高电子迁移率晶体管
HEMT高电子迁移率晶体管

HEMT⾼电⼦迁移率晶体管第五章⾼电⼦迁移率晶体管5.1 HEMT的基本结构和⼯作原理5.2 HEMT基本特性5.3 赝⾼电⼦迁移率晶体管5.1 HEMT的基本结构和⼯作原理⾼电⼦迁移率晶体管(High Electron Mobility Transistor ,HEMT),也称为2-DEG场效应晶体管;因⽤的是调制掺杂的材料,所以⼜称为调制掺杂场效应管。
1978年R.Dingle ⾸次在MBE(分⼦束外延)⽣长的调制掺杂GaAs/AlGaAs超晶格中观察到了相当⾼的电⼦迁移率。
1980年⽇本富⼠通公司的三村研制出了HEMT,上世纪80年代HEMT成功的应⽤于微波低噪声放⼤,并在⾼速数字IC⽅⾯取得了明显得进展。
传讯速度的关键在于电⼦移动速率快慢,HEMT中的电⼦迁移率很⾼,因此器件的跨导⼤、截⽌频率⾼、噪声低、开关速度快。
2作为低噪声应⽤的HEMT已经历了三代变化,低噪声性能⼀代⽐⼀代优异:第⼀代:AlGaAs/GaAs HEMT,12GHz下,NF为0.3dB,增益为16.7dB。
第⼆代:AlGaAs/InGaAs/GaAs HEMT (PHEMT赝⾼电⼦迁移率晶体管),40GHz下,NF为1.1dB;60GHz下,NF为1.6dB;94GHz下,NF为2.1dB。
第三代:InP基HEMT,40GHz下,NF为0.55dB;60GHz下,NF为0.8dB;95GHz下,NF为1.3dB。
AlGaAs/GaAs HEMT的基本结构制作⼯序:在半绝缘GaAs衬底上⽣长GaAs缓冲层(约0.5µm)→⾼纯GaAs层(约60nm)→n型AlGaAs层(约60nm)→n型GaAs层(厚约50nm)→台⾯腐蚀隔离有源区→制作Au/Ge合⾦的源、漏欧姆接触电极→⼲法选择腐蚀去除栅极位置n型GaAs层→淀积Ti/Pt/Au栅电极。
图5-1 GaAs HEMT基本结构HEMT是通过栅极下⾯的肖特基势垒来控制GaAs/AlGaAs异质结中的2-DEG的浓度实现控制电流的。
《AlGaN-GaNMOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》范文

《AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》篇一AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性一、引言随着半导体技术的不断发展,AlGaN/GaN高电子迁移率晶体管(HEMT)已成为射频和微波电路的重要元件。
在HEMT器件中,电子迁移率以及电流-电压(I-V)输出特性是评估其性能的关键参数。
本文将重点研究AlGaN/GaN金属绝缘体半导体高电子迁移率晶体管(MIS-HEMT)的电子迁移率及其I-V输出特性,以期为相关研究与应用提供理论支持。
二、AlGaN/GaN MIS-HEMT结构与工作原理AlGaN/GaN MIS-HEMT是一种利用二维电子气(2DEG)工作的晶体管,其结构主要由AlGaN/GaN层、栅极绝缘层以及源漏电极等部分组成。
在电场作用下,AlGaN/GaN界面处产生2DEG,从而形成导电通道,实现电流的传输。
三、电子迁移率的研究电子迁移率是衡量半导体材料中电子运动能力的重要参数,直接影响着器件的导电性能。
在AlGaN/GaN MIS-HEMT中,电子迁移率受到材料质量、界面态密度、温度等多种因素的影响。
首先,材料质量对电子迁移率的影响至关重要。
高质量的AlGaN/GaN材料具有较低的缺陷密度和较高的载流子浓度,从而使得电子迁移率得以提高。
其次,界面态密度也会对电子迁移率产生影响。
界面处存在过多的陷阱态会散射电子,降低其迁移率。
此外,温度也是影响电子迁移率的重要因素。
随着温度的升高,电子的热运动加剧,使得迁移率降低。
四、I-V输出特性的研究I-V输出特性是描述器件电流与电压关系的曲线,反映了器件的导电性能和稳定性。
在AlGaN/GaN MIS-HEMT中,I-V输出特性受到栅极电压、源漏电压以及器件结构等因素的影响。
首先,栅极电压对I-V输出特性具有显著影响。
当栅极电压增大时,2DEG的密度增加,导致电流增大。
其次,源漏电压的变化也会引起I-V特性的变化。
半导体器件物理专题 -HEMT ppt课件

