最新二元一次方程组培优竞赛测试题(1)
人教版七年级数学下册《二元一次方程组》培优测试卷

人教版七年级数学下册《二元一次方程组》培优测试卷WORD 格式二元一次方程组测试卷一、选择题:x31、已知是方程 kxy3 的解,那么 k 的值是()y3A 、 2B 、-2C 、 1D 、-12、若方程 ax3y 2x6 是二元一次方程,则a 必定知足()、2、2、a2 、A aB aCD a03、若是 xy1 和 2(2x y 3) 2 互为相反数,那么x 、y 的值是()A 、 x1x1x2x2B 、C 、D 、y 2y 2 y1y14、方程 3x 2y8 的正整数解有()A 、1 组B 、2 组C 、3 组D 、4 组5、现有 190 张铁皮做盒 每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配子,成 x 张铁皮做盒身, y 张铁皮做盒底,则可列方程组为一个完满的盒子,设用( ) A 、xy190 、xy 190、 2yx190x 2y190、BCD28x22y2 22y 8x8x22y 2 8x 22yax by 0x26、已知对于 x 、 y 的方程组的解为则 a 、 b 的值是()3ax 2by10y1a1a2a1a2 A 、B 、C 、D 、b 2 b 1b2 b17、以下方程组中,是二元一次方程组的是()xy 5115 x 2 y10xy8 x1xy6xy2xy15xy3A.B.C.D.8、用加减法解方程组时,由②-①得()A. 8y5B.8y5C.8y9D.2y52x y53xy 109、以下方程组中与拥有相同的解的方程组是()xy72362x3y9 y1x y4x y33x2y11A. x2y5B.x y2C.322D.10、已知4x ny与5xy是同类项,则m与 n 的值分别是 ()4mn3m专业资料整理WORD格式A.4 、1、4、8、0专业资料整理WORD格式11、在等式y axb中,当 x 1 时,y2;当 x 2 时,y4,那么a,b的值分别是()A.2 和0和 2和- 4 D.-4和 612. 对于二元一次方程4xy8的解,以下说法正确的选项是()A. 随意一对有理数都是它的解B.有无数组解C. 只有一组解D.只有两组解二、填空题:13、在方程 1x2y 6 中,用含 x 的代数式表示y,则 y=。
二元一次方程组培优竞赛测试题(1)

二元一次方程组测试题姓名:得分:一.选择题(每小题3分,共30分)1、若+|2a﹣b+1|=0,则(b﹣a)2016 =()A.﹣1 B.1 C.52015 D.﹣520152、利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×23、为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.14、如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣3 5、若关于,x y的方程组3921ax yx y+=⎧⎨-=⎩无解,则a的值为()A.6-B.6C.9D.306、若,,x y z都不为0,由方程组2302340x y zx y z-+=⎧⎨-+=⎩可得::x y z是()A.1:2:1B.1:(2):1-C.(1):2:1-D.1:2:(1)-7.方程组12,6x yx y⎧+=⎪⎨+=⎪⎩的解的个数为().(A)1 (B)2(C) 3 (D)48、某商店出售某种商品每件可获利m元,利润为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()A. 25%B. 20%C. 16%D. 12.5%9、如果代数式ax5+bx3+cx-5当x= --2时的值是7,那么当x= 2时该式的值是()A. 7B. -12C. --17D. 810、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是其子女两年前年龄和的10倍,他们6年后的年龄和是其子其女6年后年龄和的3倍。
《二元一次方程组》 培优训练(含答案)

期末复习:《二元一次方程组》培优训练一.选择题1.方程组的解是()A.B.C.D.2.若二元一次方程组的解为则a+b的值为()A.0 B.1 C.2 D.44.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3 B.4 C.5 D.65.我们知道方程组:的解是,则方程组的解是()A.B.C.D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.47.如果关于x,y的二元一次方程组的解为,则方程组的解为()A.B.C.D.8.关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2二.填空题11.若a+2b=8,3a+4b=18,则a+b的值为.12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.14.若二元一次方程组的解为,则m+n=15.有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为.三.解答题18.解方程(1)(2)19.对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.21.某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.24.