九年级上期中考试数学试卷含答案沪科版

合集下载

2023年沪科版九年级上册数学期中综合测试试卷及答案

2023年沪科版九年级上册数学期中综合测试试卷及答案
-11-
期中检测卷
二、填空题(本大题共4小题,每小题5分,满分20分) 11.若ab = 23,则a-b b= -13 . 12.已知点(3,a),(4,b)在反比例函数y=k-x 2的图象上, 若a>b,则k的取值范围是 k>2 .
-12-
期中检测卷
13.教练对小明推铅球的录像进行技术分析,发现铅 球行进高度y(m)与水平距离x(m)之间的关系为 y=-112(x-4)2+3,由此可知铅球推出的水平距离 是 10 m.
∵AB∥CD,∴△AEM∽△CDM,∴ACMM

AE CD

n+n 1,
∴AM=n+nn+1a=2nn+1a,∴结论正确.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点 重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D,M分别在边 AB,OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象经过 点D,M,反比例函数y=mx 的图象经过点D,与BC交于点N. (1)求反比例函数和一次函数的表达式; (2)连接MN.若点P在直线DM上, 且使△OPM的面积与四边形OMNC的面积相等, 求点P的坐标.
D.ab++11

c+1 d+1
-5-
期中检测卷
5.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列 条件中不能判定这两个三角形相似的是( C ) A.∠A=55°,∠D=35° B.AC=9,BC=12,DF=6,EF=8 C.AC=3,BC=4,DF=6,DE=8 D.AB=10,AC=8,DE=15,EF=9
-31-
期中检测卷
七、(本题满分12分) 22.某超市销售一种文具,进价为5元/件,售价为6元/件时,当天的销 售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售 量就减少5件.设当天销售单价统一为x元(x≥6,且销售单价是按 0.5元的倍数上涨),当天销售利润为y元. (1)求y与x的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围; (3)若每件文具的利润不超过80%,要想当天获得利润最大,每件 文具售价为多少元?并求出最大利润.

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年沪科版初中九年级数学上学期期中模拟考试卷(一)

2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪科版九上第21~22.3章(二次函数与反倒函数+比例线段+相似三角形判定与性质)。

5.难度系数:0.65。

第一部分(选择题共40分)一、选择题(本大题共10个小题,每小题4分,满分40分.在每个小题给出的四个选项中,只有一项符合题目要求的)A .B ADE ∠=∠B .C ∠5.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A .123,1x x =-=-B .121,3x x =-=C .121,3x x ==D .123,1x x =-=A .16B .24.点P ,点Q 是线段AB 的黄金分割点,若A .2B .6-8.如图,是二次函数2y ax bx c =++(,,a b c 是常数,且0a ≠)的图象,虚线是抛物线的对称轴.则一次函数y acx b =+的图象经过()A .第二三四象限.如图1,点A 、B 在反比例函数延长线段AB 交x 轴于点函数()220k y k x=≠的图象上,过点A .2B .2-C .10.二次函数2y ax bx c =++()0a ≠与一次函数y x c =-+(都在坐标轴上,两图象与x 轴交于点M ,二次函数y =若12ON OM =,求b 的值()二、填空题(本大题共4小题,每小题5分,满分20分).如图,ABC 是等边三角形,点交于点F ,连接DE ,则下列结论:正确的结论有三、解答题(本大题共9个小题,共90分,其中15~18题每题8分,19~20题每题10分,21~22题每题12分,第23题14分.解答应写出文字说明,证明过程或演算步骤)(1)求该曲线对应的函数解析式;C℃的取值范围.(2)若6t≥,求温度(),是反比例函数y(8分)如图,A B线段AB的延长线交x轴于点C.(1)求a的值和该反比例函数的函数关系式;(2)求直线AB的函数关系式.19.(10分)九(1)班数学课外活动小组利用阳光下的影子来测量教学楼顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该教学楼OB的影长OC为12米,OA的影长OD为15米,测量者的⊥,影长FG为1.2米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO OD ⊥.已知测量者的身高EF为1.8米,求旗杆的高AB.EF FG.(10分)我省某风景区统计了近三年国庆节的游客人数.据统计,2023年国庆节游客人数约为(1)求2021年到2023年该风景区国庆节游客人数的年平均增长率;(2)已知该风景区有A,B(1)求抛物线的解析式;(2)如图,点C 为第四象限抛物线上的一个动点,直线AC 与y 轴交于点D ,连接BC .当90ACB ∠=︒时,求点C 的坐标.22.(12分)如图,在ABC 中,90B ∠=︒,8cm AB =,12cm BC =,点P 从点A 开始沿AB 向点B 以2cm /s 的速度运动,点Q 从点B 开始沿BC 向点C 以4cm /s 的速度运动,如果P ,Q 分别从A ,B 同时出发,4秒后停止运动,设运动时间为t 秒.(1)求BP ,BQ 的长度;(2)当t 为何值时,PBQ 的面积为212cm(3)是否存在某一时间t ,使得PBQ 和ABC 相似?若存在,请求出此时t 的值,若不存在,请说明理由.23.(14分)在平面直角坐标系xOy 中(如图),已知抛物线2y ax x c =++经过()2,0A -和()0,4B ,与x 轴的另一个交点为C .(1)求该抛物线的表达式及顶点M 的坐标;(2)将抛物线2y ax x c =++先向右平移2个单位,再向下平移m (0m >)个单位后得到的新抛物线与y 轴交于点()0,1P -,新抛物线的顶点为M ';①求新抛物线的表达式及顶点M '的坐标;②点N 是新抛物线对称轴上的一点,且'M MN ACB ∠=∠,当ABC 与MM N '△相似时,求点N 的坐标.2024-2025学年九年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

