第四章平稳时间序列模型的建立

合集下载

平稳时间序列建模步骤

平稳时间序列建模步骤

平稳时间序列建模步骤什么是时间序列建模时间序列建模是一种用于分析和预测时间序列数据的统计方法。

时间序列是按照时间顺序排列的一组连续观测值,例如每日销售额、每月气温、每年股票收益等。

通过建立时间序列模型,我们可以探索时间序列的内在规律和趋势,并做出相应的预测。

平稳时间序列建模是时间序列建模的一种常用方法,它假设时间序列的统计特性在时间上是不变的。

平稳时间序列具有恒定的均值、方差和自协方差,这使得我们可以应用各种经典的时间序列模型进行建模和预测。

以下是平稳时间序列建模的步骤:步骤一:数据收集和观察首先,我们需要收集要建模的时间序列数据。

可以从各种数据源获取时间序列数据,包括经济指标、物理测量、金融数据等等。

收集到数据后,我们需要对数据进行观察,检查数据的特点、趋势、异常值等,并做必要的数据清洗和准备工作。

步骤二:时间序列分解时间序列通常由趋势、季节性和随机因素组成。

为了更好地分析和建模时间序列,我们需要先对时间序列进行分解,将其拆分为这些组成部分。

常用的时间序列分解方法有加法模型和乘法模型。

加法模型假设时间序列是趋势、季节性和随机误差之和,而乘法模型假设时间序列是趋势、季节性和随机误差之积。

选择合适的分解模型可以根据时间序列的特点和趋势来确定。

步骤三:平稳性检验平稳性是时间序列建模的前提之一。

在进行建模之前,我们需要对时间序列的平稳性进行检验。

平稳性检验可以通过统计检验方法来进行,例如单位根检验、ADF检验等。

如果时间序列不平稳,我们需要进行差分处理,使其变成平稳序列。

步骤四:模型选择和拟合在确定时间序列的平稳性后,我们可以选择合适的时间序列模型进行拟合。

常见的时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)等。

模型选择可以通过观察自相关图(ACF)和偏自相关图(PACF)来辅助判断。

ACF图可以显示序列之间的相关性,PACF图可以显示去除其他变量的直接相关性。

《时间序列模型 》课件

《时间序列模型 》课件
《时间序列模型》ppt 课件
目录
Contents
• 时间序列模型概述 • 时间序列模型的基础 • 时间序列模型的建立 • 时间序列模型的预测 • 时间序列模型的应用 • 时间序列模型的未来发展
01 时间序列模型概述
时间序列的定义
01 时间序列是指按照时间顺序排列的一系列观测值 。
02 时间序列数据可以是数值型、分类型或混合型。 03 时间序列数据可以用于描述和预测时间变化的现
详细描述
通过分析历史经济数据的时间序列特性,时间序列模型能够预 测未来经济走势,为政策制定者和企业决策者提供重要参考。
举例说明
例如,利用ARIMA模型分析国内生产总值(GDP)的时间 序列数据,可以预测未来一段时间的GDP增长趋势。
股票预测
01
总结词
时间序列模型在股票市场中具有实际应用价值。
02 03
SARIMA、VAR等。
识别模型阶数
02
确定模型的参数,如自回归阶数、差分阶数和移动平均阶数。
考虑季节性和趋势性
03
如果时间序列数据存在季节性和趋势性,需要在模型中加以考
虑。
参数估计
01
使用最小二乘法或最大似然法等统计方法估计模型 的参数。
02
考虑使用软件包或编程语言进行计算,如Python的 statsmodels库或R语言的forecast包。
象。
时间序列的特点
时序性
时间序列数据是按照时间顺序排列的,具有 时间上的连续性。
趋势性
时间序列数据通常具有一定的趋势,如递增 、递减或周期性变化。
季节性
一些时间序列数据呈现季节性变化,如年度 、季度或月度的变化规律。
不确定性
时间序列数据受到多种因素的影响,具有不 确定性,难以精确预测。

《计量经济学》各章主要知识点

《计量经济学》各章主要知识点

第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3 )模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2 ),统计检验(T检验,拟合优度检验、F检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4 )模型应用。

例1:在模型中,y某类商品的消费支出,x收入,P商品价格,试对模型进行经济意义检验,并解释A"》的经济学含义。

In X = 0.213 +0.25 In 一0.31£其中参数卩'",都可以通过显著性检验。

经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关\商品消费支出关于收入的弹性为0.25 ( 1心/畑)=0.251】心/仏));价格增加一个单位,商品消费需求将减少31%。