阅读理解:小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:解:将方程②变形为:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入方程③得:2×3+y=5解得y=﹣1把y=﹣1代入方程①得x=4∴方程组的解是(1)模仿小聪的解法,解方程组(2)已知x,y满足方程组,解答:(ⅰ)求x2+4y2的值;(ⅱ)求3xy的值.参考答案一.选择题1.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.2.解:把代入方程组得:,解得:,则a+b=2,故选:C.3.解:设小长方形的长为x,宽为y,如图可知,.故选:A.4.解:设宾馆有客房:单人间x间、二人间y间、三人间z间,根据题意可得,,解得:y+2z=9,y=9﹣2z,∵x,y,z都是小于9的正整数,当z=1时,y=7,x=1;当z=2时,y=5,x=2;当z=3时,y=3,x=3当z=4时,y=1,x=4当z=5时,y=﹣1(不合题意,舍去)∴租房方案有4种.故选:B.5.解:∵方程组:的解是,∴由方程组可得,解得.故选:C.6.解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.7.解:由方程组得,根据题意知,即,故选:C.8.解:解方程组得:,∵x=y,∴=+1,解得:k=0.故选:B.9.解:设雉有x只,兔有y只,依题意,得:,解得:.故选:A.10.解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:,解得,故x+yz=5+5×2=15.故选:B.二.填空题(共7小题)11.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.12.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.13.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.14.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.15.解:由题意可得,,故答案为:.16.解:∵关于x、y的二元一次方程组的解是,∴关于a.b的二元一次方程组满足,解得.故关于a.b的二元一次方程组的解是.故答案为:.17.解:设笼中有x只雉,y只兔,根据题得,①,解得,不符合题;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.三.解答题(共7小题)18.解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.19.解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=1,则x+y=.20.解:设合伙人为x人,羊价为y钱,依题意,得:,∴甲同学列的方程组正确,解该方程组,得:.答:合伙人为21人,羊价为150钱.21.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,依题意,得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.解:(1)4+3=7(张),1+2=3(张).故答案为:7;3.(2)设可加工的竖式容器x个,横式容器y个,依题意,得:,解得:.答:可加工的竖式容器100个,横式容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:.∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒24.解:(1)把方程②变形:3(3x﹣2y)+2y=19 ③把①代入③得:15﹣2y=19,得y=2把y=2代入①得x=3则方程组的解为(2)(ⅰ)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③②式整理得2(x2+4y2)+xy=36 ④将③代入④得解得xy=2将xy=2代入③得x2+4y2=17(ⅱ)由(ⅰ)知xy=2,则3xy=6。
浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷1

浙教版2022-2023学年七下数学第二章 二元一次方程组 培优测试卷1考试时间:120分钟 满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.若(m −1)x +my =3是关于x 、y 的二元一次方程,则m 的值不可以是( )A .−1B .1C .2D .32.下列各组数中,是二元一次方程2x ﹣y =﹣6的解的是( ) A .{x =−2y =−2 B .{x =0y =−6 C .{x =1y =8 D .{x =3y =13.用加减消元法解二元一次方程组{x −y =7①2x −3y =2②时,下列能消元的是( ) A .①×2+②B .①×3+②C .①×2-②D .①×(-3)-② 4.已知方程组{x +y =−1ax +5y =4和{x −y =35x +by =1有相同的解,则a −2b 的值为() A .9 B .10 C .11 D .125.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,长沙市举办了青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共20个,若桌子腿数与凳子腿数的和为64条,则每个比赛场地有几张桌子和几条凳子?设有x 张桌子,有y 条凳子,根据题意所列方程组正确的是( )A .