沪科版九年级上册数学期中考试试卷含答案

沪科版九年级上册数学期中考试试卷含答案

沪科版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系2.反比例函数k y x=的图象过点()3,5-,则k 的值为( ) A .15 B .1 15 C .-15 D .3 5- 3.下列各式中,y 是x 的二次函数的是( ) A .21xy x += B .220x y -+= C .21y x= D .243y x -= 4.已知矩形的面积为36cm 2,相邻的两条边长为xcm 和ycm ,则y 与x 之间的函数图像大致是A .B .C .D . 5.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( ) A .21011010y x x =-++ B .210100y x x =-+C .210100110y x x =-++D .21090100y x x =-++ 6.如图,已知经过原点的直线AB 与反比例函数()0k y k x=≠图象分别相交于点A 和点B ,过点A 作AC x ⊥轴于点C ,若ABC 的面积为4,则k 的值为( )A .2B .4C .6D .87.如图,在Rt ABC 中,90ACB ∠=,CD 是AB 边上的高,6AC =,9AB =,则AD =( )A .2B .3C .4D .58.已知函数2y ax ax =+与函数(0)a y a x=<,则它们在同一坐标系中的大致图象是( ) A . B .C .D . 9.如图,已知点()4,2E -,点()1,1F --,以O 为位似中心,把EFO 放大为原来的2倍,则E 点的对应点坐标为( )A .()2,1-或()2,1-B .()8,4-或()8,4-C .()2,1-D .()8,4-10.已知矩形的面积为20,则如图给出的四个图象中,能大致呈现矩形的长y 与宽x 之间的函数关系的是( )A .B .C .D .二、填空题 11.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)12.若113,4A y ⎛⎫- ⎪⎝⎭,25,4B y ⎛⎫- ⎪⎝⎭,31,4C y ⎛⎫ ⎪⎝⎭为二次函数245y x x =+-的图象上三点,则1y ,2y ,3y 的大小关系为________<________<________.13.如图,抛物线2y ax bx c =++与x 轴交于()1,0和()3,0两点,交y 轴与()0,3,当x ________时,0y >.14.若15x y x y -=+,x y =________;若34x y =,则232x y x y+=-________. 15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元. 16.小颖用几何画板软件探索方程ax 2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x 1=-4.5,则方程的另一个近似根为x 2=____.(精确到0.1)17.已知C 是AB 的黄金分割点,若AB=4cm ,则AC 的长为___________.18.若直线y =kx 与四条直线x =1,x =2,y =1,y =2围成的正方形有公共点,则k 的取值范围是_________.19.如图,纵截面是一等腰梯形的拦水坝,两腰与上底的和为4m ,底角为60,当坝高为________m 时,纵截面的面积最大.20.如图,已知在ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,//DE BC ,//EF AB ,且:3:8AD AB =,那么:ADE EFC S S =________.三、解答题21.已知:如图,网格中的每个小正方形的边长都是1个单位,请在图中画出一个与格点DEF 相似但相似比不等于1的格点三角形.22.如图,已知ABD ACE ∽,50ABC ∠=,60BAC ∠=,求AED ∠的度数.23.已知,在ABC 中,点D 、E 分别在边AB 、AC 上,连接DE 并延长交BC 的延长线于点F ,连接DC 、BE .且180BDE BCE ∠+∠=,求证:FDC FBE ∽.24.反比例函数()0k y k x=≠过()3,4A ,点B 与点A 关于直线2y =对称,抛物线2y x bx c =-++过点B 和()0,3C .()1求反比例函数的表达式;()2求抛物线的表达式;()3若抛物线2y x bx m =-++在22x -≤<的部分与k y x=无公共点,求m 的取值范围.25.已知AD 为BAC ∠的平分线,EF 为AD 的垂直平分线,求证:2FD FB FC =⋅.26.为测量学校操场上旗杆的高度,某数学活动小组设计如下测量方法:将镜子放在离旗杆()27AB m 的点E 处,然后沿直线BE 后退,使在点D 处恰好看到旗杆顶端A 在镜子中的像与镜子上的标记重合(如图),若 2.4DE m =,观测者的眼睛离地面的高度CD 为1.6m ,求旗杆的高度.参考答案1.D【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.【详解】解:A 、y=mx+b ,当m≠0时(m 是常数),是一次函数,错误;B 、t=sv ,当s≠0时,是反比例函数,错误;C 、C=3a ,是正比例函数,错误;D 、S=13πR 2,是二次函数,正确.故选D .【点睛】本题考查二次函数的定义.2.C【分析】让点的横纵坐标相乘即为反比例函数的比例系数,根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【详解】解:∵反比例函数解析式为y=k x, ∵反比例函数的图象经过点(-3,5),∴k=-3×5=-15,故选C .【点睛】此题主要考查了待定系数法求反比例函数,用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积.3.B【分析】一般地,如果y=ax 2+bx+c (a ,b ,c 是常数,a≠0),那么y 叫做x 的二次函数.此题将式子整理成一般形式后,根据二次函数的定义判定即可.【详解】解:A 、整理为y=21-x x,不是二次函数,故A 错误; B 、x 2-y+2=0变形,得y=x 2+2,是二次函数,故B 正确;C 、分母中含自变量,不是二次函数,故C 错误;D 、y 的指数是2,不是函数,故D 错误.故选B .【点睛】本题考查二次函数的定义.4.A【详解】解:根据矩形的面积公式,得xy =36,即()36y x>0x=,是一个反比例函数 故选A5.D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x-9)(100-10x),y=-10x2+90x+100.故选D.【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.6.B【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数y=kx的比例系数k的几何意义,可知△AOC的面积等于12|k|,从而求出k的值.【详解】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=4÷2=2,又∵A是反比例函数y=kx图象上的点,且AC⊥x轴于点C,∴△AOC的面积=12|k|,∴12|k|=2,∵k>0,∴k=4.故选B.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=12|k|.7.C【分析】利用射影定理得到:AC2=AD•AB,把相关线段的长度代入进行解答即可.【详解】解:∵Rt△ABC中,∠ACB=90°,CD是AB边上的高,∴AC2=AD•AB,∵AC=6,AB=9,∴36=9AD,则AD=4.故选C.【点睛】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.8.B【分析】根据a<0,直接判断抛物线的开口方向,对称轴,双曲线所在的象限,选择正确结论.【详解】解:当a<0时,二次函数y=ax2+ax的图象开口向下,对称轴x=-12;函数y=ax的图象在二、四象限,符合题意的是图象B.故选B.【点睛】主要考查二次函数和反比例函数图象的有关性质,应该熟记且灵活掌握.9.B【分析】E(-4,2)以O为位似中心,按比例尺2:1,把△EFO放大,则点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.【详解】解:根据题意可知,点E的对应点E′的坐标是E(-4,2)的坐标同时乘以2或-2.所以点E′的坐标为(8,-4)或(-8,4).故选B.【点睛】本题考查了位似变换的知识,注意掌握关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).10.A【解析】由矩形的面积公式可知y=20x,则图象为双曲线.又矩形的长、宽都是正数,故图象在第一象限,故选A.11.②⑤⑥【分析】根据二次函数的定义与一般形式即可求解.【详解】解:y是x的二次函数的有②,⑤,⑥.故答案是:②,⑤,⑥.【点睛】本题考查了二次函数的定义,一般形式是y=ax2+bx+c(a≠0,且a,b,c是常数,x是未知数).12.2y1y3y【分析】此题可根据给出的二次函数判断开口方向向上,对称轴为直线x=-2,再比较图象上三点到对称轴的距离,则距离越大,其纵坐标越大.【详解】解:对二次函数y=x2+4x-5,a=1>0,开口向上,对称轴为直线x=-2.又A、B、C三点到对称轴的距离分别为|-134-(-2)|=54,|-54-(-2)|=34,|14-(-2)|=94,∴y2<y1<y3,故答案是:y2、y1、y3.【点睛】本题考查了二次函数的性质,重点是判断函数的对称轴,由点到对称轴的距离比较出各点纵坐标的大小.13.1<或3x >【分析】写出函数图象x 轴上方部分的x 的取值范围即可.【详解】解:由图可知,x <1或x >3时,y >0.故答案为<1或x >3.【点睛】本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.14.32 116【分析】根据比例的性质,可得等式,根据等式的性质,可得答案;根据等式的性质,可用x 表示y ,根据分式的性质,可得答案.【详解】 解:由x y x y -+=15,得5x-5y=x+y ,移项,合并同类项,得4x=6y ,两边都除以4y ,得32xy =;由3x=4y ,得 y=34x,3112x 2+1144=333-263242x xx y x x x y x +==-⨯, 故答案为32,116.【点睛】本题考查了比例的性质,利用了比例的性质,等式的性质.15.25【详解】试题分析:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.16.2.5【详解】由函数的图象可求出函数的对称轴方程,再根据对称轴与方程两根之间的关系建立起方程,求出未知数的值即可.解:由函数图象可知,此函数的对称轴为x=﹣1,设函数的另一根为x,则=﹣1,解得x=2.5.17.2或6-【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分)叫做黄金比.【详解】AB==(AC>BC)由题意知:AC= 41)或AC=4-(2)=6-(AC<BC)故本答案为:2或6-【点睛】考查了黄金分割点的概念,能够根据黄金比进行计算.18.12≤k≤2【详解】根据题意结合图形可知,在与该正方形有公共点的直线中,直线l1解析式中的k值最大,直线l2解析式中的k值最小.由图可知,直线l1过点A(1, 2),直线l2过点C(2, 1).将点A的坐标代入解析式y=kx,得21k=⋅,∴k=2.将点C的坐标代入解析式y=kx,得12k=⋅,∴12 k=.∴k的取值范围是12 2k≤≤.故本题应填写:12 2k≤≤.点睛:本题考查了一次函数的图象和性质的相关知识. 在一次函数的解析式中,k的绝对值越大,相应的直线就越靠近y轴,反之则越靠近x轴. 本题考查的一个重点在于利用上述结论确定k的值最大和最小时直线的位置. 另外,通过正比例函数与图象之间的关系确定正比例函数解析式也是本题考查的重点.19.3【分析】设AB=xm,利用x表示出坝高DE和AD、BC的长,利用x表示梯形的面积,然后利用函数的性质即可求解.【详解】解:设AB=x,则AD=4-2x,∵DE⊥BC,∠C=60°,∴在直角△DCE中,DE=CD•sin∠,CE=12CD=12x,则BC=x+AD=x+(4-2x)=4-x,则梯形ABCD的面积y=12(AD+BC)•DE=12(4-x+4-2x)•2x,即y=-4x2,则当4⎝⎭=43时,y取得最大值是,此时y=-4×(43)2×43=4;∴×43.【点睛】本题考查等腰梯形的计算和二次函数等知识,考查求函数的解析式和求函数的最值问题,求最值的问题常用的方法是转化为函数的问题求解.20.9:25【分析】根据平行线分线段成比例定理求出AE:AC=AD:AB=3:8,求出AE:CE=3:5,根据平行线的性质得出∠A=∠EFC,∠AED=∠C,根据相似三角形的判定得出△ADE∽△EFC,根据相似三角形的性质得出即可.【详解】解:∵DE∥BC,AD:AB=3:8,∴AE:AC=AD:AB=3:8,∴AE:CE=3:5,∵DE∥BC,EF∥AB,∴∠A=∠EFC,∠AED=∠C,∴△ADE ∽△EFC , ∴ADE EFC S S ∆∆=(AE CF )2=(35)2=925, 故答案为9:25.【点睛】本题考查了相似三角形的性质和判定,平行线分线段成比例定理的应用,能灵活运用定理进行推理是解此题的关键,注意:相似三角形的面积之比等于相似比的平方.21.见解析.【解析】【分析】利用相似三角形的性质,对应边的相似比相等,对应角相等,可以让各边长都放大一倍,得到新三角形.本图形的答案不唯一,只要是相似三角形,都在格点上就正确.【详解】解:ABD 就是所求.【点睛】本题主要考查了相似三角形的画法,注意做这类题时的关键是对应边相似比相等,对应角相等.22.70AED ∠=.【分析】根据三角形内角和定理求出∠ACB=70°,根据相似三角形的性质得出AB AC =AD AE ,∠BAD=∠CAE ,求出AB AD =AC AE,∠BAC=∠DAE ,推出△BAC ∽△DAE ,根据相似三角形的性质得出∠AED=∠ACB 即可.【详解】解:∵50ABC ∠=,60BAC ∠=,∴18070ACB ABC BAC ∠=-∠-∠=,∵ABD ACE ∽, ∴AB AD AC AE=,BAD CAE ∠=∠, ∴AB AC AD AE =,BAD DAC CAE DAC ∠+∠=∠+∠, ∴BAC DAE ∠=∠,∴BAC DAE ∽,∴AED ACB ∠=∠,∴70AED ∠=.【点睛】本题考查了相似三角形的性质和判定,三角形的内角和定理的应用,解此题的关键是求出△BAC ∽△DAE .23.证明见解析.【分析】首先由∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,可得∠BDE=∠ECF ,又由∠F 是公共角,即可证得△ECF ∽△BDF ,根据相似三角形的对应边成比例,可得EF :BF=CF :DF ,继而证得:△FDC ∽△FBE .【详解】证明:∵180BDE BCE ∠+∠=,180ECF BCE ∠+∠=,∴BDE ECF ∠=∠,∵F ∠是公共角,∴ECF BDF ∽,∴::EF BF CF DF =,即::EF CF BF DF =,∵F ∠是公共角,∴FDC FBE ∽.【点睛】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.(1)12y x=;(2)223y x x =-++;(3)m 的范围:26m <≤, 【分析】 (1)将点(3,4)代入反比例函数的解析式即可求出k 的值.(2)求出点B 的坐标,然后将B 与C 的坐标代入即可求出抛物线的解析式即可求出b 与c 的值.(3)令x=2和-2代入反比例函数中求出相应的点坐标,然后将两点的坐标代入y=-x2+2x+m 中求出m 的值【详解】解:()1∵反比例函数k y x =过()3,4A , ∴12k =, ∴12y x= ()2∵点B 与点A 关于直线2y =对称,∴()3,0B .∵抛物线2y x bx c =-++过点B 和()0,3C∴9303b c c -++=⎧⎨=⎩∴23b c =⎧⎨=⎩∴223y x x =-++()3反比例函数的解析式:12y x= 令2x =-时,6y =-,即()2,6--令2x =时,6y =,即()2,6当22y x x m =-++过点()2,6--时,2m = 当当22y x x m =-++过点()2,6时,6m = ∴22y x x m =-++在22x -≤<的部分与12y x=无公共点时,此时m 的范围:26m <≤,本题考查二次函数的综合问题,解题的关键是求出相关点的坐标,然后利用待定系数法求出系数的值,本题属于中等题型.25.证明见解析.【分析】要证明结论成立,只要证明△AFC ∽△BFA 即可,根据题目中的条件,可以找到两个三角形相似的条件,从而可以解答本题.【详解】证明:连接AF ,∵AD 是角平分线,∴BAD CAD ∠=∠,又∵EF 为AD 的垂直平分线,∴AF FD =,DAF ADF ∠=∠,∴DAC CAF B BAD ∠+∠=∠+∠,∴CAF B ∠=∠,∵AFC AFC ∠=∠,∴ACF BAF ∽,即CF AF AF BF=, ∴2AF CF BF =⋅,即2FD CF BF =⋅.【点睛】本题考查相似三角形的性质、线段垂直平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.26.旗杆AB 的高度是18 m .【分析】先得出△ABE ∽△EDC ,再由相似三角形的对应边成比例即可得出AB 的值.解:在Rt △ABE 和Rt △CED 中,∵∠ABE=∠CDE=90°,∠AEB=∠CED ,∴△ABE ∽△CED . ∴AB CD =BE ED. ∵BE=27m ,DE=2.4m ,CD=1.6m , ∴1.6AB =272.4, ∴AB=18.答:旗杆AB 的高度是18 m .【点睛】本题考查的是相似三角形在实际生活中的应用,熟知相似三角形的对应边成比例是解答此题的关键.。