例2 :硏究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化), 尔后会使贫富差距降<氐(好转),成为倒U型。

贫富差距用GINI系数表示,金融发展用(贷款余额/存款总额)表示。

回归结果G/^VZ r =2.34 + 0.641;-1.29x;/模型参数都可以通过显著性检验。

在X的有意义的变化范围内,GINI系数的值总是大于1 ,细致分析后模型变的毫无意义;同样的模型还有:GINI系数的值总是为负= —13.34 + 7.12 兀一14.31#O3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如果—个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。

平稳时间序列模型

平稳时间序列模型

(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此

时间序列分析第四章ARMA模型的特性王振龙第二版

时间序列分析第四章ARMA模型的特性王振龙第二版

一、自协方差函数
• 理论自协方差函数和自相关函数 对于ARMA系统来说,设序列的均值为零,则自协方差函数
k E Xt Xtk
自相关函数
k

k 0
• 样本自相关函数的计算
在拟合模型之前,我们所有的只是序列的一个有限
样本数据,无法求得理论自相关函数,只能求样本的自
= 1.1
-4.0E+10 X
-6.0E+10
25 50 75 100 125 150 175 200 225 250
X
= -1.1
24
20
20
16 15
12
10
8
5
4
0
0
-5
-10 -4
25 50 75 100 125 150-15175 200 225 250
=1
X -20
25 50 75 100 125 150 175 200 225 250
第四章 ARMA模型的特性
4.1 格林函数和平稳性
一、线性常系数差分方程及其解的一般形式 先回忆线性常系数微分方程及其解的结构:
y(t) a0 y(t) u(t)
可转化为 y(t 1) a0 y(t) u(t) 其中 a0 1 a0
将上述方程中的近似号改为等号,实数t改为自然数k,
MA(m)模型的可逆性条件为其特征方程
V m 1V m1 2V m2 ... m 0 的特征根Vk
满足 Vk 1
• ARMA(n,m)系统格林函数与逆函数的关系
在格林函数的表达式中,用 I j 代替 G,j 代替 ,
代替 ,即可得到相对应的逆函数。
第三节 自协方差函数

第4章平稳时间序列预测

第4章平稳时间序列预测
今年第一季度该超市月销售额分别为:
101,96,97.2万元 请确定该超市第二季度每月销售额的预测值.
解: 预测值计算
X t 10 0.6 X t 1 0.3 X t 2 t , t ~ N (0,36) x1 101, x2 96, x3 97.2

四月份: 五月份: 六月份:

方法


第四章 平稳时间序列预测
预测

平稳时间序列预测的定义 利用平稳时间序列{Xt ,t=0,±1,±2,…}在时刻t及以 前时刻 t-1,t-2,…的所有信息,对 Xt+l(l>0)进行估计, 相应的预测量记为
ˆ l , 称为预测步长,t称为预 X t l
测的原点.
第四章 平稳时间序列预测

ห้องสมุดไป่ตู้
第一节 正交投影预测
统计人数 预测人数
ˆ 2002 104 110 6 2002 x2002 x ˆ 2003 108 100 8 2003 x2003 x ˆ 2004 105 109 4 2004 x2004 x
ˆ2004 (1) 100 0.8 2004 0.6 2003 0.2 2002 109.2 x ˆ2004 (2) 100 0.6 2004 0.2 2003 96 x ˆ2004 (3) 100 0.2 2004 100.8 x ˆ2004 (4) 100 x ˆ2004 (5) 100 x
与预测图(预测1999-2003)
例2:MA(q)模型的预测

已知某地区每年常驻人口数量近似服从MA(3)模型 (单位:万人):
X t 100 t 0.8t 1 0.6 t 2 0.2 t 3 , 25

平稳时间序列模型的特性

平稳时间序列模型的特性

它旳解为
Xt
at
1 1B
(1 1B 12 B 2
13 B3
)at
1j at j
G j at j
j0
j0
11
3.格林函数旳意义
(1) G j是前j个时间单位此迈进入系统旳扰动 at j对系统目前行 为(响应)影响旳权数。
(2)
G
客观地刻画了系统动态响应衰减旳快慢程度。
j
(3)
G
是系统动态旳真实描述。系统旳动态性就是蕴含在时间
3. 系统参数对系统响应旳影响 对此我们用实例加以阐明,对前面旳序列分将别利用 1 0.5 和 1 0.9 成了两个序列,分别描 绘在图3.2和图3.3中,
16
17
1
1
1
经过比较图3.1、图3.2能够懂得: (1) 取负值时,响应波动较大。 (2) 取正值时,响应变得平坦。 (3) 越大,系统响应回到均衡位置旳速度越慢,时
0
1 1 p
29
AR(P)序列中心化变换
称 {yt}为 {xt}旳中心化序列 ,令
0
1 1 p
yt xt
30
自回归系数多项式
引进延迟算子,中心化 AR( p)模型又能够简
记为
(B)xt t
自回归系数多项式
(B) 1 1B 2B2 p B p
31
AR模型平稳性鉴别
鉴别原因
zt (c1 c2t
cd t d 1)1t
c t d 1 d 1
cppt
复根场合
zt rt (c1eit c2eit ) c33t
c
p
t p
26
非齐次线性差分方程旳解
非齐次线性差分方程旳特解