ppt课件
4
二.两种体系的HEMT
以 GaAs 或者 GaN 制备的高电子迁移率晶体管(High Electron Mobility Transistors)以及赝配高电子迁移率晶体 管(Pseudo orphic HEMT)被普遍认为是最有发展前途的 高速电子器件之一。由于此类器件所具有超高速、低功 耗、低噪声的特点(尤其在低温下),极大地满足超高速计 算机及信号处理、卫星通信等用途上的特殊需求,故而
图3 GaN HEMT 基本结构
ppt课件
10
1.GaAs体系HEMT
PHEMT较之常规HEMT的优点:
(1)InGaAs层二维电子气的电子迁移率和饱和速度皆 高于 GaAs,前者电子饱和漂移速度达到了 7.4×1017cm2V-1S-1,后者为4.4×1017cm2V-1S-1,因 此工作频率更高。
则不受电离杂质散射的影响, 所以迁移率很高。
ppt课件
8
1.GaAs体系HEMT
在低温下HEMT的特性将发生退化,主要是由于nAlGaAs层存在一种所谓DX中心的陷阱,它能俘获和放出 电子,使得2-DEG浓度随温度而改变,导致阈值电压不 稳定。实验表明:对掺硅的AlxGa1-xAs,当x<0.2基本不 产生DX中心,反之则会出现高浓度的DX中心。对于 HEMT中的n-AlGaAs层,为了得到较高的能带突变通常 取x=0.3,必然会有DX中心的影响。 为了解决这个问题,1985年Maselink采用非掺杂的 InGaAs代替非掺杂的GaAs作为2-DEG的沟道材料制成 了赝高电子迁移率晶体管PHEMT。
ppt课件
11
2.GaN体系HEMT
HEMT是通过栅极下面的肖特基(Schottky)势垒来控制 AlGaN/GaN异质结中的2DEG的浓度而实现对电流的 控制。栅极下面的以型A1GaN层,由于Schottky势垒 的作用和电子向未掺杂GaN层转移,将全部耗尽。转 移到未掺杂GaN层去的电子即在异质结界面处三角形 势阱中形成2DEG;这些2DEG与处在AlGaN层中的杂质 中心在空问上是分离的,不受电离杂质的影响,从而 迁移率很高。
半导体器件物理专题 -HEMT综述

2.GaN体系HEMT
HEMT的关键是掺杂层和沟道层问的异质结。传统的GaAs或 InP基HEMT,掺杂层是n型掺杂,施主是2DEG的主要来源。 异质结处存在导带差,驱使电子从掺杂层进入到沟道层,并 将电子限制在沟道层内距异质结处几纳米范围内,形成2DEG。 高2DEG而密度是HEMT设计的目标。在GaN基HEMT中,除去 导带差异因素外,AIGaN和GaN的极化效应也能生成2DEG。 2DEG中的电子有三个主要来源:(1)从掺杂AIGaN层转移的电 子;(2)GaN沟道层巾杂质的贡献;(3)由极化效应诱生的上述 来源的电子。AIGaN/GaN界面处2DEG的面电子密度既取决 于导带不连续程度和异质结构的人为掺杂,又受到压电和自 发极化效应的影响。
二.两种体系的HEMT
以 GaAs 或者 GaN 制备的高电子迁移率晶体管(High Electron Mobility Transistors)以及赝配高电子迁移率晶体 管(Pseudo orphic HEMT)被普遍认为是最有发展前途的 高速电子器件之一。由于此类器件所具有超高速、低功 耗、低噪声的特点(尤其在低温下),极大地满足超高速计 算机及信号处理、卫星通信等用途上的特殊需求,故而 HEMT 器件受到广泛的重视。作为新一代微波及毫米波器 件,HEMT 器件无论是在频率、增益还是在效率方面都表 现出无与伦比的优势. 经过 10 多年的发展,HEMT 已经具 备了优异的微波、毫米波特性,已成为 2~100 GHz 的卫星 通信、射电天文、电子战等领域中的微波毫米波低噪声 放大器的主要器件。同时他也是用来制作微波混频器、 振荡器和宽带行波放大器的核心部件。
1.GaAs体系HEMT
InGaAs层厚度约为20nm,能吸 收由于GaAs和InGaAs之间的晶 格失配(约为1%)而产生的应 力,在此应力作用下,InGaAs 的晶格将被压缩,使其晶格常 数大致与GaAs与AlGaAs的相匹 配,成为赝晶层。因为InGaAs 薄层是一层赝晶层且在HEMT中 起着 i –GaAs层的作用,所以成 为“赝”层,这种HEMT也就相 应地成为赝HEMT。
GaN高电子迁移率晶体管的研究进展

