期中考试题

合集下载

初中期中考试试题及答案

初中期中考试试题及答案

初中期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 地球是宇宙的中心B. 地球围绕太阳转C. 太阳围绕地球转D. 地球是静止不动的答案:B2. 以下哪位科学家提出了相对论?A. 牛顿B. 爱因斯坦C. 伽利略D. 霍金答案:B3. 以下哪种植物是被子植物?A. 松树B. 蕨类C. 苔藓D. 银杏答案:D4. 以下哪个国家是亚洲国家?A. 巴西B. 阿根廷C. 韩国D. 墨西哥答案:C5. 以下哪个选项是化学变化?A. 水的沸腾B. 铁的生锈C. 玻璃的破碎D. 冰的融化答案:B6. 以下哪个朝代是中国历史上的最后一个封建王朝?A. 唐朝B. 宋朝C. 明朝D. 清朝答案:D7. 以下哪个国家是联合国常任理事国之一?A. 德国B. 巴西C. 印度D. 法国答案:D8. 以下哪种动物是哺乳动物?A. 蛇B. 鸟C. 鱼D. 蝙蝠答案:D9. 以下哪个选项是正确的?A. 光在真空中的速度是最快的B. 声音在真空中可以传播C. 光在空气中的速度比真空中慢D. 声音在空气中的速度比水中快答案:A10. 以下哪个选项是正确的?A. 0是自然数B. 0不是自然数C. 0是整数但不是自然数D. 0既不是自然数也不是整数答案:A二、填空题(每题2分,共20分)1. 地球的自转周期是_________小时。

答案:242. 牛顿第三定律指的是作用力和__________。

答案:反作用力3. 植物的光合作用主要发生在__________。

答案:叶绿体4. 亚洲最大的国家是__________。

答案:中国5. 相对论包括狭义相对论和__________相对论。

答案:广义6. 唐朝的开国皇帝是__________。

答案:李渊7. 联合国的总部位于__________。

答案:纽约8. 哺乳动物的主要特征包括__________和哺乳。

答案:胎生9. 光在真空中的速度是__________米/秒。

小学期中考试题目及答案

小学期中考试题目及答案

小学期中考试题目及答案一、选择题(每题3分,共30分)1. 以下哪项不是计算机的主要组成部分?A. 中央处理器B. 显示器C. 键盘D. 打印机答案:D2. 互联网的英文缩写是什么?A. WWWB. WANC. LAND. Internet答案:D3. 在Word文档中,以下哪个快捷键用于保存文档?A. Ctrl+CB. Ctrl+SC. Ctrl+VD. Ctrl+Z答案:B4. 以下哪个选项是正确的IP地址格式?A. 192.168.0.1B. 256.256.256.256C. 192.168.1.256D. 192.168.0.1.1答案:A5. 在Excel中,以下哪个函数用于计算平均值?A. SUMB. COUNTC. AVERAGED. MAX答案:C6. 以下哪个选项是正确的电子邮件地址格式?A. example@.comB. C. example@.comD. example@.com答案:D7. 在Windows操作系统中,以下哪个键用于快速访问任务管理器?A. Ctrl+Alt+DelB. Ctrl+Shift+EscC. Alt+TabD. F1答案:A8. 以下哪个选项是HTML文档的标准扩展名?A. .txtB. .docC. .htmlD. .pdf答案:C9. 在Photoshop中,以下哪个工具用于裁剪图像?A. 画笔工具B. 橡皮擦工具C. 裁剪工具D. 吸管工具答案:C10. 以下哪个选项是正确的二进制数表示?A. 2101B. 1024C. 1010D. 22答案:C二、填空题(每题2分,共20分)1. 计算机的五大组成部分包括输入设备、输出设备、存储器、______和外部设备。

