上册数学期中考试试卷含答案详解

人教版九年级上册数学期中考试试卷含答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.方程3x 2-4x -1=0的二次项系数和一次项系数分别为()A .3和4B .3和-4C .3和-1D .3和12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为()A .-2B .2C .-3D .33.下列图形中既是中心对称又是轴对称图形的是()A .等边三角形B .平行四边形C .正五边形D .正方形4.将二次函数y=(x ﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后顶点为()A .(1,3)B .(2,﹣1)C .(0,﹣1)D .(0,1)5.如图,将ABC ∆绕点A 逆时针旋转60︒得到ADE ∆,使点D 落在BC 上,且60B ∠=︒,则EDC ∠的度数等于()A .45︒B .30°C .60︒D .75︒6.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A,y 1),B (2,y 2),C y 3),则y 1、y 2、y 3的大小关系为()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 17.如图,四边形ABCD 的两条对角线互相垂直,AC +BD =12,则四边形ABCD 的面积最大值是()A .12B .18C .24D .368.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的面积是()A .34B .212C 21D .129.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是()A .1m =B .1m >C .1m ≥D .1m ≤10.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是()A .512B .512C .1D .0二、填空题11.若点(2,)A a 与点(,1)B b 关于原点O 对称,则a b +=_________.12.“武汉樱花节”观赏人数逐年增加,据有关部门统计,2014年约为30万人次,2016年约为40万人次,设观赏人数年平均增长率为x ,则根据题意可列方程________.13.已知二次函数246y x x =--,若16x -<<,则y 的取值范围为______.14.二次函数221y x mx =++的图象的顶点在坐标轴上,则m 的值为__________.15.若150BAC ∠=︒,D 、E 为线段BC 上的两点,60DAE ∠=︒,且AD AE =,若3DE =,5CE =,则BD 的长为__________.16.二次函数221y ax x =-+,若对满足34x <<的任意x 都有0y >成立,求实数a 的范围_______.17.如图,已知正方形ABCD 的边长为3,E 是AB 边上的点,将ADE ∆绕点D 逆时针旋转90︒得到CDF ∆.(1)画出旋转后的图形,DEF ∠=.(2)若1AE =,求DF 和EF .三、解答题18.解一元二次方程:(1)2220x x --=(2)(4)5(4)0x x x -+-=19.来自武汉高校的若干个社团参加了“敢为人先,追求卓越”的城市精神的研讨会,参加研讨会的每两个社团之间都签订了一份合作协议,所有社团共签订了45份协议,共有多少个社团参加研讨会?20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,三个顶点的坐标分别为(2,2),(1,0),(3,1)A B C .(1)将ABC ∆关于x 轴作轴对称变换得111A B C ∆,则点1C 的坐标为______.(2)将ABC ∆绕原点O 按逆时针方向旋转90︒得222A B C ∆,则点2C 的坐标为______.(3)在(1)(2)的基础上,图中的111A B C ∆,222A B C ∆是中心对称图形,对称中心的坐标为______.(4)若以点D 、A 、C 、B 为顶点的四边形为菱形,直接写出点D 的坐标为______.21.一个矩形菜园(如图),其中一边靠墙,另外三边用长为30m 的篱笆围成,墙长12m ,设平行于墙的边长为xm .(1)设垂直于墙的一边长为ym ,直接写出y 与x 之间的函数关系式,并写出x 的取值范围.(2)求菜园的最大面积.22.关于x 的方程22220x x a a -+-=的两根时等腰三角形的底和腰,且这样的等腰三角形有且只有一个,求a 的范围.23.已知,点(8,0)A 、(6,0)B ,将线段OB 绕着原点O 逆时针方向旋转角度α到OC ,连接AC ,将AC 绕着点A 顺时针方向旋转角度β至AD ,连接OD .(1)当30α=︒,60β=︒时,求OD 的长.