常用三角公式
常用三角函数公式及口诀

常用三角函数公式及口诀三角函数是数学中非常重要的一部分,它经常在几何、物理、工程等各个领域中被广泛应用。
掌握常用的三角函数公式和口诀,将有助于我们更好地理解和应用它们。
下面是一些常用的三角函数公式及口诀:一、三角函数的定义:在一个直角三角形中,正弦(sin)定义为对边与斜边的比值,余弦(cos)定义为邻边与斜边的比值,正切(tan)定义为对边与邻边的比值。
即:sin(θ) = 对边 / 斜边cos(θ) = 邻边 / 斜边tan(θ) = 对边 / 邻边二、特殊角的三角函数值:1.30°角特殊值:sin(30°) = 1/2cos(30°) = √3/2tan(30°) = 1/√32.45°角特殊值:sin(45°) = √2/2cos(45°) = √2/2tan(45°) = 13.60°角特殊值:sin(60°) = √3/2cos(60°) = 1/2tan(60°) = √3三、基本三角函数的性质:1.正弦、余弦的周期性:sin(θ) = sin(θ + 2π)cos(θ) = cos(θ + 2π)2.正弦、余弦的对称性:sin(-θ) = -sin(θ)cos(-θ) = cos(θ)3.正弦、余弦的平方和为1:sin^2(θ) + cos^2(θ) = 14.正切的周期性:tan(θ) = tan(θ + π)四、和差角公式:1.正弦和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B) 2.余弦和差角公式:cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)3.正切和差角公式:tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))五、倍角公式:1.正弦倍角公式:sin(2A) = 2sin(A)cos(A)2.余弦倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) 3.正切倍角公式:tan(2A) = 2tan(A) / (1 - tan^2(A))六、半角公式:1.正弦半角公式:sin(A/2) = ±√[(1 - cos(A)) / 2]2.余弦半角公式:cos(A/2) = ±√[(1 + cos(A)) / 2]3.正切半角公式:tan(A/2) = ±√[(1 - cos(A)) / (1 + cos(A))]七、和差化积公式:1.正弦和差化积公式:sin(A) + sin(B) = 2sin[(A+B)/2]cos[(A-B)/2]sin(A) - sin(B) = 2cos[(A+B)/2]sin[(A-B)/2] 2.余弦和差化积公式:cos(A) + cos(B) = 2cos[(A+B)/2]cos[(A-B)/2]cos(A) - cos(B) = -2sin[(A+B)/2]sin[(A-B)/2]。
常用三角函数基本公式

常用三角函数基本公式一、正弦函数(sine function)正弦函数是一种周期函数,其定义域为实数集合。
正弦函数在数学,物理,工程等领域被广泛应用,常用的三角函数基本公式包括以下几个:1. 正弦函数的平方和恒等于1对于任意实数x,有sin^2(x) + cos^2(x) = 1这个公式被称为正弦函数的平方和公式,是三角函数中的基本关系之一。
它表明正弦函数和余弦函数之间存在着简洁的关系,且在三角函数中具有重要的意义。
2. 正弦函数的二倍角公式sin(2x) = 2sin(x)cos(x)正弦函数的二倍角公式描述了正弦函数在角度为2x时的取值,可以用来化简复杂的三角函数表达式。
3. 正弦函数的和差公式sin(x ± y) = sinx cosy ± cosx siny正弦函数的和差公式描述了正弦函数在两个角度之和或差的情况下的取值关系,可用于求解相关三角函数的值。
4. 正弦函数的周期性sin(x + 2πn) = sinx其中n为任意整数,说明正弦函数具有周期性,每2π为一个周期。
二、余弦函数(cosine function)余弦函数是同样具有周期性的三角函数,其常用的基本公式包括以下几个:1. 余弦函数的平方和恒等于1cos^2(x) + sin^2(x) = 1这是余弦函数的平方和公式,与正弦函数的平方和公式相对应。
2. 余弦函数的二倍角公式cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1-2sin^2(x)余弦函数的二倍角公式可以用于简化复杂的余弦函数表达式。
3. 余弦函数的和差公式cos(x ± y) = cosx cosy - sinx siny余弦函数的和差公式描述了余弦函数在两个角度之和或差的情况下的取值关系。
4. 余弦函数的周期性cos(x + 2πn) = cosx余弦函数也具有周期性,每2π为一个周期。
常用的三角函数公式

