RF-MBE生长的AlGaNGaN高电子迁移率晶体管特性(英文)
半导体一些术语的中英文对照

半导体一些术语的中英文对照离子注入机ion implanterLSS理论Lindhand Scharff and Schiott theory 又称“林汉德-斯卡夫-斯高特理论”。
沟道效应channeling effect射程分布range distribution深度分布depth distribution投影射程projected range阻止距离stopping distance阻止本领stopping power标准阻止截面standard stopping cross section 退火annealing激活能activation energy等温退火isothermal annealing激光退火laser annealing应力感生缺陷stress-induced defect择优取向preferred orientation制版工艺mask-making technology图形畸变pattern distortion初缩first minification精缩final minification母版master mask铬版chromium plate干版dry plate乳胶版emulsion plate透明版see-through plate高分辨率版high resolution plate, HRP超微粒干版plate for ultra-microminiaturization 掩模mask掩模对准mask alignment对准精度alignment precision光刻胶photoresist又称“光致抗蚀剂”。
负性光刻胶negative photoresist正性光刻胶positive photoresist无机光刻胶inorganic resist多层光刻胶multilevel resist电子束光刻胶electron beam resistX射线光刻胶X-ray resist刷洗scrubbing甩胶spinning涂胶photoresist coating后烘postbaking光刻photolithographyX射线光刻X-ray lithography电子束光刻electron beam lithography离子束光刻ion beam lithography深紫外光刻deep-UV lithography光刻机mask aligner投影光刻机projection mask aligner曝光exposure接触式曝光法contact exposure method接近式曝光法proximity exposure method光学投影曝光法optical projection exposure method 电子束曝光系统electron beam exposure system分步重复系统step-and-repeat system显影development线宽linewidth去胶stripping of photoresist氧化去胶removing of photoresist by oxidation等离子[体]去胶removing of photoresist by plasma 刻蚀etching干法刻蚀dry etching反应离子刻蚀reactive ion etching, RIE各向同性刻蚀isotropic etching各向异性刻蚀anisotropic etching反应溅射刻蚀reactive sputter etching离子铣ion beam milling又称“离子磨削”。
《AlGaN-GaNMOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》范文

《AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》篇一AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性一、引言随着半导体技术的不断发展,AlGaN/GaN高电子迁移率晶体管(HEMT)已成为射频和微波电路的重要元件。
在HEMT器件中,电子迁移率以及电流-电压(I-V)输出特性是评估其性能的关键参数。
本文将重点研究AlGaN/GaN金属绝缘体半导体高电子迁移率晶体管(MIS-HEMT)的电子迁移率及其I-V输出特性,以期为相关研究与应用提供理论支持。
二、AlGaN/GaN MIS-HEMT结构与工作原理AlGaN/GaN MIS-HEMT是一种利用二维电子气(2DEG)工作的晶体管,其结构主要由AlGaN/GaN层、栅极绝缘层以及源漏电极等部分组成。
在电场作用下,AlGaN/GaN界面处产生2DEG,从而形成导电通道,实现电流的传输。
三、电子迁移率的研究电子迁移率是衡量半导体材料中电子运动能力的重要参数,直接影响着器件的导电性能。
在AlGaN/GaN MIS-HEMT中,电子迁移率受到材料质量、界面态密度、温度等多种因素的影响。
首先,材料质量对电子迁移率的影响至关重要。
高质量的AlGaN/GaN材料具有较低的缺陷密度和较高的载流子浓度,从而使得电子迁移率得以提高。
其次,界面态密度也会对电子迁移率产生影响。
界面处存在过多的陷阱态会散射电子,降低其迁移率。
此外,温度也是影响电子迁移率的重要因素。
随着温度的升高,电子的热运动加剧,使得迁移率降低。
四、I-V输出特性的研究I-V输出特性是描述器件电流与电压关系的曲线,反映了器件的导电性能和稳定性。
在AlGaN/GaN MIS-HEMT中,I-V输出特性受到栅极电压、源漏电压以及器件结构等因素的影响。
首先,栅极电压对I-V输出特性具有显著影响。
当栅极电压增大时,2DEG的密度增加,导致电流增大。
其次,源漏电压的变化也会引起I-V特性的变化。
第三讲高电子迁移率晶体管