(2)当60α=︒,120β=︒时,求OD 的长.(3)已知(10,0)E ,当90β=︒时,改变α的大小,求ED 的最大值.24.如图,已知点D 是等腰直角三角形ABC 斜边BC 上一点(不与点B 重合),连AD ,线段AD 绕点A 逆时针方向旋转90°得到线段AE ,连CE ,求证:BD ⊥CE .25.已知抛物线顶点A 在x 轴负半轴上,与y 轴交于点B ,1OB =,OAB ∆为等腰直角三角形.(1)求抛物线的解析式(2)若点C 在抛物线上,若ABC ∆为直角三角形,求点C 的坐标(3)已知直线DE 过点(1,4)--,交抛物线于点D 、E ,过D 作//DF x 轴,交抛物线于点F ,求证:直线EF 经过一个定点,并求定点的坐标.参考答案1.B【详解】方程3x2-4x-1=0的二次项系数是3,和一次项系数是-4.故选B.2.B【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-b a,x1•x2=ca.要求熟练运用此公式解题.3.D【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A.等边三角形是轴对称图形,不是中心对称图形,故不符合题意;B.平行四边形不是轴对称图形,是中心对称图形,故不符合题意;C.正五边形是轴对称图形,不是中心对称图形,故不符合题意;D.正方形既是中心对称图形,又是轴对称图形,故不符合题意;故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.B【详解】二次函数y=(x﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后得y=(x﹣1﹣1)2﹣2+1,即y=(x﹣2)2﹣1,所以顶点坐标为(2,﹣1),故选B.5.C【分析】由题意根据旋转的性质得到△ABC≌△ADE,然后利用全三角形的性质进行求解即可.【详解】解:∵将△ABC绕点A逆时针旋转60°得到△ADE,∴△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=180°-∠ADE-∠ADB=60°.故选C.【点睛】本题主要考查的是旋转的性质,全等三角形的判定及性质,邻补角的定义的有关知识,熟练掌握旋转的性质是解答本题的关键.6.D【解析】试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.7.B【解析】设AC=x,则BD=12−x,则四边形ABCD的面积=12AC×BD=12×x×(12−x)=−12x²+6x=−12(x−6)²+18,∴当x=6时,四边形ABCD的面积最大,最大值是18,故选B.8.C【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【详解】连接AC1,∵四边形AB 1C 1D 1是正方形,∴∠C 1AB 1=12×90°=45°=∠AC 1B 1,∵边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,∴∠B 1AB=45°,∴∠DAB 1=90°-45°=45°,∴AC 1过D 点,即A 、D 、C 1三点共线,∵正方形ABCD 的边长是1,∴四边形AB 1C 1D 1的边长是1,在Rt △C 1D 1A 中,由勾股定理得:AC 122121+,则DC 12-1,∵∠AC 1B 1=45°,∠C 1DO=90°,∴∠C 1OD=45°=∠DC 1O ,∴DC 12-1,∴S △ADO =12×OD•AD=212,∴四边形AB 1OD 的面积是=2×2122-1,故选C .9.C【详解】分析:根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.解答:解:∵二次函数的解析式y=(x-m )2-1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m ,-1),∴该二次函数图象在x <m 上是减函数,即y 随x 的增大而减小,且对称轴为直线x=m ,而已知中当x≤1时,y 随x 的增大而减小,∴x≤1,∴m≥1.故选C .10.A【分析】理解min{a ,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【详解】在同一坐标系xOy 中,画出函数二次函数y =−x 2+1与正比例函数y =−x 的图象,如图所示,设它们交于点A.B.令21x x -+=-,即210,x x --=解得:152x +=或152,∴15511515,,,.2222A B ⎛⎫⎛⎫-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭观察图象可知:①当152x -≤时,{}2min 1,x x -+-=21x -+,函数值随x 的增大而增大,其最大值为51,2-②当151522x -+<<时,{}2min 1,x x -+-=−x ,函数值随x 的增大而减小,其最大值为1,2-③当152x +≥时,{}2min 1,x x -+-=21x -+,函数值随x 的增大而减小,最大值为152-,综上所示,{}2min 1,x x -+-的最大值是51,2-故选A.