三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A+tanB 1tan AtanB- 6、tan(A-B)=tan A-tanB 1tan AtanB+ 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A 1tan A- 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B 2-cos A B 2+ 减=减,加 证:左= sinA-sinB= sinA+sin(-B)= 2sin A+(B)2-cos A-(-B)2 =右 16、cosA+cosB=2cos A B 2+cos A B 2- 加=cos 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B 2+cos A B 2-=右 17、cosA-cosB=-2sin A B 2+sin A B 2- 减=sin 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sin A B 2+sin A B 2-=右 补充:18、sin2A=22tan A 1tan A+ 证:左=22222sin A 22tan A 2sin A cos A sin 2A cos A sin 2A=sin A 1tan A sin A cos A 11cos A⋅====+++右19、cos2A=221tan A 1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A cos 2A cos A cos 2A=sin A 1tan A sin A cos A 11cos A---====+++右 五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
三角公式大全

c 2=b 2+a 2 -2abcosC cos A
⒋ S = a ha = ab sin C = bc sin A = ac sin B = =
1 2 1 2 1 2 1 2
abc =2R 2 sin A sin B sin C 4R
a 2 sin B sin C b 2 sin A sin C c 2 sin Asin B = = =pr= p( p a)( p b)( p c) 2 sin B 2 sin C 2 sin A
2 2
2 ⑥ 1 cos 2 cos
④ cos 2
2
⑤ 1 cos 2 sin 2
2
2
⑦ 1 sin (cos sin ) 2 cos sin
2 2 2
2
⑧ tg
2
1 cos sin 1 cos 1 cos 1 cos sin
三角公式 nπR ⒈ l弧长 = r = 180 ⒉正弦定理:
1 1 2 nπ r 2 S 扇= lr = r = 2 2 360
b c a = = = 2R(R 为三角形外接圆半径) sin A sin B sin C
2 2 2 ⒊余弦定理: a =b +c -2bccosA
b 2=a 2+c 2 - 2 a c c o s B
x cos cos csc y sin
y cos tg r
r 1 tg csc x cos
x sin ctg r
⑥ csc
r 1 ctg sec y sin
常用的三角函数公式

三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A +tanB 1tan A tanB -6、tan(A-B)=tan A-tanB1tan AtanB + 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A1tan A - 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B2-cos A B2+ 减=减,加证:左= sinA-sinB= sinA+sin(-B)= 2sinA +(B )2-cos A-(-B)2 =右 16、cosA+cosB=2cosA B 2+cos A B 2- 加=cos 证:令X=A B2+,Y=A B2-,则A=X+Y ,B=X-Y左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B2+cosA B 2-=右 17、cosA-cosB=-2sinA B 2+sin A B2- 减=sin 证:令X=A B2+,Y=A B2-,则A=X+Y ,B=X-Y左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sinA B 2+sin A B 2-=右 补充:18、sin2A=22tan A1tan A +证:左=22222sin A22tan A 2sin A cos A sin 2A cos A sin 2A =sin A 1tan A sin A cos A 11cos A ⋅====+++右19、cos2A=221tan A1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A co s 2A cos A cos 2A =sin A 1tan A sin A cos A 11cos A---====+++右五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
三角函数公式大全