沪科版九年级上册数学期中考试试题有答案

沪科版九年级上册数学期中考试试题有答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案) 1.二次函数2y x =的对称轴是 A .直线y 1= B .直线x 1=C .y 轴D .x 轴2.若34y x =,则x yx+的值为( ) A .1B .47C .54D .743.已知二次函数y=(x-1)2-3,则此二次函数( ) A .有最大值1 B .有最小值1 C .有最大值-3 D .有最小值-34.将抛物线2y x 向右平移2个单位,再向下平移1个单位,则平移后抛物线的顶点坐标是( ) A .(2,1)B .(2,-1)C .(-2,-1)D .(-2,1)5.如图,线段,BD CE 相交于点,//A DE BC .若4,2, 1.8AB AD AE ===,则AC 的长为( )A .3B .3.2C .3.6D .46.如图,在平面直角坐标系中有()()1,1,3,1A B 两点,如果抛物线()20y ax a =>与线段AB 有公共点,那么a 的取值范围是( )A .1a ≥B .01a <≤C .109a <≤D .119a ≤≤7.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .458.心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c (a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为( )A .8minB .13minC .20minD .25min9.在平面直角坐标系中,点P 的坐标()0,2,点Q 的坐标为391,44()(t t t ---为实数),当PQ 长取得最小值时,t 的值为( )A .75-B .125-C .3D .410.一次函数y =kx +b 的图象与反比例函数()0m y x x=>的图象交于A (2,1),B (12,n )两点,则n ﹣k 的值为( ) A .2 B .﹣2 C .6 D .﹣6二、填空题11.如图,在ABC 中,//DE BC ,若12AD BD =,则DEBC=_____.12.某水果店销售一批水果,平均每天可售出40kg ,每千克盈利4元,经调查发现,每千克降价0.5元,商店平均每天可多售出10kg 水果,则商店平均每天的最高利润为______________ 元13.如图,在x 轴上方,平行于x 轴的直线与反比例函数1k y x =和2ky x=的图象分别交于A B 、两点,连接OA OB 、.若AOB 的面积为6,则21k k -= __________.14.已知二次函数2( y x mx m m =-++为常数),当24x -≤≤时,y 的最大值是15,则m 的值是__________.15.已知234a b c==,则2332a b c a b c-+-+=_____. 16.如图,函数y =1x 和y =﹣3x的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则△PAB 的面积为_____.三、解答题17.抛物线()2y a x h =+的顶点为(20)-,,它的形状与23y x =相同,但开口方向与之相反.(1)直接写出抛物线的解析式 ; (2)求抛物线与y 轴的交点坐标.18.如图,正方形ABCD 对角线的交点在平面直角坐标系的原点,且边与坐标轴平行或垂直,AB=4.(1)如果反比例函数ky x=的图象经过点A ,求这个反比例函数的表达式; (2)如果反比例函数ky x=的图象与正方形ABCD 有公共点,请直接写出k 的取值范围.19.如图,在ABC 中,,D E 分别是边,AB AC 上的点,连接DE ,且60,50A ADE ∠=︒∠=,70B ∠=︒.()1求证:ADE ACB ;()2如果E 是AC 的中点,810,AD AB ==,求AE 的长,20.已知:ABC 中,边AB 及AB 边上的高CD 的和为40cm .()1请直接写出ABC 的面积()2S cm与边AB 的长()x cm 之间的函数关系式(不要求写出自变量x 的取值范围);()2当x 是多少时,这个三角形面积S 最大?最大面积是多少?21.如图,在ABC 中,90,5,CAB AB AC P ∠=︒==是ABC 内一点,且.PAB PBC PCA ∠=∠=∠()1求APC ∠的度数; ()2求PAC 的面积.22.已知:AD AE 、分别是ABC 内角和外角平分线.()1则DAE ∠的度数=_ ; ()2求证:BE ABCE AC=; ()3作BF AD ⊥,交AD 延长线于,F FC 的延长线交AE 于G ,求证:AG GE =.23.定义: 在平面直角坐标系中,如果点(),M m n 和(),N n m 都在某函数的图象l 上,则称点M N 、是图象l 的一对“相关点”.例如,点(12)M ,和点1(2)N ,是直线3y x =-+的一对相关点.()1请写出反比例函数6y x=的图象上的一对相关点的坐标; ()2如图,抛物线2y x bx c =++的对称轴为直线1x =,与y 轴交于点()0,1C -.①求抛物线的解析式:②若点M N 、是抛物线2y x bx c =++上的一对相关点,直线MN 与x 轴交于点1,0A ,点P 为抛物线M N 、上之间的一点,求PMN 面积的最大值.24.如图,两个反比例函数y =k x 和y =2x在第一象限内的图象分别是C 1和C 2,设点P (1,4)在C 1上,P A ⊥x 轴于点A ,交C 2于点B (1,m ),求k ,m 的值及△POB 的面积.25.如图,△ABC∽△ADE,AB=30 cm,BD=18 cm,BC=20 cm,∠BAC=75°,∠ABC=40°.(1)求∠AED的度数.(2)求DE的长.参考答案1.C【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).2.D【详解】∵34yx,∴x y x +=434+=74, 故选D 3.D 【解析】试题解析:∵a=1>0,∴二次函数y=(x-1)2-3有最小值-3. 故选D .考点:二次函数的最值. 4.B 【解析】 【分析】直接根据二次函数图象平移的法则即可得出结论. 【详解】解:根据“上加下减,左加右减”的法则可知,将抛物线2y x =向右平移2个单位,再向下平移1个单位所得抛物线的表达式是22y x ()=--1. 所以平移后抛物线的顶点坐标是(2,-1). 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键. 5.C 【分析】根据相似三角形的性质与判定即可求出答案. 【详解】 解:∵DE ∥BC , ∴△ABC ∽△ADE , ∴AB ACAD AE=, ∴42 1.8AC =,∴AC=3.6,故选:C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.6.D【分析】分别把A、B点的坐标代入y=ax2得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把A(1,1)代入y=ax2得a=1,把B(3,1)代入y=ax2得a=19,所以a的取值范围为11 9a≤≤.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.7.C【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB=DFDB,EFCD=BFBD,从而可得EFAB+EFCD=DFDB+BFBD=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB=DFDB,EFCD=BFBD,∴EF AB +EF CD =DF DB +BF BD =BDBD=1. ∵AB=1,CD=3,∴1EF +3EF=1, ∴EF=34.故选C. 【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键. 8.B 【分析】先利用条件求出解析式,再变式求出最值即可解答. 【详解】解:已知满足函数关系s =at 2+bt +c (a ≠0), 根据图像可知经过(0,43),(20,55),(30,31), 将已知点代入解析式得s =-0.12t +2.6t +43, 根据函数性质得t =- 2.620.1()⨯-=13时,s 最大,故选B. 【点睛】本题主要考察求函数最值,可利用配方法,公式法等. 9.A 【分析】由两点间的距离公式可得出PQ 2关于t 的二次函数关系式,利用配方法结合二次函数的性质即可得出当PQ 取最小值时t 的值. 【详解】解:由两点间的距离公式可知:PQ 2=(t-1)2+(34-t-94-2)2=2516(t+75)2+16,∵2516>0,∴当t=75-时,PQ2最小.故选:A.【点睛】本题考查了两点间的距离公式以及二次函数的性质,解题的关键是找出PQ2关于t的二次函数关系式.10.C【分析】把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出n 的值,把A、B的坐标代入一次函数y=kx+b即可求出k的值.【详解】解:∵把A(2,1)代入y=mx得:m=2,∴反比例函数的解析式是y=2x,∵B(12,n)代入反比例函数y=2x得:n=4,∴B的坐标是(12,4),把A、B的坐标代入一次函数y1=kx+b,得2114 2k bk b+=⎧⎪⎨+=⎪⎩,解得:k=﹣2,∴n﹣k=4+2=6,故选:C.【点睛】本题是一次函数和反比例函数的综合题,解答关键是应用待定系数法确定函数关系式.11.1 3【分析】由//DE BC,可知:ABC ADE,列出比例式,即可得到答案. 【详解】∵//DE BC ,∴ABC ADE , ∴DE AD BC AB=, ∵12AD BD =, ∴1=3DE AD BC AB =, 选答案是:13. 【点睛】本题主要考查相似三角形的判定和性质定理,根据相似三角形的性质,列出比例式是解题的关键.12.180【分析】设每千克降价x 元,先用含x 的式子表示出每天的销售量,再设商店平均每天的利润为w 元,根据每千克的盈利乘以销售量等于利润,写出关于x 的函数,写成顶点式,根据二次函数的性质,可得答案.【详解】解:设每千克降价x 元,由题意得每天的销售量为: 40+0.5x ×10=(40+20x )千克, 设商店平均每天的利润为w 元,由题意得:w=(4-x )(40+20x )=-20x 2+40x+160=-20(x-1)2+180,∵二次项系数为-20<0,∴当x=1时,w 取得最大值180元.故答案为:180.【点睛】本题考查了二次函数在销售问题中的应用,理清题中的数量关系,正确列出函数关系式并明确二次函数的相关性质,是解题的关键.13.12【分析】根据AB ∥x 轴,设A (x ,1k x ),B (21k x k ,1k x),得到AB=21k x k -x ,根据△AOB 的面积为6,列方程即可得到结论.【详解】解:∵AB ∥x 轴,∴设A (x ,1k x ),B (21k x k ,1k x ), ∴AB=21k x k -x , ∵△AOB 的面积为6, ∴12(21k x k -x )×1k x=6, ∴k 2-k 1=12,故答案为:12.