《平稳时间序列》课件

《平稳时间序列》课件
《平稳时间序列》PPT课 件
欢迎来到《平稳时间序列》PPT课件!在这个课程中,我们将深入研究平稳 时间序列的定义、检验和应用,以及常见的模型和实操演练。
定义
平稳性
均值、方差和协方差都不随时间变化而变化。
检验
1 观察法
通过观察时间序列的趋势和波动性来判断是否平稳。
2 自相关Leabharlann 与偏自相关图通过绘制自相关图和偏自相关图来辅助平稳性检验。
常见模型
AR模型
自回归模型,使用过去的观测值来预测未来值。
MA模型
移动平均模型,使用过去滞后项的线性组合来预测 未来值。
ARMA模型
自回归移动平均模型,结合AR和MA模型的特点, 用于拟合时间序列。
ARIMA模型
差分自回归移动平均模型,用于拟合非平稳时间序 列。
实操演练
1
Python实现平稳性检验
3 单位根检验
使用单位根检验方法(如ADF检验)来检验时间序列的平稳性。
应用
时间序列预测
利用平稳时间序列的特性,进 行未来数值的预测和预测不确 定性的评估。
时间序列建模
根据平稳时间序列的规律性, 构建数学模型来解释和预测时 间序列的行为。
数据挖掘
利用时间序列的历史数据,发 现其中的规律和趋势,为决策 提供依据。
使用Python中的统计库,通过ADF检验方法来检验时间序列的平稳性。
2
R实现时间序列预测
利用R语言中的时间序列分析包,对平稳时间序列进行预测和评估。
3
MATLAB实现时间序列建模
利用MATLAB中的时间序列工具箱,构建平稳时间序列的数学模型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将上式展开得:
xt 1xt1 p xtp 0 at 1at1 2at2 qatq
此时,所要估计的未知参数有p+q+1个.
第二节 模型识别与定阶
一、模型识别 二、模型定阶
一、模型识别
• 基本原则
ˆk
拖尾 q阶截尾
拖尾
ˆkk
P阶截尾 拖尾
拖尾
选择模型 AR(P) MA(q)
ARMA(p,q)
• 序列的非平稳包括均值非平稳和方差非 平稳.
• 均值非平稳序列平稳化的方法:差分变 换.
• 方差非平稳序列平稳化的方法:对数变 换、平方根变换等.
• 序列平稳性的检验方法和手段主要有: 序列趋势图、自相关图、单位根检验、 非参数检验方法等等.
一、平稳性检验—图检验方法
(一)时序图检验
–根据平稳时间序列均值、方差为常数的性 质,平稳序列的时序图应该显示出该序列 始终在一个常数值附近随机波动,而且波 动的范围有界、无明显趋势及周期特征.
–检验1949年——1998年北京市每年最高气温 序列的平稳性
例1 时序图
例1 自相关图
例2 时序图
例2 自相关图
例3 时序图
例3 自相关图
二、纯随机性检验
(一)纯随机序列的定义
• 纯随机序列也称为白噪声序列,它 满足如下两条性质
(1)EX t , t T
(2)
(t,
s)
2,t
s
,
例5、对1950年—1998年北京市城乡居民定期储
蓄所占比例序列的平稳性与纯随机性进行检验
自相关图
白噪声检验结果
延迟阶数 6 12
LB统计量检验
LB检验统计 量的值
75.46
P值 <0.0001
82.57
<0.0001
三、计算样本相关函数
• 样本自相关函数 • 样本偏自相关函数
nk
(xt x)(xtk x)
稳序列后再进行模型识别.
二、模型定阶
模型定阶的困难
• 因为由于样本的随机性,样本的相关系数不会 呈现出理论截尾的完美情况,本应截尾的 ˆk 或 ˆkk 仍会呈现出小值振荡的情况
ˆk t1 n
(xt x)2
t 1
ˆkk
Dˆ k Dˆ
四、关于非零均值的平稳序列
非零均值的平稳序列有两种处理方法: 设xt为一非零均值的平稳序列,且有E(xt)=μ
• 方法一: 用样本均值 x 作为序列均值μ的估
计,建模前先对序列作如下处理:
令 wt xt x
然后对零均值平稳序列wt建模.
k>q 时,k 0,而且它的偏自相关函数
尾,则可判断此序列是MA(q)序列.
kk拖
• 若序列xt的自相关函数、偏相关函数都呈拖 尾形态,则可断言此序列是ARMA序列.
• 若序列的自相关函数和偏自相关函数不但都 不截尾,而且至少有一个下降趋势势缓慢或
呈周期性衰减,则可认为它也不是拖尾的,
此时序列是非平稳序列,应先将其转化为平
(二)自相关图检验
– 平稳序列通常具有短期相关性.该性质用自 相关函数来描述就是随着延迟期数的增加, 平稳序列的自相关函数会很快地衰减向零.
例题
• 例1
– 检验1964年——1999年中国纱年产量序列的 平稳性
• 例2
–检验1962年1月——1975年12月平均每头奶牛 月产奶量序列的平稳性
• 例3
• 方法二 在模型识别阶段对序列均值是否为零不予考 虑,而在参数估计阶段,将序列均值作为一 个参数加以估计.
以一般的ARMA(p,q)为例说明如下:
设平稳序列xt的均值为, 其适应性模型为ARMA( p, q),即 : (xt ) 1 (xt1 ) p (xt p ) at 1at1 2 at2 q atq
第四章 平稳时间序列模型 的建立
第一节 第二节 第三节 第四节
第五节
时间序列的预处理 模型识别与定阶 模型参数估计 模型检验与优化
其它建模方法
建模步骤
1、建模流程
(有限长度)时序样本→模型识别与 定阶→模型参数估计→模型适用性检验→ 模型优化
2、基本前提
⑴平稳序列{Xt} ⑵零均值序列EXt=0