三角函数公式大全三角函数是数学中重要的一个分支,主要研究三角形和三角形函数的相关性质。
下面总结了一些常用的三角函数公式,以便记忆和应用。
1. 正弦函数(Sine Function):正弦是三角函数中最基本的一个函数,记为sin(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:sin(α ± β) = sinαcosβ ± cosαsinβsin(2α) = 2sinαcosα1 + sin^2α = cos^2α2. 余弦函数(Cosine Function):余弦是正弦的补函数,记为cos(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:cos(α ± β) = cosαcosβ ∓ sinαsinβcos(2α) = cos^2α - sin^2α1 + cos^2α = sin^2α3. 正切函数(Tangent Function):正切是正弦与余弦的比值,记为tan(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)tan(2α) = 2tanα / (1 - tan^2α)4. 余切函数(Cotangent Function):余切是正切的倒数,记为cot(x)。
其定义域为除去使得tan(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:cot(α) = 1 / tan(α)5. 正割函数(Secant Function):正割是余弦的倒数,记为sec(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
常用公式:sec(α) = 1 /cos(α)6. 余割函数(Cosecant Function):余割是正弦的倒数,记为csc(x)。
其定义域为除去使得sin(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
三角形公式的汇总

三角形公式的汇总
三角形是一个具有三条边和三个角的多边形。
以下是一些与三角形相关的公式:
1. 周长公式:三角形的周长等于三条边的长度之和。
周长 = 边1长度 + 边2长度 + 边3长度
2. 海伦公式:用于计算三角形的面积,其中海伦公式根据三条边的长度进行计算。
面积 = 平方根(s * (s-边1长度) * (s-边2长度) * (s-边3长度))
其中s = (边1长度 + 边2长度 + 边3长度) / 2
3. 正弦定理:用于计算三角形的角度和边长之间的关系。
正弦定理1:a/sinA = b/sinB = c/sinC
正弦定理2:边长a/sinA = 边长b/sinB = 边长c/sinC
4. 余弦定理:用于计算三角形的角度和边长之间的关系。
余弦定理1:a² = b² + c² - 2bc * cosA
余弦定理2:边长a² = 边长b² + 边长c² - 2bc * cosA
5. 正切定理:用于计算三角形的角度和边长之间的关系。
正切定理1:tanA = a/b
正切定理2:tanA = (b*sinC) / (c-b*cosC)
以上是一些常见的三角形公式,它们可以用于解决与三角形相关的问题。
任意三角形三角函数公式

任意三角形三角函数公式一、正弦定理正弦定理是三角形中的重要定理之一,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用正弦定理来表示三角形的边长和角度之间的关系。
正弦定理的数学表达式为:a/sinA = b/sinB = c/sinC其中a、b、c分别表示三角形ABC的三边的长度,A、B、C表示对应的角度。
通过正弦定理,我们可以计算出三角形中任意一个角的正弦值,从而进一步计算出三角形的边长。
二、余弦定理余弦定理是三角形中的另一个重要定理,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用余弦定理来表示三角形的边长和角度之间的关系。
余弦定理的数学表达式为:c^2 = a^2 + b^2 - 2abcosC其中a、b、c分别表示三角形ABC的三边的长度,C表示对应的角度。
通过余弦定理,我们可以计算出三角形中任意一个角的余弦值,从而进一步计算出三角形的边长。
三、正切定理正切定理是三角形中的另一个重要定理,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用正切定理来表示三角形的边长和角度之间的关系。
正切定理的数学表达式为:tanA = a/b其中a、b分别表示三角形ABC的两边的长度,A表示对应的角度。
通过正切定理,我们可以计算出三角形中任意一个角的正切值,从而进一步计算出三角形的边长。
正弦定理、余弦定理和正切定理是三角形中常用的三角函数公式。
它们描述了三角形中边长和角度之间的关系,可以方便地计算三角形的边长和角度。
在实际应用中,这些三角函数公式被广泛运用于测量、导航、建筑等领域。
通过测量三角形的边长和角度,我们可以确定物体的位置、测量距离、计算高度等。
这些三角函数公式为我们提供了一个强大的工具,帮助我们解决实际问题。
正弦定理、余弦定理和正切定理是解决三角形问题的重要工具。
它们通过三角函数的关系,将三角形的边长和角度联系起来,为我们提供了便捷的计算方法。