{x +y =644x +3y =20B .{x +y =204x +3y =64C .{x +y =643x +4y =20D .{x +y =203x +4y =646.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置( )个球.A .5B .6C .7D .87.有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,则一个大桶比一个小桶可以多盛酒( )A .14 斛B .12 斛C .15 斛D .13 斛 8.方程 2x +3y =10 的正整数解的个数是( )A .1个B .2 个C .3 个D .无数个 9.已知关于 x ,y 的方程组 {x +y =2+a x −y =3a −6,给出下列结论:①当 x ,y 互为相反数时, a =−2 ;②当 a =−5 时解得 x 为 y 的2倍;③不论 a 取什么实数, x +2y 的值始终不变;④使 x ,y 为自然数的 a 的值共有4个.上述结论正确的有( )A .①③B .②④C .①②③D .①③④10.已知实数 x , y 同时满足三个条件:①x −y =4−p ;②x +y =2+3p ;③x >y ,那么实数 p 的取值范围是( )A .p >43B .p <43C .p >4D .p <4二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.把二元一次方程 3x −5y −3=0 化成用x 表示y 的形式,则y= . 12.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,那么甲、乙、丙三个数分别是 .13.已知m 为整数,方程组 {4x −3y =66x +my =26有正整数解,则m= .14.若关于x ,y 的方程组 {3x −ay =162x +by =15 的解是 {x =7y =1 ,则方程组 {3(x −2y)−ay =162(x −2y)+by =15 的解是 .15.在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是 cm 2.16.对于问题“若方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2 的解是 {x =6y =8 ,求方程组 {3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”有同学提出了把第二个方程组的两个方程的两边都除以5,然后用“换元法”来解决,请用“换元法”求出该方程组的解为 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解方程组 (1){x +y =−12x −y =−8(2){2x +3y =−75x −4y =1718.已知{x =3y =−2与{x =−1y =6都是方程ax −y +b =0的解,求a 、b 的值.19.2022年冬奥会上智慧化全覆盖,机器人得到广泛应用,冬奥会组委会针对不同的物品运送场景选取了几个不同类型的智能物流机器人.这样不仅能高效运输,同时也能减少人员接触.具体运输情况20.阅读材料:善思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代入”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y )+y=5③;把方程①代入③,得:2×3+y=5,所以y=-1; 把y=-1代入①得,x=4,所以方程组的解为{x =4y =−1.请你模仿小军的“整体代入”法解方程组{3x −2y =5①9x −4y =19②21.甲、乙两人解关于x 、y 的方程组{3x −by =−1①ax +by =−5②时,甲因看错a 得到方程组的解为{x =1y =2,乙将方程②中的b 写成了它的相反数得到方程组的解为{x =−1y =−1.(1)求a 、b 的值;(2)求原方程组的解.22.已知:关于x ,y 方程组 {2x +y =1+3m①x +2y =1+2m②(1)当y=5时,求m 的值.(2)若方程组的解x 与y 满足条件x+y=1,求m 的值.23.(1)点点在解方程组 {2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法: 解:将方程 ② 变形: 4x +10y +y =5 ,即 2(2x +5y)+y =5.③把方程 ① 代入 ③ 得: 2×3+y =5 ,所以 y =−1 .把 y =−1 代入 ① 得, x =4 . 所以方程组的解为 {x =4y =−1 . 请你模仿点点的“整体代换”法解方程组 {5a −2b =515a −4b =25 . (2)a5̅̅̅̅ 表示一个两位数,其中 a 为 1~9 的整数.圆圆在研究 a5̅̅̅̅ 平方的规律时发现: 152=15×15=225=(1×2)×100+25 .252=25×25=625=(2×3)×100+25 .352=35×35=1225=(3×4)×100+25.… 猜想 (a5̅̅̅̅)2 的结果,并说明理由.24.已知关于x ,y 的方程组{x +2y −6=0x −2y +mx +5=0(1)请直接写出方程x +2y -6=0的所有正整数解;(2)若方程组的解满足x +y =0,求m 的值;(3)无论实数m 取何值时,方程x -2y +mx +5=0总有一个固定的解,求出这个解.(4)若方程组的解中x 恰为整数,m 也为整数,求m 的值.。
二元一次方程组培优试卷(最新整理)

x、y
的二元一次方程组
2
x
y
a
的解
x
和
y
的绝对值相等,求
a
的值.