【点睛】本题考查的是反比例函数的性质以及反比例函数图像上的点,解题的关键是将A 和B 的坐标表示出来,从而得到△AOB 的面积的代数式.14.6和19【分析】根据题目中的函数解析式和当-2≤x≤4时,y 的最大值是15,利用分类讨论的方法可以求得m 的值,本题得以解决.【详解】解:二次函数y=-x 2+mx+m=-(x-2m )2+24m +m , 当4<2m 时,即m >8, 在-2≤x≤4时,x=4时取得最大值,则15=-42+4m+m ,得m=6.2(舍去); 当2m <-2时,即m <-4, 在-2≤x≤4时,x=-2时取得最大值,则15=-22-2m+m ,得m=-19, 当-2≤2m ≤4时,即-4≤m≤8,在-2≤x≤4时,x=2m 时取得最大值,则15=24m +m ,得m 1=6,m 2=-10(舍去), 由上可得,m 的值是6和19-,故答案为:6和19-.【点睛】本题考查考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.15.134【分析】 设234abck ===,然后表示出a ,b ,c ,再进行化简即可.【详解】 解:设234abck ===.则根据比例的性质,得a =2k ,b =3k ,c =4k , ∴2332a b c a b c -+-+=2233432234k k kk k k ⨯-+⨯⨯-⨯+=134; 故答案为:134.【点睛】本题考查了比例的性质,熟练掌握设k 法是解题的关键.16.8【详解】解:∵点P 在y =1x 上,∴|x p |×|y p |=|k |=1,∴设P 的坐标是(a ,1a )(a 为正数),∵P A ⊥x 轴,∴A 的横坐标是a ,∵A 在y =﹣3x 上,∴A 的坐标是(a ,﹣3a ),∵PB ⊥y 轴,∴B 的纵坐标是1a , ∵B 在y =﹣3a上, ∴代入得:1a =﹣3x, 解得:x =﹣3a ,∴B 的坐标是(﹣3a ,1a ), ∴P A =|1a ﹣(﹣3a )|=4a,PB =|a ﹣(﹣3a )|=4a , ∵P A ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴P A ⊥PB ,∴△P AB 的面积是:12P A ×PB =12×4a×4a =8. 故答案为8.【点睛】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P 点的坐标得出A 、B 的坐标,本题具有一定的代表性,是一道比较好的题目. 17.(1)()232y x =-+;(2)(0)12-,【分析】(1)由抛物线y=a (x+h )2的顶点为(-2,0),得出h=2,抛物线y=a (x+h )2的形状与y=3x 2的相同,开口方向相反,得出a=-3,从而确定该抛物线的函数表达式;(2)根据图象上点的坐标特征求得即可.【详解】解:(1)∵抛物线y=a (x+h )2的顶点为(-2,0),∴-h=-2,∴h=2,抛物线y=a (x+h )2的形状与y=3x 2的相同,开口方向相反,∴a=-3,则该抛物线的函数表达式是y=-3(x+2)2;(2)当0x =时,()230212y =-+=-, ∴抛物线与y 轴的交点坐标为(0)12-,.【点睛】主要考查了待定系数法求二次函数的解析式.要求掌握二次函数图象的性质,并会利用性质得出系数之间的数量关系进行解题.18.(1)4y x =;(2) ()204k <≤或40k -≤< 【分析】(1)根据题意得出A 的坐标,然后根据待定系数法即可求得;(2)根据A 、B 、C 、D 的坐标,结合图象即可求得.【详解】解:(1)由题意,得()2,2A , 反比例函数k y x=的图象经过点A , 224k ∴=⨯=,∴反比例函数的表达式4y x=; (2)由图象可知: 当反比例函数刚好经过A 和C ,或B 和D 时,k 分别为4和-4,k≠0, 则如果反比例函数k y x=的图象与正方形ABCD 有公共点, k 的取值范围是04k <≤或40k -≤<.【点睛】本题考查了待定系数法求反比例函数的解析式,正方形的性质以及反比例函数的图象,根据图象得出正方形各点的坐标是解题的关键.19.(1)见解析;(2)AE =【分析】(1)由条件得出B AED ∠=∠,根据相似三角形的判定即可求出证.(2)由于点E 是AC 的中点,设AE=x ,根据相似三角形的性质可知AD AE AC AB=,从而列出方程解出x 的值.【详解】解:(1)证明:60,50A ADE ∠=︒∠=︒180605070AED ∴∠=︒-︒-︒=︒,70B ∠=︒,B AED ∴∠=∠,A A ∠=∠,ADE ACB ∴;(2)由(1)知ADE ACB ,AD AE AC AB∴=, 点E 是AC 的中点,设AE x =,22AC AE x ∴==,8,10AD AB ==,8210x x ∴=,解得x =(负值舍去) .AE ∴=【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.20.(1)21202S x x =-+;(2)当x 为20cm 时,三角形面积最大,最大面积是2200cm 【分析】(1)S=12x ×这边上的高,把相关数值代入化简即可; (2)结合(1)得到的关系式,利用公式法求得二次函数的最值即可.【详解】解:(1)由题意可得:()21114020222S AB CD x x x x =⨯=⨯⨯-=-+; (2)102a =-<, S ∴有最大值,当2b x a =-=20122-⎛⎫⨯- ⎪⎝⎭=20时,S 有最大值为212020202002S =-⨯+⨯=, ∴当x 为20cm 时,三角形面积最大,最大面积是2200cm .【点睛】本题考查二次函数的应用,掌握二次函数的最值求法是解决本题的关键.21.(1)90°;(2)5【分析】(1)根据PCA PAB ∠=∠,利用余角的性质求解;(2)证明ABP BCP ,得到2PA PB AB PB PC BC ===,设PA 为x ,将相应边表示出来,根据AC=5求出x ,即可计算△PAC 的面积.【详解】解:(1)180APC PAC PCA ∠=︒-∠-∠,PCA PAB ∠=∠,180APC PAC PAB ∴∠=︒-∠-∠90=︒;(2)在等腰直角ABC 中,45ABC ACB ∴∠=∠=︒PAB PBC PCA ∠=∠=∠,ABP BCP ∴∠=∠,∴ABP BCP ,∴PA PB AB PB PC BC ===, 设PA x =,PB =,则2, PC x AC ==,5AC =,x ∴=221252PAC S x x x ∴=⋅===.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,解题的关键是正确寻找相似三角形,证明∠APC=90°是本题的突破点,属于中考常考题型.22.(1)90°;(2)见解析;(3)见解析【分析】(1)根据角平分线的定义和邻补角的定义即可解得;(2)过点C作CN∥AB交AE于点N,如图,易证CA=CN.由CN∥AB可得△ECN∽△EBA,则有BE BACE CN=,由CA=CN可得BE ABCE AC=;(3)分别延长BF、AC交于点H,证明△ABF≌△AHF,可得BF=HF,证明△BCF∽△ECG,△ACG∽△HCF,可得比例线段,则结论得证.【详解】解:(1)∵AD、AE分别是△ABC中∠A内角的平分线和外角平分线,∴∠DAE=∠DAC+∠EAC=12∠BAC+12∠CAF=12(∠BAC+∠CAF)=12×180°=90°.故答案为:90°;(2)证明:过点C作//CN AB交AE于点N,如图1,则有HAE ANC∠=∠.HAE CAE∠=∠,ANC CAE∴∠=∠,CA CN∴=.//CN AB,ECN EBA ∴∆∆∽, ∴BE BA CE CN =, ∴BE AB CE AC=; (3)如图2,分别延长BF 、AC 交于点H ;AD 为ABC ∆的角平分线,BAF HAF ∴∠=∠;在ABF ∆与AHF ∆中,BAF HAF AF AFAFH AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABF AHF ASA ∴∆≅∆,BF HF ∴=;BH AF ⊥,AE AF ⊥,//BH AE ∴,BCF ECG ∴∆∆∽,ACG HCF ∆∆∽, ∴CG GE CF BF =,CG AG CF FH =, ∴GE AG BF FH=, ∵BF HF =,GE AG ∴=.【点睛】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,添加平行线构造相似三角形是解题的关键.23.(1)()2,3,(32),;(2)①221y x x =--;②278【分析】(1)xy=6,当x=2时,y=3,当x=3时,y=2,即可求解;(2)①根据C (0,-1)求得c ,根据x=-1,函数对称轴为:x=-2b a =-1,解得:b=-2,即可求解;②由“相关点”的定义,可得直线MN 的表达式,求出点M 、N 的坐标,将△PMN 面积利用S=12×PQ×(x M -x N )表示出来即可求解. 【详解】解:(1)xy=6,当x=2时,y=3,当x=3时,y=2,故答案为:(2,3)和(3,2);(2)①∵抛物线2y x bx c =++的对称轴为直线1x =,121b ∴-=⨯,解得2b =-, 抛物线2y x bxc =++与y 轴交于点(01)C -,, 1c ∴=-,∴抛物线的解析式为221y x x =--;②由相关点定义得,点M N ,关于直线y x =对称. 又直线MN 与x 轴交于点1,0A ,∴直线MN 的解析式为1y x =-+.代入抛物线的解析式221y x x =--中,并整理,得220x x --=,解得,11x =-,22x =M N ∴,两点坐标为(2)1-,和(12)-,. 设点P 的横坐标为x ,则点22()1P x x x --,,过P 作PQ x ⊥轴交直线MN 于Q 点,则Q 点坐标为(), 1 x x -+,()()211212PMN M N S x x x x x =⨯-⨯-⎦+---⎡⎤⎣ ()21322x x =⨯⨯-++ 23127228x ⎛⎫=--+ ⎪⎝⎭, 即当12x =时,PMN 的面积最大,最大值为278. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,这种新定义类的题目,通常按照题设的顺序逐次求解较为容易.24.k=4,m=2,POB S1=. 【详解】试题分析:将点P 的坐标代入C 1的解析式即可求出k 的值;将点B 的横坐标代入C 2的解析式即可求出m 的值;S △POB =S △POA -S △BOA ,由反比例函数k 的几何意义可以分别求出S △POA 、S △BOA 的值.试题解析:∵P (1,4),∴k =4;∵B (1,m ),C 2解析式为:y =2x ,∴m =2;S △POB =S △POA -S △BOA =2-1=1.点睛:掌握反比例函数k 的几何意义.25.(1)65°(2)8【详解】试题分析:(1)∵75,40BAC ABC ∠∠=︒=︒∴65ACB ∠=︒∵△ABC ∽△ADE∴65AED ACB ∠=∠=︒(2) ∵30cm,18cm AB BD ==∴12cm AD =又∵△ABC ∽△ADE ∴AD DE AB BC = 即:123020DE = ∴8cm DE =.【点睛】本题考查相似三角形,掌握相似三角形的性质是解本题的关键,所以要求考生对相似三角形的性质要熟悉.。