【点睛】考查二次函数,正比例函数的图象与性质,理解运算定义的内涵,结合图象求解,注意数形结合思想在解题中的应用.11.3-【分析】根据关于原点对称的点的坐标,可得答案.【详解】解:由题意,得a=-1,b=-2,a+b=-1-2=-3,故答案为-3.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a ,b 是解题关键.12.230(1)40x +=【分析】设观赏人数年均增长率为x ,根据2014及2016年的观赏人次,即可得出关于x 的一元二次方程.【详解】解:设观赏人数年平均增长率为x ,由题意得230(1)40x +=.故答案为230(1)40x +=.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.106y -≤<【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:222464410(2)10y x x x x x =--=-+-=--.∴当2x =时,y 有最小值,最小值为10-.16x -<<,∴当6x =时,y 有最大值,最大值为2(62)10.6y =--=.y ∴的取值范围为106y -≤<.故答案为106y -≤<.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.14.1或1-或0【分析】由二次函数y=x 2+2mx+1的图象的顶点在坐标轴上,分两种情况讨论即可.【详解】解:当图象的顶点在x 轴上时,∵二次函数y=x 2+2mx+1的图象的顶点在x 轴上,∴二次函数的解析式为:y=(x±1)2,∴m=±1.当图象的顶点在y 轴上时,m=0,故答案为1或−1或0.【点睛】本题主要考查了二次函数的性质,以及分类讨论的数学思想,解题的关键是熟记二次函数的性质.15.16.5【分析】作AH BC ⊥,求出CH 和AC 的长,作EF ⊥AD 于点F ,作AG ∥EF 交BC 于点G ,,通过证明△ABC ∽GAC,可求出BC 的值,从而可求出BD 的值.【详解】解:作AH BC ⊥,∵60DAE ∠=︒,且AD AE =,∴△ADE 是等边三角形,∴DH=HE=12DE=32,∠ADE=∠AED=∠DAE=60°,∴CH=32+5=132,AH==sin60°×AD=2,∴7=.作EF ⊥AD 于点F ,作AG ∥EF 交BC 于点G ,则∠AEF=∠DEF=30°,AF=DF ,∴∠AGC=150°,GE=DE=3,∴CG=2,∵150BAC ∠=︒,∴∠BAC=∠AGC,∵∠C=∠C,∴△ABC ∽GAC,∴BC AC AC CG =,∴772BC =,∴BC=492,∴BD=492-3-5=16.5.故答案为16.5.【点睛】本题考查了等边三角形的判定与性质,平行线的性质,锐角三角函数的知识,平行线分线段成比例定理,以及相似三角形的判定与性质,正确作出辅助线是解答本题的关键.16.59a ≥【分析】由对满足34x <<的任意x 都有0y >成立,用含x 的代数式表示出a 的取值范围,然后讨论含x 的代数式的取值即可求出实数a 的范围.【详解】∵对满足34x <<的任意x 都有0y >成立,∴2210ax x -+>,即2221111x a x x -⎛⎫>=-- ⎪⎝⎭+对34x <<成立,∵当34x <<时,2111x ⎛⎫-- ⎪⎭+⎝的值随x 的增大而减小,∴当x=3时,2111x ⎛⎫-- ⎪⎭+⎝取得最大值2119451=⎛⎫⎪⎭+-- ⎝,∵对满足34x <<的任意实数x 都有0y >成立,∴59a ≥.故答案为59a ≥.【点睛】本题考查了不等式恒成立问题的解法,二次函数的图像与性质,注意运用讨论二次项的系数和参数分离,熟练掌握二次函数的图像与性质是解答本题的关键.17.解:(1)45︒;(2)DF =,E F =.【分析】(1)根据题意作出图形,然后再利用旋转的性质进行解答即可;(2)根据勾股定理求出DE 的长,从而得到DF 的长,最后再利用勾股定理求出EF 的长即可.【详解】(1)解:如图,由旋转角的定义可得∠EDF=90°,∴∠DEF=45°;(2)解:∵AE=1,AD=3,∴=由旋转的性质可得:DE=DF ,∴DF =,∵∠EDF=90°,DE=DF ,∴EF ==.【点睛】本题主要考查的是旋转的性质、正方形的性质、勾股定理的应用,熟练掌握相关知识是解题的关键.18.(1)1x =±;(2)14x =,25x =-.【分析】(1)用配方法求解即可;(2)用因式分解法求解即可;【详解】(1)∵2220x x --=,∴222x x -=,∴22121x x -+=+,∴(x-1)2=3,∴x-1=±∴1x =±;(2)∵(4)5(4)0x x x -+-=,∴(4)(5)0x x -+=,∴x-4=0,或x+5=0,∴14x =,25x =-.