19、观察下表: 号号
号号
1
xx y
xx
2
xxx
yy
xxx
yy
xxx
3L
xxxx
yyy
L x x x x yyy
xxxx
yyy
xxxx
我们把某格中字母和所得到的多项式称为特征多项式,例如第 1 格的“特征多项式”为 4x y .回答下列
24. 在火车站开始检票时,有 a(a>0)名旅客在候车室排队等候检票进站.检票开始后,仍有旅客继续 前来排队检票进站,设旅客按固定的速度增加,检票口按固定的速度检票.若开放一个检票口,则需 30 分钟才能将排队等候的旅客全部检票完毕;若开放两个检票口,则需 10 分钟才能将排队等候的旅客全部 检票完毕;如果现在要在 5 分钟内将排队等候检票的旅客全部检票完毕,以后进站的旅客能够随到随检, 至少要同时开放几个检票口?
A、3
B、-3
C、-4
D、4
8.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费 35 元,毽子单价 3 元,跳绳
单价 5 元,购买方案有( )
A.1 种
B.2 种
C.3 种
D.4 种
二、填空题
9.若 x t , y t 5 ,试用含 x 的代数式表示 y ,则 y _____________.
5. 若 2x+5y+4z=0,4x+y+2z=0,则 x+y+z 的值等于( )
A、0 B、1 C、2 D、不能求出.
(完整版)初一下学期二元一次方程组数学试题(一)培优试卷(1)

一、选择题1.下列方程组中,是二元一次方程组的是( )A .02x y =⎧⎨=⎩B .28x y y z +=⎧⎨+=⎩C .21xy y =⎧⎨=⎩D .2103x x y ⎧-=⎨+=⎩2.已知x =2,y =1是方程ax ﹣y =7的一个解,那么a 的值为( )A .﹣2B .2C .3D .43.已知方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,则a ,b 的值分别为( )A .521a b ⎧=-⎪⎨⎪=⎩B .521a b ⎧=⎪⎨⎪=-⎩C .521a b ⎧=⎪⎨⎪=⎩D .521a b ⎧=-⎪⎨⎪=-⎩4.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟5.某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( ) A .第1天B .第2天C .第3天D .第4天6.已知关于x ,y 的方程组34,53,x y a x y a +=-⎧⎨-=⎩给出下列结论:①4,1x y =⎧⎨=-⎩是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④x ,y 的都为自然数的解有4对.其中正确的是( ) A .②③B .③④C .①②D .①②③④7.若关于x ,y 的方程组48ax by ax by -=-⎧⎨+=⎩的解是23x y =⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解是( )A .14x y =-⎧⎨=⎩B .23x y =⎧⎨=⎩C .14x y =⎧⎨=-⎩D .52x y =⎧⎨=⎩8.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔( )支. A .28B .29C .30D .319.已知关于x ,y 的方程组135x y a x y a +=-+⎧⎨-=+⎩,给出下列说法:①当0a =时,方程组的解也是方程24x y +=的一个解;②当27x y ->时,0a >;③不论a 取什么实数,2x y +的值始终不变;④若1a =,则240x y +=以上四种说法中正确的有( )个A .1B .2C .3D .410.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.有一片开心农场,蔬菜每天都在匀速生长,如果每天有20名游客摘菜,6天就能摘完;如果每天有17名游客摘菜,9天就能摘完(规定每名游客每天摘菜量相同),那么每天有14名游客摘菜,___天就能摘完.12.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..13.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________14.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.15.关于x ,y 的二元一次方程()()2127m x m y m -++=-,无论m 取何值,所得到的方程都有一个相同解,则这个相同解是______.16.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m 根竹签,n 个山楂,若每根竹签串a 个山楂,还剩b 个山楂,则m 、n 、a 、b 满足的等量关系为 (用含m 、n 、a 、b 的代数式表示).17.在平面直角坐标系中,将点P 向左平移2个单位长度,再向上平移3个单位长度,得到P '(﹣1,3),则点P 坐标为___.18.关于x 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,是一元一次方程;关于,x y 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,它是二元一次方程.19.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.20.