沪科版九年级上册数学期中考试试卷有答案

沪科版九年级上册数学期中考试试卷有答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.抛物线2(1)2y x =+-的对称轴是直线( )A .x =-2B .x =-1C .x =2D .x =1 2.若13a b b -=,则a b =( ) A .13 B .23 C .43 D .533.将抛物线23y x =分别向下、向右平移1个单位,所得抛物线的解析式为( ) A .23(1)1y x =-- B .23(1)1y x =+- C .23(1)1y x =-+ D .23(1)1y x =++ 4.若ABC A B C '∆'∆'∽,相似比为1:2,则ABC ∆与A B C ∆'''的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:1 5.如图所示,在长为8 cm ,宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C .8 cm 2D .16 cm 2 6.二次函数2y ax bx =-(其中a <0,b >0)的大致图象是下图中的( ) A . B . C . D . 7.如图,抛物线2y ax bx c =++的对称轴为直线x =-1,与y 相交于(0,-6),则关于x 的方程260ax bx c +++=的解为( )A .120x x ==B .10x =,22x =-C .10x =,21x =-D .12x =-,21x =8.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中不能判定△ADE 与△ABC 相似的是( )A .AD AE DB EC = B .AE AD AB AC = C .DB AB EC AC = D .AD DE AB BC = 9.如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC ︰BC =3︰4,则BD ︰CE 为( )A .5︰3B .4︰3C 2D .210.如图,在△ABC 中,∠B =90°,AB =8,BC =4,将△ABC 折叠,使点A 的对应点A ′落在BC 边上,折痕为DE .若AD 的长为y ,A ′B 的长为x ,那么y 与x 之间的关系图象大约是( )A .B .C .D .二、填空题11.二次函数221y x x =-+的最小值是________.12.已知A (1x ,1y )和B (2x ,2y )是反比例函数2y x=-的图象上两点,若120x x >>,则y 1与y 2的大小关系是________. 13.如图,为测量小河两岸A 、B 两点之间的距离,在小河一侧选出一点C 观测A 、B 两点,并使∠ACB =90º,若CD ⊥AB ,垂足为D ,测得AD =10m ,AC =24m ,根据所测得的数据可算出A 、B 之间的距离是________m .14.如图,已知△ABC 中,∠C =90°,∠A =30°,AB =11,点E 、F 分别在AB 、AC 上,沿EF 折叠△ABC ,点A 的对应点为点A ′,A ′E 、A ′F 交BC 于点M 、N .若AE =8,当△A ′MN 与△ABC 相似时,则AF =________.三、解答题15.二次函数的图象的顶点坐标是(-2,3),它与y 轴交点的坐标是(0,-3),求这个二次函数的解析式.16.如图所示,已知平行四边形ABCD ,E 是BC 延长线上的一点,连接AE 交CD 于点F ,若AB =3,AF =4,DF =2时,求AE 的长.17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点P .(1)以A 点为位似中心,将△ABC 在网格中放大成△AB 1C 1,使11B C BC=2,请画出△AB 1C 1; (2)以P 点为三角形的一个顶点,请画一个格点△PMN ,使△PMN ∽△ABC ,且相似比为18.有一辆载有长方体形状集装箱的货车想通横截面为抛物线的隧道,如图所示,已知隧道底部宽AB为4 m,高OC为 3.2 m,集装箱的宽与货车的宽都是2.4 m,集装箱顶部离地面2.1 m.这辆货车能通过这个隧道吗?请说明理由.19.三角形纸片ABC中,∠C=90°,AC=1,BC=2.按图①的方式在这张纸片中剪去一个尽可能大的正方形,称为第1次剪取,记余下的两个三角形面积和为S1;按图②的方式在余下的Rt△ADF和Rt△BDE中,分别剪去尽可能大的正方形,称为第2次剪取,记余下的两个三角形面积和为S2;继续操作下去…….(1)如图①,求CEBC和S1的值;(2)第n次剪取后,余下的所有三角形面积之和S n为________.20.如图,一次函数y=kx+2的图象与反比例函数y=mx的图象交于点P,点P在第一象限.P A⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,12OC OA =. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.21.某商场销售同型号A 、B 两种品牌节能灯管,它们进价相同,A 品牌售价可变,最低售价不能低于进价,最高利润不超过4元,B 品牌售价不变.它们的每只销售利润与每周销售量如下表:(售价=进价+利润)(1)当A 品牌每周销售量为300只时,B 品牌每周销售多少只?(2)A 品牌节能灯管每只利润定为多少元时?可获得最大总利润,并求最大总利润. 22.如图,已知在ABC 中,4AB =,8BC =,D 为BC 边上一点,2BD =.(1)求证:ABD CBA ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.23.如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点B 出发,在BA边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)若△BPQ 与△ABC 相似,求t 的值;(2)当t 为何值时,四边形ACQP 的面积最小,最小值是多少?(3)连接AQ ,CP ,若AQ ⊥CP ,求t 的值.参考答案1.B【解析】令10,x += 解得x=-1,故选B.2.C【解析】13a b b -=,141,33a ab b -== .故选C. 3.A【解析】根据上加下减常数项,左加右减自变量的平移规则,得23y x =分别向下、向右平移1个单位,所得抛物线的解析式为()2311y x =--.故选A.4.C【详解】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵ABC A B C '∆'∆'∽,相似比为1:2,∴ABC ∆与A B C ∆'''的面积的比为1:4.故选C.考点:相似三角形的性质.5.C【详解】设留下矩形的宽为x cm ,∵留下的矩形(图中阴影部分)与原矩形相似, ∴448x =, 解得2x =则留下矩形的面积为2248(cm )⨯= .故选C.6.D【分析】根据二次函数的系数与图像的关系进行判断即可得解【详解】由于a<0,则抛物线的开口向下;由于a <0,b >0,则对称轴为直线x=-02b a--< , 故选D.7.B【解析】由于抛物线2y ax bx c =++的对称轴为直线x =-1,与y 相交于(0,-6),则其关于直线x =-1的对称点是(-2,-6).2 60ax bx c +++=即26ax bx c ++=-的解为10x =,22x =-,故选B.【方法点睛】本题目是一道二次函数与二次方程的关系及二次函数的对称性,重点是数形结合思想,260ax bx c +++=将变形为26ax bx c ++=-,即当2y ax bx c =++的函数值等于-6时对应的自变量的值.根据二次函数图像,即可得出答案.8.D【解析】由题意得:A ∠ 是两者的公共角,A. AD AE DB EC= ,得DE BC ∥ ,得△ADE △ABC ; B. AE AD AB AC =,得出△ADE △ACB ;C. DB AB EC AC=,得DE BC ∥ ,得△ADE △ABC ; D. AD DE AB BC=,无法判断.故选D. 9.A【详解】因为∠ACB =90°,AC ︰BC =3︰4,则53AB AC =因为∠ACB =∠AED =90°,∠ABC =∠ADE ,得△ABC △ADE ,得AB AC AD AE = ,,DAE BAC DAB EAC ∠=∠∠=∠则 ,则DABEAC ∆∆,53BD AB CE AC == .故选A. 10.B【解析】 AD 的长为y ,A ′B 的长为x ,则DB=8-y,在Rt ∆ A ′BD 中,利用勾股定理,得222(8)y x y =+- 解得:26416x y += ,故选B. 11.0.【解析】221y x x =-+=2(1)x - ,故当x=1时,y 的最小值为0.12.12y y >.【分析】根据反比例函数的增减性质即可判断结论.【详解】解:由题意得:k<0,所以在每个一象限,y 随x 的增大而增大,若120x x >>,则 12y y >.故答案为12y y >13.57.6【分析】证△ACD ∽△ABC 得AC AD AB AC =,将相关数据代入计算可得. 【详解】解:∵∠ACB=90°、CD ⊥AB ,∴∠ACB=∠ADC=90°,∴∠A+∠B=∠A+∠ACD=90°,则∠B=∠ACD ,∴△ACD ∽△ABC , ∴AC AD AB AC=,即2410,24AB = 解得:AB=57.6(m ),故答案为:57.6.【点睛】本题主要考查相似三角形的应用,解题的关键是掌握相似三角形的判定与性质.14.8.【解析】分类讨论:(1)若90AMN ∠=︒ ,则M 与C 重合,即A 、C 、A’共线,则90AFE ∠=︒,因为∠A =30°,cos cos30AF A AE ==︒, 即8AF =,解得AF =. (2)若90ANM ∠=︒ ,则90ENB ∠=︒ ,因为60B ∠=︒ ,30NEB ∠=︒ ,根据对折,则75AEF AFE ∠=∠=︒ ,则AF=AE=8.综上述,AF =8.15.22(2)33y x =-++. 【解析】【试题分析】依据条件,设成顶点式y =a (x +2)2+3,再将(0,-3)代入,得:4a +3=-3,解得:a =-23即二次函数的解析式为()22233y x =-++. 【试题解析】 设二次函数的解析式为y =a (x +2)2+3, 将(0,-3)代入,得4a +3=-3,解得a =-23, ∴二次函数的解析式为()22233y x =-++. 【方法点睛】本题目是一道求解二次函数解析式的问题,设二次函数解析式时,有三种表示方法——一般式,顶点式,交点式.知道顶点时,通常设成顶点式求解较简单.16.6【解析】【试题分析】CF =3-2=1.设EF 的长为x ,则AE =4+x ,平行四边形ABCD ,CF ∥AB ,根据平行线分线段成比例定理的推论,得△CEF ∽△BEA ,根据相似三角形的性质,得CF EF AB AE=,即AB ⋅EF =CF ⋅AE ,即3x =1×(4+x ),解得,x =2,则AE =4+x=4+2=6. 【试题解析】由题意得,CF =3-2=1.设EF 的长为x ,则AE =4+x∵CF ∥AB ,∴△CEF ∽△BEA , ∴CF EF AB AE=,即AB ⋅EF =CF ⋅AE , 则3x =1×(4+x ),解得,x =2,∴AE =6.17.(1)答案见解析;(2)答案见解析.【解析】【试题分析】(1)以A 为位似中心,欲使11B C BC=2,即1112BC B C = ,则△ABC 与△AB 1C 1的相似比为12 ,即延长AB 到B 1 ,使AB=BB 1,同样的方法,使AC=CC 1,因为A A ∠=∠ ,则△ABC △AB 1C 1,(2,利用勾股定理,分别找出来即可.【试题解析】(1)如图,△AB 1C 1即为所求(2)如图,△PMN 即为所求(注意PM 、PN 、MN 的长)。