3
Wireless Communication Application Spectrum
InP – HBT, HEMT MEHMT GaAs - HBT, PHEMT GaN - HEMT SiGe – HBT, BiCMOS Si – RF SiC -CMOS Si-LDMOS MESFET 0.8 Hz 2 GHz GaAs
GaN-on-SiC
S G D
Low Capacitance High Efficiency Enables High Efficiency Circuit Techniques Smaller Heat sink Benefits Reduced: (1) size/complexity (2) cooling (3) weight and (4) cost
powe r (Wa tts )
Silicon GaAs HBT
GaN HEMT
10
1
GaAs HEMT
0.1 1 10 frequency (GHz) 100
6
HPPL GaN Product Definitions
Matched Power Transistors (MPT) High power amplifier; 48V-65V, 40-500watts Pulsed; optimized for high power/efficiency, Input/Output matched 25 to 50Ω interface Broadband Power Transistors (BPT) High power amplifier; 48V 30 to 120 watts CW; optimized for high power/efficiency, Input matched no output match Wide-Band Power IC (PIC) High power ‘ gain block’ ; 28V to 48V, 10w to 30w; Wide bandwidth constant gain, 50Ω input matched Unmatched Power Transistor (UPT) High power amplifiers; 10-120 watts CW; No input or output match, tunable bandwidth and high peak efficiency
GaN微波功率高电子迁移率晶体管(HEMT)新结构新工艺研究的开题报告

AlGaN/GaN微波功率高电子迁移率晶体管(HEMT)新结构新工艺研究的开题报告一、选题背景微波功率高电子迁移率晶体管(HEMT)是近年来发展较快的一种功率器件,其在高频率、高功率、低噪声等方面具有优异的性能,已广泛应用于无线通信、雷达、卫星通信等领域。
其中,AlGaN/GaN HEMT因其具有高电子迁移率、高应力场、宽禁带宽和良好的退化稳定性等特点而备受关注。
在传统AlGaN/GaN HEMT的结构中,通常采用Si或SiC衬底,但这种衬底的导热性能、热稳定性和生长质量等方面均存在一些问题。
为了克服这些问题,近年来出现了一些新的AlGaN/GaN HEMT结构和工艺,如采用氮化硼(BN)衬底、采用二氧化硅(SiO2)隔离层、采用超晶格等。
这些新结构和新工艺对于AlGaN/GaN HEMT的性能提升、工艺优化和应用拓展具有重要意义。
二、研究目的本研究的目的是探讨AlGaN/GaN HEMT的新结构和新工艺对器件性能的影响,以期为AlGaN/GaN HEMT的进一步应用和发展提供技术支持。
具体目标如下:1. 设计和优化AlGaN/GaN HEMT的新结构,包括采用氮化硼(BN)衬底、采用二氧化硅(SiO2)隔离层、采用超晶格等。
2. 分别采用气相外延(MOVPE)和分子束外延(MBE)工艺生长AlGaN/GaN HEMT的新结构。
3. 测试、比较和分析不同结构和工艺条件下AlGaN/GaN HEMT的电学性能,如电流-电压(I-V)特性、传输线模型(TLM)测试、微波特性、噪声特性等。
三、研究方法本研究采用实验研究方法,分为设计和优化结构、生长和制备样品、测试和分析性能等三个阶段。
具体方法如下:1. 设计和优化AlGaN/GaN HEMT的新结构,采用模拟软件进行仿真分析和优化。
2. 分别采用气相外延(MOVPE)和分子束外延(MBE)工艺生长AlGaN/GaN HEMT的新结构样品。
3. 利用测试设备测量、比较和分析不同结构和工艺条件下AlGaN/GaN HEMT的电学性能,如电流-电压(I-V)特性、传输线模型(TLM)测试、微波特性、噪声特性等。
《AlGaN-GaNMOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》范文

《AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》篇一AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性AlGaN/GaN MOS(MIS)HEMT中的电子迁移率及Ⅰ-Ⅴ输出特性的研究一、引言AlGaN/GaN 高电子迁移率晶体管(High Electron Mobility Transistor,简称HEMT)作为一种重要的半导体器件,广泛应用于高频、高功率和射频等领域。
其中,电子迁移率及Ⅰ-Ⅴ输出特性是评价HEMT性能的重要指标。
本文将就AlGaN/GaN MOS (Metal-Insulator-Semiconductor HEMT)结构中电子迁移率及Ⅰ-Ⅴ输出特性的相关研究进行详细阐述。
二、AlGaN/GaN MOS HEMT结构及工作原理AlGaN/GaN MOS HEMT是一种利用AlGaN/GaN异质结界面处二维电子气(2DEG)的半导体器件。
其基本结构包括n型GaN沟道层、AlGaN势垒层以及位于AlGaN层上的绝缘层和金属栅极。
在工作过程中,通过栅极电压的控制,实现2DEG的开启与关闭,从而控制电流的传输。
三、电子迁移率的研究电子迁移率是衡量半导体材料中电子运动能力的物理量,对于HEMT器件的性能具有重要影响。
在AlGaN/GaN MOS HEMT中,电子迁移率受到材料质量、界面质量以及外加电场等多种因素的影响。
首先,材料质量是影响电子迁移率的关键因素。
高质量的GaN和AlGaN材料具有较低的缺陷密度,有利于提高电子迁移率。
此外,界面质量也对电子迁移率产生重要影响。
界面处的粗糙度、氧化物层等都会影响2DEG的形成和传输,从而影响电子迁移率。
其次,外加电场对电子迁移率也有显著影响。
在HEMT器件中,通过施加适当的栅极电压,可以调整2DEG的分布和密度,从而优化电子迁移率。
此外,温度也是影响电子迁移率的重要因素。
随着温度的升高,电子迁移率会受到散射机制的影响而降低。
高电子迁移率晶体管(HEMT)

高电子迁移率晶体管(HEMT)高电子迁移率晶体管(HEMT,High Electron Mobility Transistor):HEMT是一种异质结场效应晶体管(HFET),又称为调制掺杂场效应晶体管(MODFET)、二维电子气场效应晶体管(2-DEGFET)、选择掺杂异质结晶体管(SDHT)等。
这种器件及其集成电路都能够工作于超高频(毫米波)、超高速领域,原因就在于它采用了异质结及其中的具有很高迁移率的所谓二维电子气来工作的。
上世纪70年代采用MBE 和MOCVD就制备出了异质结。
1978年Dingle等首先证实了在AlGaAs/GaAs调制掺杂异质结中存在高迁移率二维电子气;然后于1980年,Mimura等、以及Delagebeaudeuf等研制出了HEMT。
从此HEMT就很快地发展起来了,有可能在高速电路领域内替代MESFET。
HEMT的原理结构和能带图(1)FET-IC实现超高频、超高速的困难(提高载流子迁移率的重要性)因为一般的场效应集成电路为了达到超高频、超高速,必须要减短信号传输的延迟时间τd ∝ CL/(μnVm)和减小器件的开关能量(使IC 不致因发热而损坏)E = ( Pd τd )≈CLVm2/2,而这些要求在对逻辑电压摆幅Vm的选取上是矛盾的,因此难以实现超高频、超高速。
解决此矛盾的一个办法就是,首先适当降低逻辑电压摆幅, 以适应IC稳定工作的需要,而要缩短τd 则主要是着眼于提高电子的迁移率μn,这就发展出了HEMT。
(2)HEMT的工作原理:HEMT的基本结构就是一个调制掺杂异质结。
在图中示出了AlGaAs/GaAs异质结HEMT的结构和相应的能带图;在宽禁带的AlGaAs层(控制层)中掺有施主杂质,在窄禁带的GaAs层(沟道层)中不掺杂(即为本征层)。
这里AlGaAs/GaAs就是一个调制掺杂异质结,在其界面、本征半导体一边处,就构成一个电子势阱(近似为三角形),势阱中的电子即为高迁移率的二维电子气(2-DEG),因为电子在势阱中不遭受电离杂质散射,则迁移率很高。
半导体器件物理专题 -HEMT综述