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A植树点植树,乙、丁两组到B植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.三、解答题21.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知关于x,y的方程组()()113028T aT a⎧-=-⎪⎨=⎪⎩,,,若a≥﹣2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA 沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.22.如果3个数位相同的自然数m,n,k满足:m+n=k,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t 的和能被7整除,求出满足题意的s.23.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(3)若AM=BN,MN=43BM,求m和n值.24.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.25.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).26.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.27.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.28.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(t•km),铁路运价1.2元/(t•km).这两次运输支出公路运费4200元,铁路运费26280元.(1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?30.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案.【详解】A、符合二元一次方程组的定义,故本选项正确;B、本方程组中含有3个未知数,故本选项错误;C、第一个方程式的xy是二次的,故本选项错误;D、x2是二次的,故本选项错误.故选:A.【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题的关键.2.D解析:D【分析】把x =2,y =1代入方程ax ﹣y =7,得出方程2a ﹣1=7,再求出方程的解即可得到答案. 【详解】∵x =2,y =1是方程ax ﹣y =7的一个解 ∴2a ﹣1=7 解得:a =4, 故选:D . 【点睛】本题考查了二元一次方程、一元一次方程的知识;解题的关键是熟练掌握二元一次方程、一元一次方程的性质,从而完成求解.3.C解析:C 【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可. 【详解】解:解方程组35471x y x y -=⎧⎨-=⎩得:21x y =⎧⎨=⎩,∵方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,∴把21x y =⎧⎨=⎩代入方程组46ax by ax by -=⎧⎨+=⎩得:2426a b a b -=⎧⎨+=⎩,解得:521a b ⎧=⎪⎨⎪=⎩, 故选:C 【点睛】本题考查了方程组的解的定义和解二元一次方程组,理解方程组的解的意义并正确解二元一次方程组是解题关键.4.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.5.C解析:C 【分析】设牙刷的单价为x 元,牙膏的单价为y 元,当第1天、第2天的记录无误时,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再代入第3天及第4天的数据中验证即可得出结论(若3,4天的结果均不对,则1,2天中的数据有误,以3,4天的数据列出方程组求出牙刷和牙膏的单价,再代入1,2天的数据中验证即可). 【详解】解:设牙刷的单价为x 元,牙膏的单价为y 元, 当第1天、第2天的记录无误时,依题意得:1371441811219x y x y +=⎧⎨+=⎩,解得:315x y =⎧⎨=⎩, ∴23x+20y=23×3+20×15=369(元),17x+11y=17×3+11×15=216(元). 又∵369≠368, ∴第3天的记录有误. 故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.D解析:D 【分析】①将x =4,y =-1代入检验即可做出判断;②将x 和y 分别用a 表示出来,然后求出x +y =3来判断;③将a =1代入方程组求出方程组的解,代入方程中检验即可; ④有x +y =3得到x 、y 都为自然数的解有4对. 【详解】解:①将4,1x y =⎧⎨=-⎩代入34,53,x y a x y a +=-⎧⎨-=⎩,解得3a =;且满足题意,故①正确;②解方程3453x y a x y a +=-⎧⎨-=⎩①② -①②得:8y =4-4a解得:12ay -=, 将y 的值代入①得:52a x +=, 所以x +y =3,故无论a 取何值,x 、y 的值都不可能互为相反数,故②正确. ③将a =1代入方程组得:3353x y x y +=⎧⎨-=⎩, 解此方程得:30x y =⎧⎨=⎩,将x =3,y =0代入方程x +y =3,方程左边=3=右边,是方程的解,故③正确. ④因为x +y =3,所以x 、y 都为自然数的解有30x y =⎧⎨=⎩,21x y =⎧⎨=⎩,12x y =⎧⎨=⎩,03x y =⎧⎨=⎩.故④正确. 