沪科版九年级上册数学期中考试试题附答案

沪科版九年级上册数学期中考试试题附答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案) 1.下列函数中,不属于二次函数的是A .()()212+--=x x yB .22)2(--=x x yC .y=1-322x D .y=13)1(22-+x 2.抛物线()21y x =-与y 轴的交点坐标是( ) A .(0,1);B .(1,0);C .(0,-1);D .(0,0).3.下列函数中,在x >0时,y 随x 增大而减小的是 A .y=2x ﹣1B .y=﹣x 2+7x+C .y=﹣D .y=4.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( ) A .开口向下B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点5.如图,已知P 是△ABC 边AB 上的一点,连接CP ,以下条件中条件中不能判定△ACP ∽△ABC 的是( ).A .∠ACP=∠B B .∠APC=∠ACBC .2AC AP AB =⋅D .AC ABCP BC= 6.已知点A (1,n )在抛物线223y x x =+-上,则点A 关于抛物线对称轴的对称点坐标为A . ()0,3-B . ()2,3--C . ()3,0-D .()1,07.如图,在ABC 中,AB AC =,36A ∠=,BD 平分ABC ∠交AC 于点D ,若2AC =,则AD 的长是( )A .512- B .512+ C .51- D .51+8.已知二次函数2()y a x m n =-+的图象经过(0,5)、(10,8)两点.若0a <,010m <<, 则m 的值可能是.A .2B .8C .3D .521cnjy.c9.如图,过点O 作直线与双曲线y=(k≠0)交于A 、B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴上分别取点E 、F ,使点A 、E 、F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1、S 2的数量关系是( )A .S 1=S 2B .2S 1=S 2C .3S 1=S 2D .4S 1=S 210.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD=AG ,DG=6,则点F 到BC 的距离为.A .1B .2C .1226D .626二、填空题 11.若12a b =,则a b b+= . 12.如图,点A 是反比例函数图象上的一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上,若ABP 的面积为2,则该反比例函数的解析式为______.13.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下:则当5y <时,x 的取值范围是_______. 14.数学老师在小黑板上出道题目:已知二次函数,试添加一个条件,使它与x 轴交点的横坐标之积为2.学生回答:①二次函数与x 轴交点是(1,0)和(2,0);②二次函数与x 轴交点是(-1,0)和(-2,0);③二次函数与y 轴交点是(0,2);④二次函数与y 轴交点是(0,3). 则你认为学生回答正确的是________(填序号).15.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C ,AB=6,AD=4,求线段CD 的长.三、解答题16.将抛物线y=x 2平移,使其在x=t 时取最值t 2,并且经过点(1,1),求平移后抛物线对应的函数表达式。

沪科版九年级上册数学期中考试试卷带答案

沪科版九年级上册数学期中考试试卷带答案

沪科版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案,每小题3分,共30分)1.二次函数22y x =-图像的顶点坐标为( )A .(0,-2)B .(-2,0)C .(0,2)D .(2,0) 2.在反比例函数1k y x -=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k <0B .k >0C .k <1D .k >1 3.如果两个相似三角形的面积比是1:4,那么它们的周长比是( )A .1:16B .1:6C .1:4D .1:24.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC BC =2,则sin ∠ACD 的值为( )A B C D .235.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 6.如图,若123∠∠∠==,则图中的相似三角形有( )A .1对B .2对C .3对D .4对7.图中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点DC .点MD .点N8.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC a =,ACB α∠=,那么AB 等于( )A . sin a α⋅B . tan a α⋅C . cos a α⋅D . tan a α9.如图,△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,交BC 于点D ,那么AB AC CD-=( )A .sin ∠BACB .cos ∠BAC C .tan ∠BACD .tan ∠ABC 10.已知二次函数y =ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a ﹣b+c >1;③abc >0;④4a ﹣2b+c <0;⑤c ﹣a >1,其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤二、填空题 11.如图,若∠B=∠DAC ,则△ABC ∽_______,对应边的比例式是___________.12.已知点A 在反比例函数y =k x(k ≠0)的图象上,过点A 作AM ⊥x 轴于点M ,△AMO 的面积为3,则k =_____. 13.已知二次函数y=ax 2+bx+c (a≠0),其中a ,b ,c 满足a+b+c=0和9a ﹣3b+c=0,则该二次函数图象的对称轴是直线_____.14.如图,DE ∥BC ,EF ∥AB ,且S △ADE =4,S △EFC =9,则△ABC 的面积为_________15.已知函数22(1)m y m x -=-是反比例函数,则m 的值为___________.16.如图,AB ⊥BD ,CD ⊥BD ,AB=6cm ,CD=4cm ,BD=14cm ,点p 在BD 上移动,当PB= ______ 时,△APB 和△CPD 相似.三、解答题17.计算:(1)2sin 30°+cos 60°-tan 60°·tan 30°+cos 245°.5|+2·cos 30°+(13)-1+(9018.如图,△ABC 是一仓库的屋顶的横截面,若∠B=30°,∠C=45°,AC=2,求线段AB 的长.19.如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度(精确到1米).(供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4.)20.如图,已知点A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=m x图象的两个交点(1)求此反比例函数的解析式和点B的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.21.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA 边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB 相似?22.如图,在△ABC 中,∠CAB=120°,AD 是∠CAB 的平分线,AC=10,AB=8. (1)求CD DB;(2)求AD 的长.23.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:2240w x =-+,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题:(1)求y 与x 的关系式;(2)当x 取何值时,y 的值最大?(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?24.如图,P 、Q 分别是正方形ABCD 的边AB 、BC 上的点,且BP =BQ ,过点B 作PC 的垂线,垂足为点H ,连接HD 、HQ. (14分)(1)图中有________对相似三角形;(2)若正方形ABCD 的边长为1,P 为AB 的三等分点,求△BHQ 的面积;(3)求证:DH⊥HQ.25.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.参考答案1.A2.D3.D4.A5.A6.D7.A 8.B 9.C 10.C11.△DAC CD AD AC AC AB BC==12.±6.13.x=﹣1.14.25.15.-1.16.8.4cm或12cm或2cm 17.(1)1;(2)11.18.19.5米.20.(1)8yx=-,2y x=--;(2)40x-<<或2x>.21.当t=4或t=2时,△POQ与△AOB相似.22.(1)54;(2)409.23.(1)y=-2x2+340x-12000;(2)85;(3)7524.(1)4;(2)120()证明见解析.25.(1)证明见解析;(2)DF=。