2.GaN体系HEMT
HEMT的关键是掺杂层和沟道层问的异质结。传统的GaAs或 InP基HEMT,掺杂层是n型掺杂,施主是2DEG的主要来源。 异质结处存在导带差,驱使电子从掺杂层进入到沟道层,并 将电子限制在沟道层内距异质结处几纳米范围内,形成2DEG。 高2DEG而密度是HEMT设计的目标。在GaN基HEMT中,除去 导带差异因素外,AIGaN和GaN的极化效应也能生成2DEG。 2DEG中的电子有三个主要来源:(1)从掺杂AIGaN层转移的电 子;(2)GaN沟道层巾杂质的贡献;(3)由极化效应诱生的上述 来源的电子。AIGaN/GaN界面处2DEG的面电子密度既取决 于导带不连续程度和异质结构的人为掺杂,又受到压电和自 发极化效应的影响。
二.两种体系的HEMT
以 GaAs 或者 GaN 制备的高电子迁移率晶体管(High Electron Mobility Transistors)以及赝配高电子迁移率晶体 管(Pseudo orphic HEMT)被普遍认为是最有发展前途的 高速电子器件之一。由于此类器件所具有超高速、低功 耗、低噪声的特点(尤其在低温下),极大地满足超高速计 算机及信号处理、卫星通信等用途上的特殊需求,故而 HEMT 器件受到广泛的重视。作为新一代微波及毫米波器 件,HEMT 器件无论是在频率、增益还是在效率方面都表 现出无与伦比的优势. 经过 10 多年的发展,HEMT 已经具 备了优异的微波、毫米波特性,已成为 2~100 GHz 的卫星 通信、射电天文、电子战等领域中的微波毫米波低噪声 放大器的主要器件。同时他也是用来制作微波混频器、 振荡器和宽带行波放大器的核心部件。
1.GaAs体系HEMT
InGaAs层厚度约为20nm,能吸 收由于GaAs和InGaAs之间的晶 格失配(约为1%)而产生的应 力,在此应力作用下,InGaAs 的晶格将被压缩,使其晶格常 数大致与GaAs与AlGaAs的相匹 配,成为赝晶层。因为InGaAs 薄层是一层赝晶层且在HEMT中 起着 i –GaAs层的作用,所以成 为“赝”层,这种HEMT也就相 应地成为赝HEMT。
hemt 指标

hemt 指标
HEMT(High Electron Mobility Transistor,高电子饱和迁移率晶体管)的指标主要包括以下几个方面:
1. 最大漏极电流(Idmax):指HEMT能承受的最大漏极电流。
大的Idmax意味着HEMT能够提供更大的功率。
2. 饱和漏极导通电压(Vdsat):指HEMT在饱和区漏极-源极电压。
较低的Vdsat表示更低的功耗和更高的效率。
3. 阈值电压(Vth):指HEMT的门极电压,用于控制漏极电流。
较低的Vth意味着HEMT可以在更低的门极电压下工作。
4. 迁移率(µ):指电荷在半导体中的移动速率。
高的迁移率意味着HEMT可以提供更好的高频性能和更快的开关速度。
此外,GaN HEMT器件性能的评估,一般包含静态参数测试(I-V 测试)、频率特性(小信号S参数测试)、功率特性(Load-Pull测试)。
静态参数,也被称作直流参数,是用来评估半导体器件性能的基础测试,也是器件使用的重要依据。
以阈值电压Vgs(th)为例,其值的大小对研发人员设计器件的驱动电路具有重要的指导意义。