答案:中央处理器2. 在计算机网络中,______协议用于在网络层上实现不同网络之间的互联。

答案:IP3. 在Excel中,要将单元格格式设置为百分比,可以在“开始”选项卡的“数字”组中选择______格式。

苏科版九年级上册数学期中考试试卷附答案

苏科版九年级上册数学期中考试试卷附答案

苏科版九年级上册数学期中考试试题一、单选题1.下列方程为一元二次方程的是()A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x 2+8x +7=0变形为(x +h)2=k 的形式应为()A .(x +4)2=-7B .(x -4)2=-7C .(x +4)2=9D .(x -4)2=93.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的A .方差B .众数C .平均数D .中位数5.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是()A .()2501182=+x B .()250501182=++x C .()()505015012182=++++x x D .()()250501501182=++++x x 6.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若38P ∠=︒,则B Ð的度数为()A .22°B .24°C .26°D .28°8.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A .6B .7C .8D .99.若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2019x =,则一元二次方程()()2112a x b x -+-=-必有一根为()A .2018B .2019C .2020D .202110.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为()A .160oB .120oC .100oD .80o二、填空题11.将方程x 2-2=7x 化成x 2+bx +c =0的形式,则b =___.12.一组数据:﹣1,﹣2,0,1,2,则这组数据的极差是______.13.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是____分.14.关于x 的方程x 2+px +q =0的两个根分别为-1、4,则p +q 的值为_____.15.已知三角形三边长为6,8,10,则它的内切圆半径是________.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_______cm 2.17.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题19.解下列方程:(1)x 2﹣2x ﹣3=0;(2)x ﹣5=(x ﹣5)2.20.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根21.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为;(2)连接AD 、CD ,⊙D 的半径为,∠ADC 的度数为;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.23.如图,AB 为O 的直径,点C D ,在O 上,AC 与OD 交于点E ,AE EC OE ED ==,,连接BC CD ,.求证:(1)AOE CDE ∆≅∆;(2)四边形OBCD 是菱形.24.如图,四边形ABCD 与AEGF 均为矩形,点E 、F 分别在线段AB 、AD 上.若BE =FD =2cm ,矩形AEGF 的周长为20cm .(1)图中阴影部分的面积为cm 2.(2)若空白部分面积与阴影部分面积一样大,求矩形ABCD 边长.25.如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是元;当每个公司租出的汽车为辆时,两公司的月利润相等;(2)求租出汽车多少辆时,两公司月利润差恰为18400元?参考答案1.C2.C3.B4.D5.D6.D7.C8.B9.C10.A11.-7【详解】将方程x2-2=7x化成x2-7x-2=0∴b=-7,故填:-7.【点睛】此题主要考查一元二次方程的一般式,解题的关键是熟知等式的性质.12.4【分析】用这组数据的最大值减去最小值即得结果.【详解】解:这组数据的级差是:2(2)4--=.故答案为4.【点睛】本题考查了极差的定义,属于基础概念题,掌握极差的定义是关键.13.93分【分析】按3:3:4的比例算出本学期数学学期平均成绩即可.【详解】小红一学期的数学平均成绩是9031003343490⨯⨯⨯++++=93(分),故填:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.-7【分析】根据根与系数的关系得到-1+4=−p ,-1×4=q ,然后解方程即可得到p 和q 的值,即可得到结论.【详解】根据题意得-1+4=−p ,-1×4=q ,所以p =−3,q =-4.故p +q =−7,故填:-7.15.2【分析】先根据勾股定理的逆定理判断出△ABC 的形状,设△ABC 内切圆的半径为R ,切点分别为D 、E 、F ,再根据题意画出图形,先根据正方形的判定定理判断出四边形ODCE 是正方形,再根据切线长定理即可得到关于R 的一元一次方程,求出R 的值即可.【详解】如图所示:ABC ∆中,68AB 10AC BC ===,,,2226810+= ,即222AC BC AB +=,ABC ∴∆是直角三角形,设ABC ∆的内切圆半径为R ,切点分别为D ,E ,F ,CD CE = ,BE BF =,AF AD =,OE BC OD AC ⊥⊥ ,,∴四边形ODCE 是正方形,即CD CE R ==AC CD AB BF ∴-=-,即610R BF -=-BC CE BE BF -==,即8R BF-=联立解得:R=2.故答案为2.16.15π【详解】解:底面半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2.故答案为:15π.17.4a <且0a ≠【分析】根据根的判别式即可求出答案,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】解:由题意可知:64160a ∆=->,4a ∴<,0a ≠ ,4a ∴<且0a ≠,故答案为4a <且0a ≠18.12【详解】连接AO ,BO ,CO ,如图所示:∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB=3606︒=60°,∠AOC=3604︒=90°,∴∠BOC=30°,∴n=36030︒︒=12,故答案为:12.19.