沪科版九年级上册数学期中考试试卷及答案详解

沪科版九年级上册数学期中考试试卷及答案详解

沪科版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.抛物线2y 2(x 1)3=+-的顶点坐标是( )A .(13),-B .(13),C .(13)--,D .(13)-, 2.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位3.已知点A (1,-3)关于x 轴的对称点A'在反比例函数k y=x 的图像上,则实数k 的值为( )A .3B .13C .-3D .1-3 4.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h =-t 2+24t +1.则下列说法中正确的是( )A .点火后9 s 和点火后13 s 的升空高度相同B .点火后24 s 火箭落于地面C .点火后10 s 的升空高度为139 mD .火箭升空的最大高度为145 m5.已知()2y x t 2x 2=+--,当x 1>时y 随x 的增大而增大,则t 的取值范围是() A .t 0> B .t 0= C .t 0< D .t 0≥ 6.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE =3CE ,AB =8,则AD 的长为( )A .3B .4C .5D .67.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B 1C .3D .3:28.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .B .C .米D .7米9.已知一次函数y ax b =+与反比例函数c y x=的图象在第二象限有两个交点,且其中一个交点的横坐标为1-,则二次函数2y ax bx c =+-的图象可能是( )A .B .C .D . 10.图中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N二、填空题11.若35a b b -= ,则a b=_________. 12.已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程ax 2+bx+c=0的两个根的和为_____.13.如图所示,点C 在反比例函数k y (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB 的面积为1,则k 的值为______.14.已知抛物线21y ax bx a=+-与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)此抛物线的对称轴是直线______;(2)已知点11P ,2a ⎛⎫-⎪⎝⎭,()Q 2,2,若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是______.15.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .三、解答题16.九()1班数学兴趣小组经过市场调查,整理出某种商品在第x 天(1x 80≤≤且x 为正整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800.17.已知二次函数2y x bx c =++的图像经过点(4,3)和点(2,1)-,求该函数的表达式,并求出当03x 时,y 的最值.18.已知::2:3:4a b c =,且3215a b c +-=,求43a b c -+的值.19.如图,二次函数2y (x 2)m =++的图象与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y kx b =+的图象经过该二次函数图象上点()A 1,0-及点B .(1)求二次函数的解析式;(2)根据图象,写出满足2kx b (x 2)m +≥++的x 的取值范围.20.如图是反比例函数k y x=的图象,当4x 1-≤≤-时,4y 1-≤≤-.(1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值.21.如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,求3S :2S 的值.22.如图,函数的图象11y k x b =+与函数()220k y x x=>的图象交于点A (2,1)、B,与y 轴交于C (0,3)(1)求函数y 1的表达式和点B 的坐标;(2)观察图象,比较当x >0时y 1与y 2的大小.23.如图,开口向下的抛物线与x 轴交于点()1,0A -、(2,0)B ,与y 轴交于点(0,4)C ,点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.24.如图,两个反比例函数y=kx和y=2x在第一象限内的图象分别是C1和C2,设点P(1,4)在C1上,P A⊥x轴于点A,交C2于点B(1,m),求k,m的值及△POB的面积.参考答案与详解1.C【详解】解:直接根据顶点式得到抛物线2y 2(x 1)3=+-的顶点坐标是(13)--, 故选:C2.B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5), 故选B .【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.3.A【分析】先求出A'坐标,代入函数解析式即可求出k.【详解】解:点A (1,-3)关于x 轴的对称点A'的坐标为:(1,3),将(1,3)代入反比例函数k y=x, 可得:k=1×3=3, 故选A.【点睛】本题考查了反比例函数图像上点的坐标特征,根据对称的性质求出A'的坐标是解题关键. 4.D【详解】分析:分别求出t=9、13、24、10时h 的值可判断A 、B 、C 三个选项,将解析式配方成顶点式可判断D 选项.详解:A 、当t=9时,h=136;当t=13时,h=144;所以点火后9s 和点火后13s 的升空高度不相同,此选项错误;B 、当t=24时h=1≠0,所以点火后24s 火箭离地面的高度为1m ,此选项错误;C 、当t=10时h=141m ,此选项错误;D、由h=-t2+24t+1=-(t-12)2+145知火箭升空的最大高度为145m,此选项正确;故选D.点睛:本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.5.D【分析】可先求得抛物线的对称轴,再利用增减性可得到关于t的不等式,可求得答案.【详解】解:∵y=x2+(t−2)x−2,∴抛物线对称轴为x=−22t-,开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时y随x的增大而增大,∴−22t-≤1,解得t≥0,故选:D.【点睛】本题主要考查二次函数的性质,利用二次函数的增减性得到关于t的不等式是解题的关键.6.D【分析】先根据DE∥BC,得出△ADE∽△ABC,再由相似三角形对应边成比例可得出AD的长.【详解】∵AE=3CE∴AC=4CE∵DE∥BC,∴△ADE∽△ABC∴AD AE AB AC=∴3 84 AD CECE=∴AD=6 故选:D.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键,本题也可根据平行线分线段成比例定理求解.7.B【分析】根据折叠性质得到AF=12AB=12a,再根据相似多边形的性质得到AB ADAD AF=,即12a bb a=,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,∴AF=12AB=12a,∵矩形AFED与矩形ABCD相似,∴AB ADAD AF=,即12a bb a=,∴a∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.8.B【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A 的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+32,∴a=-3 50,∴大孔所在抛物线解析式为y=-350x2+32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-3625),∴-3625=m(x﹣b)2,∴x1,x2,∴MN=4,∴()|=4∴m=-925,∴顶点为A的小孔所在抛物线的解析式为y=-925(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-92, ∴-92=-925(x ﹣b )2,∴x 1,x 2,∴单个小孔的水面宽度=|)-(), 故选:B .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9.A【分析】根据一次函数与反比例函数的位置关系即可得到a ,b ,c 和0的大小关系,从而判断二次函数2y ax bx c =+-的图像走向即可.【详解】一次函数和反比例函数的两个交点在第二象限0a ∴>,0b >,0c <∴二次函数2y ax bx c =+-的图像开口向上,与y 轴交于正半轴,02b a-<,对称轴在y 轴左侧其中一个交点的横坐标为1- a b c ∴-+=-,即0a b c --=∴二次函数2y ax bx c =+-的图像与x 轴有一个交点为()1,0-,故选:A.【点睛】本题主要考查了通过一次函数和反比例函数的关系判断a 、b 、c 和0的大小关系;得到三者的相关特性是判断二次函数图像走势的关键.错因分析中等难度题.失分原因是:1.不会通过题干给出的一次函数和反比例函数的两个交点在第二象限得出a、b、c和0的大小关系;2.不会运用题干给出的其中一个交点的横坐标为得出a、b、c三者之间的关系.10.A【分析】连接其中的两对对应点,它们所在直线的交点即为位似中心.【详解】解:如图所示,连接两对对应点之后,它们的连线都经过点P,因此位似中心是点P;故选:A.【点睛】本题考查了位似图形、位似中心的概念,要求学生理解相关概念并能通过连线正确判断出位似中心,本题较基础,考查了学生对基础概念的理解与掌握.11.8 5【分析】直接利用已知进而变形得出a,b的关系.【详解】解:∵35 a bb-=∴3b=5a-5b,则5a=8b,∴85 ab=故答案为:85【点睛】 此题主要考查了比例的性质,正确将已知变形是解题关键.12.2【详解】解:根据函数的图像可知其对称轴为x=-2b a =1,解得b=-2a ,然后可知两根之和为x 1+x 2=-b a =2.故答案为:2【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x=-2b a ,然后根据一元二次方程的根与系数的关系x 1+x 2=-b a求解即可. 13.13.4【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为4.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.x 1= 1a 2≤-【分析】(1)直接根据抛物线的对称性即可求解;(2)根据二次函数的图象和性质即可求解.【详解】解:(1)∵抛物线过点A (0,1a -)和点B (2,1a -),由对称性可得,抛物线对称轴为 直线02x 12+==,故对称轴为直线x=1; 故答案为:x=1;(2)①当a>0时,则10a-<,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;也不可能同时经过点B 和点Q ,所以,此时线段PQ 与抛物线没有交点; ②当a<0时,则10a->,分析图象可得:根据抛物线的对称性,抛物线不可能同时经过点A 和点P ;但当点Q 在点B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,此时12a-≤即1a 2≤-. 综上所述,当1a 2≤-时,抛物线与线段PQ 恰有一个公共点. 故答案为:1a 2≤-. 【点睛】 此题主要考查抛物线的对称性、二次函数的图象和性质,正确理解性质是解题关键. 15.65【分析】 根据平行线分线段成比例定理,由AB ∥GH ,得出GH CH AB BC =,由GH ∥CD ,得出3GH BH BC=,将两个式子相加,即可求出GH 的长. 【详解】解://AB GH ,GH CH AB BC ∴=, 即2GH CH BC=①, //GH CD ,GH BH CD BC ∴=, 即3GH BH BC=②, ①+②, 得23GH GH CH BH BC BC +=+, CH BH BC +=,123GH GH ∴+=, 解得65GH =. 故答案为:65 【点睛】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中. 16.(1)()()y 2100x x 10=-+或()y 120100x =-;(2)第41天,利润最大,最大利润为7080元;(3)共有41天.【分析】(1)根据总利润等于单价减去成本再乘以件数即可;(2)按1≤x≤40和41≤x≤80时函数表达式求最大值即可;(3)按1≤x≤40和41≤x≤80时函数表达式y≥4800即可求解.【详解】解:(1)由题意得:()()y 2002x x 4030=-+-或()()y 2002x 9030=--, 即为()()y 2100x x 10=-+或()y 120100x =-;(2)当1x 40≤≤时,()()y 2x 10x 100=-+-,则函数对称轴为45x =, 故x 40=时,函数取得最大值为6000,当41x 80≤≤时,y 12000120x =-,函数在x 41=时,取得最大值为:7080, 故:第41天,利润最大,最大利润为7080元;(3)当1x 40≤≤时,()()y 2x 10x 1004800=-+-≥,解得:20x 70≤≤,20x 40≤≤,为21天,则函数对称轴为45x =,故x 40=时,函数取得最大值为4000,当41x 80≤≤时,y 12000120x 4800=-≥,x 60≤,即:41x 60≤≤,为20天, 故:共有41天.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在b x 2a=-时取得. 17.当x=0时,y 有最大值是3【分析】利用待定系数法求出二次函数的解析式,根据二次函数的性质求出最大值即可.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点(4,3),(3,0),∴1643930b c b c ++=⎧⎨++=⎩, 解得,43b c =-⎧⎨=⎩, ∴函数解析式为:y=x 2-4x+3,y=x 2-4x+3=(x-2)2-1,∴当x=0时,y 有最大值是3.【点睛】本题考查的是待定系数法求二次函数的解析式和二次函数的最值,掌握待定系数法求解析式的一般步骤是解题的关键.18.15.【分析】先根据比例式设2,3,4(0)a k b k c k k ===≠,再根据3215a b c +-=求出k 的值,从而可得,,a b c 的值,然后代入求值即可得.【详解】由题意设2,3,4(0)a k b k c k k ===≠,3215a b c +-=,29815k k k ∴+-=,解得5k =,10,15,20a b c ∴===,4341031520a b c ∴-+=⨯-⨯+,404520=-+,15=.【点睛】本题考查了比例的性质的应用、解一元一次方程、代数式求值,熟练掌握“设k 法”是解题关键.19.(1)抛物线解析式为2y (x 2)1=+-;(2)满足2kx b (x 2)m +≥++的x 的取值范围为4x 1-≤≤-.【分析】() 1先利用待定系数法求出m ,即可求得抛物线的解析式;()2先求得C 的坐标,然后根据对称性求出点B 坐标,即可根据二次函数的图象在一次函数的图象下面即可写出自变量x 的取值范围.【详解】解:()1抛物线2y (x 2)m =++经过点()A 1,0-,01m ∴=+,m 1∴=-,∴抛物线解析式为2y (x 2)1=+-;()2令x 0=,则2y (x 2)13=+-=,∴点C 坐标()0,3,对称轴为直线x 2=-,B 、C 关于对称轴对称,∴点B 坐标()4,3-,由图象可知,满足2kx b (x 2)m +≥++的x 的取值范围为4x 1-≤≤-.【点睛】本题考查二次函数与不等式、待定系数法等知识,解题的关键是灵活运用待定系数法确定二次函数解析式,学会利用图象根据条件确定自变量取值范围.20.(1)反比例函数的解析式为4y x=;(2)线段MN 的最小值为 【分析】(1)用待定系数法求反比例函数的解析式;(2)经观察后可发现当MN 为直线y x =与双曲线的两个交点时,线段MN 最短;联立两方程可求得两交点的坐标()M 2,2,()N 2,2--,然后根据两点之间的距离公式求得线段MN 的最小值.【详解】解:()1在反比例函数的图象中,当4x 1-≤≤-时,4y 1-≤≤-, ∴反比例函数经过坐标()4,1--,k 41∴-=-, k 4∴=,∴反比例函数的解析式为4y x=; ()2当M ,N 为一,三象限角平分线与反比例函数图象的交点时,线段MN 最短. 将y x =代入4y x=, 解得x 2y 2=⎧⎨=⎩或x 2y 2=-⎧⎨=-⎩, 即()M 2,2,()N 2,2--.OM ∴=则MN =.∴线段MN 的最小值为【点睛】本题考查用待定系数法求反比例函数解析式,在第()2问中关键是要正确判断MN 何时出现最小值.21. 【分析】根据黄金分割的定义:把线段AB 分成两条线段AC 和BC (BC >AC ),且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中12AC AB =,由定义可得:2AE AB BE =,设1,1,AB BE AB AE AE ==-=- 求解,AE BE ,从而可得答案.【详解】解:如图,设1AB =,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,2AE AB BE ∴=,2AE AB AE ∴=-,210,AE AE ∴+-=AE ∵>0,12AE GF ∴==, 正方形ABCD ,正方形AEFG ,,,AB AD AE AG ∴==,DG BE ∴=32BE DG AB AE ∴==-=, 3S ∴:()2S GF DG =⋅:()BC BE ⋅=⎝⎭:1⎛ ⎝⎭12=. 【点睛】本题考查了黄金分割、矩形的性质、正方形的性质,一元二次方程的解法,解决本题的关键是掌握黄金分割定义.22.(1)13,(1,2)y x B =-+;(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2;当x=1或x=2时,y 1=y 2【分析】(1)先用待定系数法求一次函数的解析式,再通过解方程组,求B 的坐标;(2)根据函数图象分析函数值的大小.【详解】解:(1)由题意,得1213k b b +=⎧⎨=⎩解得113k b =-⎧⎨=⎩∴13y x =-+又A 点在函数()220k y x x =>上,所以212k =,解得22k = 所以222k y =解方程组32y xy x=-+⎧⎪⎨=⎪⎩得1112x y =⎧⎨=⎩2221x y =⎧⎨=⎩所以点B 的坐标为(1, 2).(2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2;当x=1或x=2时,y 1=y 2.【点睛】本题考查反比例函数与一次函数的综合,利用数形结合思想解题是关键.23.(1)2224y x x =-++;(2)8【分析】(1)设二次函数表达式为()()12y a x x =+-,再将点C 代入,求出a 值即可;(2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,利用S 四边形CABP =S △OAC +S △OCP +S △OPB 得出S 关于m 的表达式,再求最值即可.【详解】解:(1)∵A (-1,0),B (2,0),C (0,4),设抛物线表达式为:()()12y a x x =+-,将C 代入得:,解得:a=-2,∴该抛物线的解析式为:()()2212224y x x x x =-+-=-++;(2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,∵A (-1,0),B (2,0),C (0,4),可得:OA=1,OC=4,OB=2,∴S=S 四边形CABP =S △OAC +S △OCP +S △OPB =()21111442224222m m m ⨯⨯+⨯⨯+⨯⨯-++=2246m m -++当m=1时,S 最大,且为8.【点睛】本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP 的面积表示出来.24.k=4,m=2,POB S1=. 【详解】试题分析:将点P 的坐标代入C 1的解析式即可求出k 的值;将点B 的横坐标代入C 2的解析式即可求出m 的值;S △POB =S △POA -S △BOA ,由反比例函数k 的几何意义可以分别求出S △POA 、S △BOA 的值.试题解析:∵P (1,4),∴k =4;∵B (1,m ),C 2解析式为:y =2x,∴m =2; S △POB =S △POA -S △BOA =2-1=1.点睛:掌握反比例函数k 的几何意义.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市嘉定区-上学期期中考试九年级数学试卷
(考试时间90分钟,满分100分)
一、选择题:
1.已知
,下列等式中不一定正确的是()
A. 5x=2y
B.
C.
D.
2.已知
,下列判断正确的是()
A.与的方向相同
B.
C.与不平行
D.
3.如图1,在 ABC 中,点D 和E 分别在边AB 、AC 的延长线上,下列各条件中不能判断 DE ∥BC 的是() A.
B.
C.
D.
4.如图2,在 ABC 中,点D 在边 BC 上,已知=BDBC,那么下列结论一定正确的是( ) A.∠BDA=∠BAC B.
C.
D.
5.已知线段a=4,线段c=3,那么线段a 和c 的比
例中项b= _______
6.在1:5000000的地图上,某城市A 与另一个城市B 的距离是2.4cm ,那么城市A 与B 的实际距离为_______千米。