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.19.10个.【分析】因为参加研讨会的每两个社团之间都签订了一份合作协议,设有x 个社团参加,则每个社团要签(x-1)份合同,签订合同共有1(1)452x x -=份,由题意列方程即可.【详解】解:设有x 个社团参加,依题意,得1(1)452x x -=解得:110x =,29x =-(舍去).答:共有10个社团参加研讨会【点睛】本题考查了一元二次方程的应用,解题的一般思路是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.20.(1)(3,1)-;(2)(1,3)-;(3)11(,22;(4)(4,3).【分析】(1)根据轴对称图形的性质可知点C 的坐标为(3,-1);(2)根据旋转变换图形的性质也可求出点C 2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标;(4)根据菱形的判定进行求解即可.【详解】(1)如图,点C 1的坐标为(3,-1);故答案为(3,-1);(2)点C 2的坐标为(-1,3),故答案为(-1,3);(3)△A 1B 1C 1与△A 2B 2C 2成中心对称,对称中心的坐标为11,22⎛⎫⎪⎝⎭;故答案为11,22⎛⎫⎪⎝⎭;(4)∵点D 、A 、C 、B 为顶点的四边形为菱形,∴点D 的坐标为(4,3).故答案为(4,3).【点睛】本题主要考查的是菱形的判定,轴对称变换,旋转作图,中心对称图形,点的坐标的确定,对称中的坐标变换,旋转中的对称变换等有关知识.21.(1)115(012)2y x x =-+<≤;(2)108m 2.【分析】(1)由(总长度-平行于墙的两边的长度)÷垂直于墙这边的长度即可写出函数解析式,根据墙的长度就可以求出x 的取值范围;(2)由长方形的面积公式建立二次函数,利用二次函数性质求出其解即可.【详解】(1)3011522x y x -==-+(0<x≤12);(2)设菜园的面积是S ,则S=xy =21225(15)22x --+=21225(15)22x --+,∴对称轴为x=15,当012x <≤时,S 随x 的增大而增大,∴当x=12时,S 有最大值,此时21225(1215)10822S =-⨯-+=.答:菜园的最大面积为2108m .【点睛】本题主要考查二次函数的应用,解题的关键是将实际问题转化为二次函数的问题,找出题目中的等量关系,列出函数解析式是解答本题的关键.22.203a <≤或423a ≤<或1a =.【分析】根据题意先求出方程的根,然后分情况讨论求解即可.【详解】解:()[(2)]0x a x a ---=两个根为1x a =,22x a =-,(1)当a 为腰,2a -为底时,22a a a a a a +>-⎧⎨+->⎩,解得:223a <<;(2)当2a -为腰,a 为底时,(2)2(2)(2)a a a a a a +->-⎧⎨-+->⎩,解得:403a <<,这样的等腰三角形有且只有一个,所以203a <≤或423a ≤<,当底和腰相等,即等边时,2a a =-,此时1a =,综上所述,203a <≤或423a ≤<或1a =.【点睛】本题主要考查的是因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,分类讨论是解答本题的关键.23.(1)10;(2);(3)6+.【分析】(1)将AO 绕点A 顺时针方向旋转60°至AN ,连接AN ,DN.通过SAS 证明△AOC ≌△AND ,再证明∠OND=90°后利用勾股定理即可求解;(2)将AO 绕点A 顺时针方向旋转120°至AN ,连接AN ,DN.通过SAS 证明△AOC ≌△AND ,再证明∠OND=90°后利用勾股定理即可求解;(3)将AO 绕点A 顺时针方向旋转90°至AN ,可得点N 为(8,8),利用两点距离公式求出NE 的长,然后根据D 在线段NE 上时,DE 最小为6NE ND -=;D 在线段NE的延长线上时DE 最大为6NE ND +=,从而求出DE 的最大值.【详解】解:(1)如图1,将AO 绕点A 顺时针方向旋转60°至AN ,连接AN ,DN.则△OAN 是等边三角形.∴ON=OA=AN=8.∴∠OAN =∠ONA=∠CAD=60°.∴∠OAN-∠NAC =∠CAD-∠NAC ,即∠OAC =∠NAD.在△AOC 和△AND 中AO ANOAC NAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△AND (SAS )∴OC=ND ,∠AND =∠AOC=30°.又∵OB=6,∴OC=ND=6.∴∠OND =∠ONA+∠AND=90°.