(1)x 1=3,x 2=﹣1;(2)x 1=5,x 2=6.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,∴x ﹣3=0或x+1=0,∴x 1=3,x 2=﹣1;(2)x ﹣5=(x ﹣5)2,(x ﹣5)﹣(x ﹣5)2=0,(x ﹣5)[1﹣(x ﹣5)]=0,∴x ﹣5=0,1﹣(x ﹣5)=0,∴x 1=5,x 2=6.20.(1)证明见解析;(2)3【分析】(1)利用方程的判别式求解即可;(2)将x=2代入方程求出m=2,得到方程为2430x x -+=,求出方程的解121,3x x ==,由此得到答案.【详解】解:(1)∵[]22(2)4(21)(2)40m m m ∆=-+--=-+>,∴方程恒有两个不相等的实数根;(2)将x=1代入方程,得12210m m --+-=,∴20m -=,解得m=2,∴方程为2430x x -+=,解得121,3x x ==,∴方程的另一个根3.【点睛】此题考查一元二次方程根的判别式,方程的解,解一元二次方程,熟记一元二次方程根的判别式的三种情况、正确解一元二次方程是解题的关键.21.(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(xn−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(1)圆心D点的位置见解析,(2,0);(2)90°;(3.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D 点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x 轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πr•AD,可求得r .【详解】解:(1)如图1,分别作AB 、BC 的垂直平分线,两线交于点D,∴D 点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD 、CD ,过点C 作CE ⊥x 轴于点E,则OA =4,OD =2,在Rt △AOD 中,可求得AD=即⊙D的半径为且CE =2,DE =4,∴AO =DE ,OD =CE ,在△AOD 和△DEC 中,AOD CED OD AO D CE E ∠∠=⎧⎪⎨⎪⎩==,∴△AOD ≌△DEC (SAS ),∴∠OAD =∠CDE ,∴∠CDE+∠ADO =90°,∴∠ADC =90°,故答案为90°;(3)弧AC 的长=90180π×,设圆锥底面半径为r 则有2πr,解得:r,.【点睛】本题考查了垂径定理,弧长公式,勾股定理以及全等三角形的判定与性质等知识,要能够根据垂径定理作出圆的圆心,根据全等三角形的性质确定角之间的关系,掌握圆锥的底面半径的计算方法.23.(1)见解析;(2)见解析【分析】(1)由已知条件根据全的三角形的判定即可证明;(2)首先根据平行四边形的判定证明四边形OBCD 是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.【详解】解:(1)在AOE 和CDE 中,∵AE CE AEO CED OE DE =⎧⎪∠=∠⎨⎪=⎩,∴()AOE CDE SAS ≅ ;(2)∵AB 为O 的直径,∴AO BO =,∵AOE CDE ≅ ,∴OAC DCA ∠=∠,AO CD =,∴BO ∥CD ,BO CD =,∴四边形OBCD 是平行四边形.∵BO DO =,∴四边形OBCD 是菱形.【点睛】本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键.24.(1)24;(2)6cm 和8cm .【分析】(1)由面积关系列出关系式可求解;(2)设矩形的AEGF 一边长为xcm ,由矩形的面积公式列出方程并解答.【详解】解:(1)∵矩形AEGF 的周长为20cm ,∴AF+AE=10cm,∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),故答案为:24;(2)设矩形的AEGF一边长为xcm,得x(10﹣x)=24.解之得x1=4,x2=6.4+2=6或6+2=8.答:矩形的ABCD边长为6cm和8cm.【点睛】本题考查了矩形的性质、一元二次方程的应用,利用面积和差关系列出关系式是解题的关键.25.(1)相切,理由见解析;(2)π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=23∴AD=DF=tan 30AB ⋅︒=2,∴阴影部分的面积=S △ABD-S 扇形ABE =(2302312322360π⨯⨯⨯-=23π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.26.(1)48000;37;(2)当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,由(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据题意列出方程,并解答.【详解】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:[(50﹣x )×50+3000]x ﹣200x =3500x ﹣1850,解得:x =37或x =﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等.故答案是:48000;37;(2)设每个公司租出的汽车为x 辆,两公司的月利润分别为y 甲,y 乙,则y 甲=[(50﹣x )×50+3000]x ﹣200x ,y 乙=3500x ﹣1850.当甲公司的利润大于乙公司时,0<x <37,y 甲﹣y 乙=18400,即[(50﹣x )×50+3000]x ﹣200x ﹣(3500x ﹣1850)=﹣50x 2+1800x+1850=18400,整理,得x 2﹣36x+331=0此方程无解.故此情况不存在;当乙公司的利润大于甲公司时,37<x≤50,y 乙﹣y 甲=18400,即3500x ﹣1850﹣[(50﹣x )×50+3000]x+200x =50x 2﹣1800x ﹣1850=18400,整理,得(x ﹣45)(x+9)=0,解得x 1=45,x 2=﹣9(舍去)所以当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.。