则正确的选项有①②③④. 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.A解析:A 【分析】通过观察所给方程组的关系可得3213x y +=⎧⎨-=⎩,求出x 、y 即可.【详解】解:∵关于x ,y 的方程组48ax by ax by -=-⎧⎨+=⎩的解是23x y =⎧⎨=⎩,∴234238a b a b -=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A . 【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.8.C解析:C 【分析】设该同学购买钢笔x 支,笔记本y 本,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各购买方案,取x 的最大值即可得出结论. 【详解】解:设该同学购买钢笔x 支,笔记本y 本, 依题意得:5x +4y =162. ∵x ,y 均为正整数,∴303x y =⎧⎨=⎩或268x y =⎧⎨=⎩或2213x y =⎧⎨=⎩或1818x y =⎧⎨=⎩或1423x y =⎧⎨=⎩或1028x y =⎧⎨=⎩或633x y =⎧⎨=⎩或238x y =⎧⎨=⎩;∴最多购买钢笔30支. 故选:C 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.D解析:D 【分析】利用二元一次方程的解及方程组的解定义判断即可. 【详解】解:①当0a =时,方程组的解为:32x y =⎧⎨=-⎩,也是方程24x y +=的一个解,符合题意;②关于x ,y 的方程组135x y a x y a +=-+⎧⎨-=+⎩的解为:322x a y a =+⎧⎨=--⎩,当23447x y a a -=+++>时,0a >,符合题意;③不论a 取什么实数,22(3)(22)4x y a a +=++--=的值始终不变,符合题意;④当1a =时,方程组的解为:44x y =⎧⎨=-⎩, 则240x y +=,符合题意. 所以以上四种说法中正确的有4个.故选:D .【点睛】本题考查了二元一次方程组的解,解题的关键是掌握方程组的解即为能使方程组中两方程都成立的未知数的值.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程解析:18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程组6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③,可解得x 的值即为所求. 【详解】解:首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完,依题意得 6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③, 由②﹣①得:11b c =④ 由③﹣②得:()()914153xb xc ﹣=﹣⑤ 将④代入⑤得:()()91114153xc x c ⨯﹣=﹣, 解得:18x =故答案是:18.【点睛】本题考查方程组的应用,有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知数辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求.”12.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯,∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.13.【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x 两,每只燕有y 两,由题意得,【解析:45561x y y x x y +=+⎧⎨+=⎩ 【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x 两,每只燕有y 两,由题意得,45561x y y x x y +=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.14.3【详解】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.15.【分析】将方程(m﹣2)x+(m+1)y=2m﹣7整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m 的系数为0,从而得关于x和y的二元一次方程组解析:31 xy=⎧⎨=-⎩【分析】将方程(m﹣2)x+(m+1)y=2m﹣7整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】解:(m﹣2)x+(m+1)y=2m﹣7,整理,得m(x+y﹣2)+(y﹣2x+7)=0,由方程的解与m无关,得x+y﹣2=0,且y﹣2x+7=0,解得31xy=⎧⎨=-⎩,即这个相同解是31xy=⎧⎨=-⎩.故答案为:31xy=⎧⎨=-⎩.【点睛】本题考查了含参数的二元一次方程有相同解问题,转化思想是解答本题的关键,当然,本题也可以采用特殊值法来求解,即取两个不同的m值,解两次二元一次方程组,但此法比较麻烦,16.竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元解析:竹签有15根,山楂有63个;am +b =n .