,k 0
2、假设条件
• 原假设:延迟期数小于或等于 m期的序列 值之间相互独立
H 0:1 2 m 0, m 1
• 备择假设:延迟期数小于或等于 m 期的 序列值之间有相关性
H1:至少存在某个k 0,m 1,k m
3、检验统计量
• Q统计量
m
Q n
ˆ
2 k
~
2 (m)
k 1
平下无法拒绝原假设,即不能显著拒绝序列 为纯随机序列的假定
5、应用举例
例4、标准正态白噪声序列纯随机性检验
样本自相关图
检验结果
延迟
延迟6期 延迟12期
QLB 统计量检验
QLB 统计量值
2.36
5.35
P值 0.8838 0.9454
由于P值显著大于显著性水平 ,所以该序列
不能拒绝纯随机的原假设.
t,
s
T
0,t s
(二)纯随机性检验
检验原理 假设条件 检验统计量 判别原则 应用举例
1、检验原理
Barlett定理
• 如果一个时间序列是纯随机的,得到一 个观察期数为n的观察序列,那么该序列 的延迟非零期的样本自相关系数将近似 服从均值为零,方差为序列观察期数倒 数的正态分布
ˆ k
~
N (0, 1 ) n
• LB统计量
m
LB n(n 2)
(
ˆ
2 k
) ~ 2 (m)
k1 n k
4、判别原则
• 拒绝原假设
–当检验统计量大于12 (m) 分位点,或该统计
量的P值小于 时,则可以以 1 的置信水
平拒绝原假设,认为该序列为非白噪声序列
• 接受原假设
–当检验统计量小于12 (m) 分位点,或该统计
量的P值大于 时,则认为在 1的置信水















流程图
模型 识别
参数 估计


N
模型
Y型

检验
优预化测第一节 时间序列的预处理
一、平稳性检验 二、纯随机性检验 三、计算样本自相关函数 四、关于非零均值的平稳序列
• 本章所介绍的是对零均值平稳序列建 立ARMA模型,因此,在对实际的序 列进行模型识别之前,应首先检验序 列是否平稳,若序列非平稳,应先通 过适当变换将其化为平稳序列,然后 再进行模型识别.
• 零均值平稳序列模型识别的主要根据是 序列的自相关函数(ACF)和偏自相关函数 (PACF)的特征.
• 若序列xt的偏自相关函数kk 在k>p以后截 尾,即k>p 时,kk 0,而且它的自相关 函数k 拖尾,则可判断此序列是AR(p)序
列.
• 若序列xt的自相关函数 k在k>q以后截尾,即
相关文档
最新文档