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

深圳中学2023-2024学年度第一学期期中考试试题年级:高二科目:数学注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。

选择题作答必须用2B 铅笔,修改时用橡皮擦干净。

一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( )A B .2C .D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为()A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( )A .1B C D .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。

设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。

往年6年级期中考试真题及答案

往年6年级期中考试真题及答案

往年6年级期中考试真题及答案一、填空题(每题2分,共10分)1. 把3.14、31.4%、(22)/(7)、π按从小到大的顺序排列是()。

- 答案:31.4%<3.14<π<(22)/(7)。

- 解析:31.4% = 0.314,(22)/(7)≈3.1429,π≈3.1416,所以0.314<3.14<3.1416<3.1429。

2. 一个圆的半径是3厘米,它的周长是()厘米,面积是()平方厘米。

- 答案:18.84;28.26。

- 解析:圆的周长公式C = 2πr,当r = 3厘米时,C=2×3.14×3 = 18.84厘米;圆的面积公式S = πr²,S = 3.14×3²=28.26平方厘米。

3. 六班今天出勤48人,有2人因病请假,今天六班学生的出勤率是()。

- 答案:96%。

- 解析:出勤率=出勤人数÷总人数×100%,总人数为48 + 2 = 50人,所以出勤率为48÷50×100% = 96%。

4. 从一个边长是10分米的正方形纸里剪一个最大的圆,这个圆的周长是()分米,面积是()平方分米。

- 答案:31.4;78.5。

- 解析:这个圆的直径就是正方形的边长10分米,半径为5分米。

圆的周长C = πd = 3.14×10 = 31.4分米;面积S = πr²=3.14×5² = 78.5平方分米。

5. 把10克盐溶解在90克水中,盐与盐水的比是()。

- 答案:1:10。

- 解析:盐水的质量为10+90 = 100克,盐是10克,所以盐与盐水的比是10:100 = 1:10。

二、判断题(每题1分,共5分)1. 半径是2厘米的圆,它的周长和面积相等。

()- 答案:错误。

- 解析:周长和面积是不同的概念,周长的单位是长度单位,面积的单位是面积单位,不能进行比较。

人教版九年级上册数学期中考试试卷含答案解析

人教版九年级上册数学期中考试试卷含答案解析

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滨州阳信国际学校2015级高一上学期期中检测生物试题一、选择题(每个小题只有一个选项符合题意,每题2分,共60分) 1. 一棵桃树的结构层次由小到大依次是( )A .细胞→个体B .细胞→组织→系统→个体C .细胞→组织→器官→个体D .细胞→组织→器官→系统→个体 2.下列几种生物细胞中,属于原核细胞的是()① ② ③ ④A .①④B .①②C .③④D .②④3. 下列说法不正确的组合是( )①病毒是生物,其主要理由是由于具有蛋白质和核酸 ②细菌等单细胞生物体具有生命的基本特征③一切生物的生命活动都是在细胞内或在细胞参与下完成的 ④细胞是一切生物体结构和功能的基本单位A. ③ ④B.① ②C. ② ③D.① ④ 4. 细胞学说主要揭示了 ( )A. 植物细胞与动物细胞的区别B. 生物体结构的统一性C. 植物为什么要产生新细胞D. 人们对细胞的认识是一个曲折的过程5.下图中1―6表示不同的物镜与目镜,乙和丙分别表示不同物镜下观察到的图像。