∴10OD ==;(2)如图2,将AO 绕点A 顺时针方向旋转120°至AN ,连接AN ,DN ,∴△OAN 是等腰三角形,∵∠OAN=120°,∴ON ==,∠AON =∠ANO=30°.∵∠OAN =∠CAD=120°.∴∠OAN-∠NAC =∠CAD-∠NAC ,即∠OAC =∠NAD.在△AOC 和△AND 中AO ANOAC NAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△AND (SAS ),∴OC=ND ,∠AND=∠AOC=60°.∴∠OND=∠AND+∠ANO=90°,又∵OB=6,∴OC=OB=ND=6.∴OD ====(3)如图3,将AO 绕O 顺时针旋转90°到AN ,连接AN 、DN 、EN.则N 为(8,8),则NE ===.则(1)可得:△AOC ≌△AND.∴ND=OC=OB=6.当D 在线段NE 上时,DE 最小为6NE ND -=;当D 在线段NE 的延长线上时,DE 最大为6NE ND +=.即DE 的最大值为6.【点睛】本题主要考查了旋转变换,三角形全等的判定与性质,勾股定理.解题的关键是将线段AO 按AC 的旋转方式旋转,进而构造全等三角形和直角三角形求解.24.见解析【详解】试题分析:根据等腰直角三角形的性质可得∠ABC =∠ACB =45°,再根据旋转性质可得AD=AE ,∠DAE =90°,然后利用同角的余角相等求出∠BAD =∠CAE ,然后利用”边角边”证明△BAD 和△CEF 全等,从而得证.试题解析:∵∠BAC =90°,AB=AC ,∴∠ABC =∠ACB =45°,∵∠DAE =90°,∴∠DAE =∠CAE +∠DAC =90°,∵∠BAC =∠BAD +∠DAC =90°,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD AD AE =⎧⎪∠=∠⎨⎪=⎩CAE,∴△BAD ≌△CAE (SAS ),∴BD=CE ,∠ACE =∠ABC =45°,∴∠BCE =∠ACB +∠ACE =90°,∴BD ⊥CE .25.(1)221y xx =++;(2)(2,1)C -或(3,4)C -;(3)(-1,4)【分析】(1)先求出顶点坐标与y 轴交点坐标,根据顶点式求二次函数解析式;(2)根据直角三角形的判定定理找出△ABC 为直角三角形,分三种情况:当A 为直角顶点时,AC ⊥AB ;当B 为直角顶点时,BC ⊥AB ;当C 为直角顶点,分别确定点C 的坐标;(3)根据二次函数与方程的关系求解.【详解】(1)∵OB=1,点B 在y 轴的正半轴上,∴B (0,1),∵△OAB 为等腰直角三角形,∴OA=OB=1,∵顶点A 在x 轴负半轴上,∴顶点A (-1,0),∴设y=a(x+1)2,把B (0,1)代入得1=a×(0+1)2,∴a=1,∴22(1)21y x x x =+=++,(2)当A 为直角顶点时,AC ⊥AB ,设直线AB 解析式为y=mx+n ,∵B (0,1),A (-1,0),∴10n m n =⎧⎨-+=⎩,∴11m n =⎧⎨=⎩,∴直线AB 解析式为y=x+1,∵AC ⊥AB ,∴直线AC 解析式为y=-x-1,联立得2(1)1y x y x ⎧=+⎨=--⎩,解得:1121x y =-⎧⎨=⎩,2210x y =-⎧⎨=⎩,∴C (-2,1).当B 为直角顶点时,BC ⊥AB ,∵直线AB 解析式为y=x+1,∴直线BC 解析式为y=-x+1,同理可得C (-3,4),当C 为直角顶点不存在.综上所述点C 坐标为(-2,1)或(-3,4),(3)设DE 的解析式为4y kx k =+-,联立2421y kx k y x x =+-⎧⎨=++⎩,∴2(2)50x k x k +-+-=,得:25D E DE x x k x x k +=-⎧⎨-=-⎩①②,∵D ,E 关于对称轴对称,所以2F D x x =--,设EF 的解析式为y mx n =+联立,221y mx n y x x =+⎧⎨=++⎩,得2(2)10x m x n +-+-=,()2221D E E D D ED E x x x x m x x x x n +=--=-⎧⎪⎨⋅=--⋅=-⎪⎩③④,联立①②③④得n=m+4,所以4(1)4y mx m m x =++=++,过定点(-1,4),即直线EF 经过一个定点,定点的坐标为(-1,4).【点睛】本题考查二次函数的应用,一次函数的应用,直角三角形的性质.熟练掌握一次函数与二次函数的图象与性质,用待定系数法求函数解析式,分类讨论及方程思想是解题的关键.。