基金项目:国家自然科学基金重点基金(60736033);西安应用材料创新基金项目(XA-AM-200703)定稿日期:2008-10-10作者简介:张金风(1977-),女,陕西铜川人,博士,副教授,研究方向为GaN 器件机理等。
1引言在化合物半导体电子器件中,高电子迁移率晶体管(HEMT )是应用于高频大功率场合最主要的器件。
这种器件依靠半导体异质结中具有量子效应的二维电子气(2DEG )形成导电沟道,2DEG 的密度、迁移率和饱和速度等决定了器件的电流处理能力。
基于GaN 及相关Ⅲ族氮化物材料(AlN ,InN )的HEMT 则是目前化合物半导体电子器件的研究热点。
与第2代半导体GaAs 相比,GaN 在材料性质方面具有禁带宽、临界击穿电场高、电子饱和速度高、热导率高、抗辐照能力强等优势,因此GaN HEMT 的高频、耐压、耐高温、耐恶劣环境的能力很强;而且Ⅲ族氮化物材料具有很强的自发和压电极化效应,可显著提高HEMT 材料结构中2DEG 的密度和迁移率,赋予GaN HEMT 非常强大的电流处理能力。
根据各种半导体的材料性能,从输出功率和频率的角度给出了具体应用范围。
显然,GaN HEMT 非常适合无线通信基站、雷达、汽车电子等高频大功率应用;在航空航天、核工业、军用电子等对化学稳定性和热稳定性要求很高的应用场合,GaN HEMT 也是理想的候选器件之一。
自1993年第一只GaN HEMT 问世以来[1],对它的研究速度很快且成果丰富,但即便是已发展到初步商用的今天,该领域仍存在大量的科学问题,表现出“需求超前于技术,技术超前于科研”的特点。
进入21世纪以后,GaN HEMT 的材料结构以AlGaN/GaN异质结为主,器件工艺和热处理手段基本成熟,主要研究热点集中在通过器件结构设计和材料结构纵向设计来提高GaN HEMT 的频率特性和功率特性,削弱和消除电流崩塌等相关可靠性问题。
在此将全面综述这些研究进展。
InP基高电子迁移率晶体管