有关描述正确的是( )A .1、2、5、6均为目镜,3、4均为物镜;且1比2的放大倍数小,3比4放大倍数小B .把视野里的标本从图中的乙转为丙时,应选用4C .从图中的乙转为丙,正确调节顺序:转动转换器→移动标本→调节光圈→调细准焦螺旋D .欲获得最小放大倍数的观察效果甲图中的组合一般是1、4、56. 生物新陈代谢旺盛、生长迅速时,生物体内的结合水与自由水的比值( )A .升高B .下降C .不变D .变化与此无关 7. 下列能与斐林试剂反应生成砖红色沉淀的是( )①葡萄糖 ②果糖 ③蔗糖 ④纤维素 ⑤淀粉 ⑥蛋白质 A 、①② B 、②③④ C 、①⑤⑥ D 、①②④8.植物细胞和动物细胞中储存能量的物质依次是( )A .纤维素和糖原B .麦芽糖和乳糖C .淀粉和糖原D .葡萄糖和纤维素9. 在成人的心肌细胞中比表皮细胞数量显著多的细胞器是( )A .核糖体B .线粒体C .内质网D .高尔基体 10. 植物细胞中具两层膜的细胞器是( )A .线粒体和叶绿体和细胞核 B.线粒体C .线粒体和细胞核D .线粒体和叶绿体 11. 下列有关生物学实验的叙述,正确的有( )A.在使用显微镜观察细胞的实验中,若在50×下的视野中均匀分布有大小一致的20个细胞,则换用100×后,视野中的细胞数目是10个B.用高倍镜观察叶绿体和线粒体实验,使用的专一性的活性染料是甲基绿C.在“观察DNA 和RNA 在细胞中的分布”实验中,盐酸能够改变细胞膜的通透性,加速染色剂进入细胞D.观察植物细胞质壁分离的实验中,应选取洋葱鳞片叶的内表皮制作成临时装片12. 在“鉴定生物组织中的糖类、脂肪和蛋白质”的实验中,对实验材料的选择叙述中,错误的是( )A .成熟西瓜瓜瓤红味甜,含有较多的糖,是进行还原糖鉴定的理想材料B .花生种子含脂肪多且子叶肥厚,是用于脂肪鉴定的理想材料C .大豆种子蛋白质含量高,是进行蛋白质鉴定的理想植物组织材料D .马铃薯块茎中淀粉含量较高,是进行淀粉鉴定的理想材料13.珙桐是我国特有的珍稀濒危植物,被称为“植物大熊猫”。

珙桐和大熊猫的体细胞中都含有的细胞器是()①细胞壁②细胞膜③叶绿体④线粒体⑤内质网⑥中心体⑦核糖体⑧染色体A.①②③⑥⑧B.④⑤⑦C.②③⑤⑦⑧ D.②④⑤⑥⑦⑧14. 在生物体内,作为生命活动的主要体现者、遗传信息的携带者、膜结构的主要成分的化合物,依次分别为( )A.糖类,脂类、核酸B.蛋白质、脂质、核酸C.蛋白质、糖类、脂质D.蛋白质、核酸、脂质15. DNA分子完全水解后得到的化学物质是()A、核苷酸、五碳糖、碱基B、核苷酸、磷酸、碱基C、脱氧核糖、磷酸、碱基D、核糖、磷酸、碱基16. 在洋葱根尖细胞中,组成核酸的碱基、五碳糖、核苷酸各有多少种()A.5、2 、8B.4、2 、2C.5、2、2D.4、4、817.细胞膜的结构特点具有一定的流动性,下列中不能..反映该特点的是( ) A.高尔基体形成的囊泡与细胞膜融合B.变形虫能伸出伪足C.核糖体中合成的蛋白质进入细胞核D.吞噬细胞吞噬病菌18.下列关于生物膜系统在细胞中作用的叙述中,不正确的是()A. 细胞膜在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用B. 许多重要的化学反应都在生物膜上进行C. 生物膜将各种细胞器分隔开,使细胞内能够同时进行多种化学反应D. 各种生物膜在功能上互相独立,互不影响19. 研究细胞内各种细胞器,需要将这些细胞器分离出来,常用的方法是( )A. 纸层析法B. 沉淀法C. 差速离心法D. 密度离心法20. 下列哪项不是构成蛋白质的氨基酸()A.B.C.D.21. 生物体内的蛋白质千差万别,即使像催产素、牛加压素、血管舒张素等由相同数量的氨基酸构成的蛋白质,生理功能也差异很大。