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试卷带答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期中质量检查卷 初三数学(完卷时间120分钟;满分:150分)一.选择题(每小题4分,共40分) 1.若2-x 在实数范围内有意义,则x 的取值范围是( )A .2x -≥B .2x ≠-C .2x ≥D .2x ≠2. 下列计算中,正确的是( )3 ) 3( D. 3 ) 3( C. 3 )3(B. 3)3( A. 2222--==--=-=-3. 下列属于一元二次方程是 ( )A 、0232=-x x B 、322++x x C 、()03=-x x D 、()()24122-=-x x x 4. 下列式子运算正确的是 ( )A .123=-B .248=C = =5. 下列图形中是中心对称图形的是 ( )A .B .C .D . 6. 用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 7.如图,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD=( ) (A)116° (B)32° (C)58° (D)64°8. 如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30° (B )45° (C )90° (D )135° 9.一根排水管的截面如图所示,已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A.16B.10C.8D.610.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为 的中点,点P是直径AB 上一动点,则PC+PD 的最小值 是( ) A .1B .2 C .3D .5二 . 填空题(每小题4分,共计20分)11.已知关于x 的一元二次方程的一个根是1,写出一个符合条件的一元二次 方程: 12. 计算:=-31 。

13. A (a ,3)与点B (-4, b )关于原点对称,则a+b=_________. 14.圆内接四边形ABCD 的内角∠A:∠B:∠C=2:3:4,则∠D =____°15.如图,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着C B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s 时,BEF △三.解答题(本大题共8小题,共90分) 16.计算:(每小题8分,共16分)(1)计算:273112)3(0+-- (2)218⨯)23)(23(+-+17.解下列方程:(每小题8分,共16分) (1)0342=--x x(2)3(1)2(1)x x x -=-18. (本题8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图:A B第15题图(1)作出△ABC 关于坐标原点O 成中心对称的△A1B1C1(2)作出以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90︒得到的△AB2C2,20. (本题8分)已知一元二次方程022=+-m x x . (1)若方程有两个不相等的实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。

21.(本题10分)如图,⊙O 的直径AB 长为6,弦AC 长为2,∠ACB 的平分线交⊙O 于点D 。

(1)求BC 、AD 的长 (2)求四边形ADBC 的面积.· ABC O22.(本题12分)如图1 ,用篱笆靠墙围成矩形花圃ABCD ,墙可利用的最大长度为15m ,一面利用旧墙 ,其余三面用篱笆围,篱笆总长为24m ,设平行于墙的BC 边长为x m . (1)若围成的花圃面积为40m2时,求BC 的长.(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且围成的花圃面积为50m2,请你判断能否成功围成花圃,如果能,求BC 的长?如果不能,请说明理由. (3)如图3,若计划在花圃中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形时,请列出x 、n 满足的关系式 .23.(本题12分)如图1,已知∠ABC=90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE 并延长交射线BC 于点F.(1)如图2,当BP=BA 时,∠EBF= °,猜想∠QFC=°;(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明; (3)已知线段AB=32,设BP=x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.参考答案及评分标准 一. 选择题(每题4分,共40分) 二. 填空题(每题4分,共20分) 11. x2=1(不唯一) 12. 13 13. 1 14. 90 15 . 1或1.75三. 解答题(共90分)A DBC ABD C …图2 图3 图2 ABEQPF C 图1 A B EQ FP 图117.