2014-01-05
主要内容
半导体发光材料的发光机理简介 半导体材料的分类
半导体材料的制备工艺简介
22
发展背景
• 随着社会的发展和技术的进步,宽带通信、高精度雷达和航空遥感等军民用领域对 高频系统需求越来越迫切。
凭借优良的频率特性,III-V族化合物半导体器件和相关高频、高速电路正日 益成为毫米波系统核心部件,成为大家竞相研究的焦点。在众多的III-V族化合物 半导体器件中,磷化铟(InP)基高电子迁移率晶体管(HEMT)具有电子迁移率 高、噪声低、功耗低及增益高等特点,在高速、高频等应用领域占据了重要的地 位。虽然目前InP HEMT还受到材料昂贵且易碎等方面的制约,但是凭借优异的高 频特性和低噪声性能,被公认为是实现超高速低噪声、功率放大电路的最佳选择, 拥有非常广阔的应用前景。因此,无论是满足军事国防需求还是提高我国在未来 信息市场的竞争力,我们必须首先独立研发高频InP HEMT器件。
14 14
15 15
16 16
• 对于HEMT材料的器件研究,提高2DEG浓度和迁移率是至关重要。2DEG的 浓度主要受异质结材料导带偏移量ΔEc和杂质掺杂浓度以及电子转移效率的 影响。在材料一定的前提下,ΔEc就确定了,而过大的掺杂浓度必然导致平行 电导的出现。电子转移效率主要受势垒层及隔离层厚度影响并已经得到了系 统的研究。量子阱宽度对量子阱中电子在不同能级之间的分布以及对材料宏 观的2DEG浓度和迁移率的影响对于进一步优化InP基HEMT器件极为重要, 可是至今还缺乏这方面系统的实验研究。
44
55
66
77
国外 4 英寸 InP 基器件工艺线已成熟并达到制造商业产品的水准,而我国 InP基材料、 器件和电路研究起步较晚,至今没有一条专门的 InP 工艺线,无论是器件还是电路性能 和国外先进水平相比都存在很大的差距。InP 毫米波技术的缺失,直接制约着我国武 器装备的发展。不过近年来随着国家的重视和知识创新体系的建立,经过广大科研工 作者的共同努力,该领域研究也取得了长足的进步。
《半导体器件物理专题HEMT》PPT课件讲义

三.HEMT的应用
Applications are similar to those of MESFETs – microwave and millimeter wave communications, imaging, radar, and radio astronomy – any application where high gain and low noise at high frequencies are required. HEMTs have shown current gain to frequencies greater than 600 GHz and power gain to frequencies greater than 1 THz. (Heterojunction bipolar transistors were demonstrated at current gain frequencies over 600 GHz in April 2005.) Numerous companies worldwide develop and manufacture HEMT-based devices. These can be discrete transistors but are more usually in the form of a 'monolithic microwave integrated circuit' (MMIC). HEMTs are found in many types of equipment ranging from cell-phones and DBS receivers to electronic warfare systems such as radar and for radio astronomy.
HEMT介绍范文

HEMT介绍范文HEMT,也称为高电子迁移率晶体管(High Electron Mobility Transistor),是一种半导体器件,具有高迁移率电子的特点,因此被广泛应用于高频和高速功率放大器等领域。
HEMT是一种复合半导体器件,通常由两种不同材料的结合构成,这种结构可以优化电子的传输性能,进而提高器件的性能。
HEMT的结构通常由一个宽禁带材料和一个窄禁带材料组成。
宽禁带材料常用的有氮化镓(GaN)和砷化铟(InAs),窄禁带材料常用的是砷化铟(InAs)。
这种结构的选择是基于两种材料之间的能带差异,宽禁带材料有助于提高电子的迁移率,而窄禁带材料则用于形成电子通道。
在HEMT中,电子在窄禁带材料中被约束在二维电子气层(2DEG)中,这个电子气层位于材料的界面上。
由于窄禁带材料的特性,这个电子气层中的电子迁移率非常高。
与普通的金属氧化物半导体场效应晶体管(MOSFET)等器件相比,HEMT在高频和高速应用中具有许多显著优势。
首先,由于高迁移率电子的存在,HEMT可以实现更高的工作频率。
高迁移率意味着电子可以更快地通过通道,并且在高频应用中具有更好的传输性能。
这使得HEMT可以处理更高速度的数据传输和信号处理任务,因此在无线通信、卫星通信和雷达等领域中非常重要。
其次,HEMT能够提供更高的输出功率。
由于窄禁带材料的特性,HEMT具有非常低的电阻和电容。
这意味着HEMT可以在更短的时间内实现电流和电荷的快速传输,从而使其能够提供更高的功率放大能力。
这对于需要高功率输出的应用,如功率放大器和射频发射器等设备,非常重要。
此外,HEMT还具有较低的噪声特性。
由于窄禁带材料的特性以及其在高频范围内的工作能力,HEMT具有较低的噪声系数。
这对于接收信号和低噪声放大器等应用非常重要,可以提高接收灵敏度和信号质量。
然而,HEMT也有一些限制。
由于其复杂的结构和制造过程,制造HEMT的成本较高。
同时,由于HEMT对材料和工艺的要求较高,其制造过程需要更高的技术水平和更复杂的设备。