7.已知点P 是线段AB 的黄金分割点,且AP>BP ,AB=4,那么AP=_______ 8.如果向量
满足关系式
,那么=_______(用
表示)
9. 在 ABC 中,点D 在边 BC 上,且DB=2DC,已知, ,那么
=_______
(用表示) 10.如图3,已知AD ∥BE ∥FC , AC=10,DE=3,EF=2,那么AB=_______
11.在 ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,AD=BD ,那么
DE:BC=_______
图1
A
D
B C
图2
A
B
C
D
B C
F
A
12.两个相似三角形对应中线之比为1:9,则它们对应的周长比为_______
13.如果ABC 与DEF 相似,ABC 的三条边之比是3:4:5,又DEF 的最长边是15,那么DEF 的最短边是_______
14.如图4,在平行四边形ABCD 中,BD 是对角线,点E 在边AD 上,CE 与BD 相交于点F ,已知EF:FC=3:4 ,BC=8,那么AE=_______
15.如图5,在 ABC 中,点D 、E 分别在边AB 、AC 上,AD=4,AE=6,AC=8,∠AED=∠B ,那么AB=_______
16.在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相较于点O ,已知ADO 的面积为2,DOC 的面积为4,那么AD:BC=_______
17. 如图6,在 ABC 中,∠C=,点D 、G 分别在边AC 、BC 上,点E 、F 都在边AB 上,四边形DEFG 是正方形,已知AE=4,BF=2,那么EF=_______
18.在矩形ABCD 中,AB=4,AD=6,点E 在边BC 上,点F 是边CD 的中点,如果∠AEF=,
那么BE=_______
19. 如图7,在等腰直角 ABC 中,∠BAC=,AB=AC=6,点G 是ABC 的重心,联结AG 、BG ,ABG 绕点A 按逆时针旋转,使点B 与C 重合,点G 与H 重合,那么GH=_______
三、解答题:(本大题共6题,满分58分) 20、(本题满分8分) 已知
6
32c
b a ==,且44=++
c b a .求a 、b 、c 的值。

21(本题满分8分)
已知c b a c b a 73,32=-=+,其中0≠c ,请你判断向量a 与b 是否平行?请简要说明理由。

图4
F
A
B
D
E 图5
A
B
C
D
E
图6
C
A
D
G
图7
C
G
H
22(本题满分8分)
如图8.在ABC ∆中,BD 是ABC ∆的角平分线,点E 在边AB 上,且DE//BC ,已知AB=6,BC=4,求DE 的长
23. (本题满分10分)
如图9,在矩形ABCD 中,AB=4,BC=9,点E 在BC 边上,CE=2BE ,点G 在直线AE 上,
o 90=∠DGA ,求DG 的长.
24、(本题共2小题,每小题6分,满分12分)
如图10,在菱形ABCD 中,点E 、F 、K 分别是AB 、CD 、BC 的中点,AK 与EF 交于点G ,与BF 与点H
图8
B
图9
A
(1)求
AG
GH
的值; (2)如果o 90=∠ABC ,如图11,求证:BF AK ⊥
25本题共3小题,每小题4分,满分12分) 在平行四边形中ABCD 中,AC 是对角线,AB=AC=5,BC=6,如图12.点E 在BC 的延长线上,且CE=BC ,点F 在射线CE 上,联结AF ,DE ,直线AF 与直线DE 交于点M (1) 如图13,点F 在CE 的延长线上,求证ACF ∆∽MDA ∆
(2) 在(1)的条件下,设x CF =,EMF ∆的面积为y ,求y 与x 的函数关系,并写出x 的取值范围;
(3) 如果EM=1,求EF 的长。

图10
B
图11
B
E F
K
图12
B
图13
B
F
参考答案 1-4、CABA 5、
6、120
7、
8、
9、
10、6 11、1:3 12、1:9 13、9 14、2 15、12 16、1:2 17、
18、4或2 19、4 20、
备用图
B
21、
22、
23、
24、
25、。

相关文档
最新文档