(每小题8分,共16分)解下列方程: (1)0342=--x x(2)3(1)2(1)x x x -=-解:(1)原方程化为:x2 -4x + 22 = 3+ 22 ---- 2分 ( x -2 ) 2 = 7 ---- 4分 x -2 = 7± ---- 6分x1=72+或 x2= 72- ---- 8分(2)原方程化为:3x (x -1) -2(x -1)=0 ---- 2分 (x -1)(3x -2)=0 ---- 4分 x -1=0 或3x -2=0 ----- 6分∴x1=1, x2=32----- 8分18.(8分)图略--------各4分 19.(8分)解:(1)设平均每次下调的百分率x ,则6000(1-x )2=4860 ---- 3分 解得:x1=0.1 x2=1.9(舍去) ----4分 ∴平均每次下调的百分率10% ---- 5分 (2)方案①可优惠:4860×100×(1-0.98)=9720元----6分 方案②可优惠:100×80=8000元 ---- 7分 ∴方案①更优惠 ---- 8分 20.(8分) 解:(1)∵方程有两个不相等的实数根 ∴ Δ=4-4m >0,即m ﹤1 ……4分(2)由一元二次方程根与系数的关系,得1x +2x =2……5分 又1x +32x =3∴2x =21……7分再把2x =21代入方程,求得m =43……8分21. (10分) 解:(1)∵AB 是直径, ∴∠ACB=∠ADB=90°, ……1分 在Rt △ABC 中,AB=6, AC= 2,∴BC=AB2-AC2 =62-22 = 4 2 ……3分] ∵∠ACB 的平分线交⊙O 于点D ,∴∠DAC=∠BCD ∴AD ⌒=DB ⌒, ∴AD=BD … …5分 ∴在Rt △ABD 中,AD=BD=22AB=3 2 … …7分 (2)∵四边形ADBC 的面积=S △ABC+S △ABD ∴四边形ADBC 的面积=12 AC·BC+12AD·BD=12 ×2×4 2 +12×(3 2 )2 =9+4 2 … …10分 22.(12分)解:(1)根据题意得,AB=224x -m,则224x-40=∙x ..............2分 4,2021==∴x x ............3分因为20>15 所以201=x 舍去答:BC 的长为4米。

....................................4分 (2)不能围成花圃。

....................................5分根据题意得,50324=∙-x x....................................7分方程可化为0150242=+-x x1504)24(2⨯--=∆<0...................................8分不能围成花圃方程无实数解∴∴....................................9分(3)关系式为:12-24+=+n xn x ...................................12分 23.(12分) 解: (1)=∠EBF 30°................1分· ABCO D第21题QFC ∠= 60°..................................3分 (2)QFC ∠=60°.....................................4分 不妨设BP, 如图1所示∵∠BAP=∠BAE+∠EAP=60°+∠EAP ∠EAQ=∠QAP+∠EAP=60°+∠EAP∴∠BAP=∠EAQ..........................................5分 在△ABP 和△AEQ 中 AB=AE ,∠BAP=∠EAQ , AP=AQ ∴△ABP ≌△AEQ (SAS ).........................6分 ∴∠AEQ=∠ABP=90°...............................7分∴∠BEF 180180906030AEQ AEB =︒-∠-∠=︒-︒-︒=︒∴QFC ∠=EBF BEF ∠+∠=3030︒+︒=60°…………………………............8分 (事实上当BP时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分) (3)在图1中,过点F 作FG ⊥BE 于点G∵△ABE 是等边三角形 ∴BE=AB=32,由(1)得=∠EBF 30°在Rt △BGF中,2BEBG == ∴EG2+GF2=EF2 ∴EF=2 (10)分∵△ABP ≌△AEQ ∴QE=BP=x ∴QF=QE +EF 2x =+................11分过点Q 作QH ⊥BC ,垂足为H 在Rt △QHF 中,QH2+FH2=QF2∴Y=323+x (x >0)即y 关于x 的函数关系式是:2y x =分图2ABEQP F ABEQFP。

相关文档
最新文档