其原因不可能是()A.蛋白质的空间结构不同B.组成蛋白质的氨基酸种类和数量不同C.氨基酸排列顺序不同D.组成肽键的化学元素或合成场所不同22. 人体免疫球蛋白中,IgG由4条肽链构成,共有764个氨基酸,则该蛋白质分子中至少含有游离的氨基和羧基数分别是( )A. 746和764 B.760和760 C.762和762 D.4和423. 下列说法正确的是()A. 叶肉细胞中碱基、核苷酸、五碳糖种类分别是5种、8种和2种B. 大肠杆菌细胞中含有碱基A、T、G、C的核苷酸共4种C.组成核酸的基本单位是核糖核苷酸D.DNA与RNA的不同点只在于五碳糖和碱基的不同24. 组成纤维素、纤维素酶和控制纤维素酶合成的DNA片段三者的基本单位依次是()A.葡萄糖、核苷酸和氨基酸B.葡萄糖、氨基酸和脱氧核苷酸C.果糖、氨基酸和核糖核苷酸D.淀粉、蛋白质和DNA25. 在胰岛细胞中,与合成和分泌胰岛素有关的一组细胞器是()A.线粒体、中心体、高尔基体、内质网B.内质网、核糖体、叶绿体、高尔基体C.内质网、核糖体、高尔基体、线粒体D.内质网、核糖体、高尔基体、中心体26. 如图是细胞核的结构模式图,下列关于各结构及功能的叙述错误的是( )A.①属于生物膜系统,把核内物质与细胞质分开B.②是遗传物质的主要载体C.③与蛋白质的合成及核糖体的形成有关D.④有利于某种RNA从细胞核进入细胞质,实现核质之间的信息交流27.染色体和染色质的关系是( )A.不同时期,不同物质的不同形态B.不同时期,同一物质的不同形态C.同一时期,同一物质的不同形态D.同一时期,不同物质的不同形态28. 1972年桑格和尼克森提出了生物膜的流动镶嵌模型,如图表示生物膜的结构模型,下列有关叙述错误的是( )A.细胞膜上的蛋白质分子在细胞膜外侧与糖类结合形成糖蛋白B. 该生物膜的结构特点是具有选择透过性C.适当提高温度,能使②和③的相对运动加快,有利于生命活动的 进行D.生物膜的成分主要是脂质和蛋白质,其功能主要决定于②的种类和数量 29.右图为细胞膜的液态流动镶嵌模型示意图,有关叙述正确的是( )A .a 指磷脂分子的尾部,具有亲水性B .c 指磷脂分子的非极性头部C .糖蛋白在细胞膜的内外侧均有分布D .细胞膜的选择透性与b 、d 的种类和数量有关30. a 、b 、c 是三个相邻的细胞,已知a 细胞液浓度>b 细胞液浓度>c 细胞液浓度,如下图所示中能正确表示三者关系的是( )二、非选择题(共40分)31. (8分,每空1分)如图表示合在一起的动植物细胞亚显微结构模式图。

据图回答:(1)如果A 图为洋葱根尖细胞,则不应该有细胞器[ ]________。

(2)如果B 细胞为人体的心肌细胞,则细胞器[ ]________含量很多, 该结构的主要功能是进行________,该生理功能消耗的主要能源物质是________。

(3)核糖体的形成与________有关。

(4)使细胞保持一定的渗透压,保持膨胀状态的是[ ] 。

(5)遗传物质的主要载体是[ ] 。

(6)若某细胞同时有AB 图中各种细胞器(结构),则为________32.(8分) 请据图回答下列问题:(如图为处于三种生理状态的洋葱鳞片叶表皮细胞)(1)原生质层包括 三部分(填标号,2分),可以看做一层 膜。

(2) 若图中a ,b ,c 是处于三种不同浓度溶液的三个洋葱鳞片叶表皮细胞,那么它们的外界溶液浓度依次为 > > 。

(3)若将细胞a 置于质量浓度为0.3 g /mL 的蔗糖溶液中,一段时间后再放入清水中,则细胞的变化是( ) (2分)A.a →b →c →b →aB. a →b →a →cC.a →b →cD.a →c →b →a33.(9分)下图表示某细胞膜的结构,图中A 、B 、C 、D 、E 、F 表示某些物质,a 、b 、c 、d 表示物质跨膜运输方式。

请据图回答: (1)提取动物的细胞膜,选用的最佳材料是 ,提取利用的原理是 。

(2)图中物质A 为 , B 是 ,D 是 。

酸的方式此次为(填字母)(3分)34.请根据下图,回答下列问题:(15分)(1)⑤和⑥称为____________。

①表示____________,④表示____________。

(2)决定氨基酸种类的编号是____________。

该化合物是由_________种氨基酸组成的。

(3)该化合物是由____________个氨基酸,失去____________个分子水而形成的,这种反应称为____________。

该化合物的名称是____________。

(4)组成蛋白质的氨基酸的结构通式为_______(2分),肽键的结构简式为_______(5)图中有_________个肽键,有_________个氨基和_________个羧基。

相关文档
最新文档