【分析】设竹签有x 根,山楂有y 个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x ,y 的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m 、n 、a 、b 之间的等量关系.【详解】问题解决:设竹签有x 根,山楂有y 个,依题意得:437(6)x y x y+=⎧⎨-=⎩, 解得:1563x y =⎧⎨=⎩. 答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量∴am +b =n .故答案为:am +b =n .【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.17.(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再解析:(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再向上平移3个单位长度,得:()2,3x y -+ ∴2133x y -=-⎧⎨+=⎩∴10x y =⎧⎨=⎩ ∴点P 坐标为(1,0).故答案为:(1,0).【点睛】本题考查了坐标、平移、二元一次方程组的知识;解题的关键是熟练掌握坐标、平移的性质,从而完成求解.18.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.19.9【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 20.320【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两解析:320【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x ,再根据a 和x 的取值范围确定a 和x 的值,从而得到植树的数量.【详解】解:设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵.根据题意得:0.8xa+(0.8x-2)(50-a )+36(2x-5)=(50+36)x整理得:13x+a=140a=140-13x因为x,0.8x 都是正整数,可得x 是5的倍数,又因为0<a <50,a 是正整数,经试算可得x=10,a=10,所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a )=0.8×10×10+(0.8×10-2)(50-10)=320棵故答案为320.【点睛】本题考查了代数式,多元一次方程,和求二元一次方程的特殊解.题中数量关系比较复杂,难度较大.三、解答题21.(1)x =1,y =1;(2)9x y +≥-;(3)(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-【分析】(1)根据新运算T 定义建立方程组,解方程组即可得出答案;(2)应用新运算T 定义建立方程组,解关于x 、y 的方程组可得23x a y a =-⎧⎨=⎩,进而得出(23)33x y a a a +=-+=-,再运用不等式性质即可得出答案;(3)根据题意得(23,)A a a -,由平移可得(21,)A a a '-,根据点(23,)A a a -落在坐标轴上,且2a -,分类讨论即可.【详解】解:(1)根据新运算T 的定义可得:(112)()0(022)(02)8x y x y -⨯⋅-=⎧⎨+⨯⋅⋅+=⎩, 解得:11x y =⎧⎨=⎩; (2)由题意得:()3448x y a y a--=-⎧⎨⨯=⎩, 解得:23x a y a =-⎧⎨=⎩, (23)33x y a a a ∴+=-+=-,2a -,36a ∴-,339a ∴--,9x y ∴+-;(3)由(2)知,23x a y a=-⎧⎨=⎩, (23,)A a a ∴-,将线段OA 沿x 轴向右平移2个单位,得线段O A '',(21,)A a a ∴'-,点(23,)A a a -落在坐标轴上,且2a -,230a ∴-=或0a =,32a ∴=或0a =; ①当32a =时,3(2,)2A ', 若点B 在x 轴上,13922BOA S OB ∆'=⨯⨯=,12OB ∴=,(12,0)B ∴或(12,0)-;若点B 在y 轴上,1292BOA S OB ∆'=⨯⨯=, 9OB ∴=,(0,9)B ∴或(0,9)-;②当0a =时,(1,0)A '-;∴点B 只能在y 轴上,1192BOA S OB ∆'=⨯⨯=,18OB ∴=, (0,18)B ∴或(0,18)-;综上所述,点B 的坐标为(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-.【点睛】本题考查了新运算T 定义,解二元一次方程组,不等式性质,平移变换的性质,理解并应用新运算T 定义是解题关键.22.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,表示出s t +,由s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵871299,+=∴87和12是一对“黄金搭档数”;∵6249111,+=∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s 和两位数t 的十位数字相同,∴设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,∴20,s t x y z +=++∵s 和t 是一对“黄金搭档数”,∴s t +是一个两位数,且各个数位上的数相同,又∵s 与t 的和能被7整除,∴77s t +=,共有两种情况:①20707x y z =⎧⎨+=⎩, 解得 3.5x =,∵x 为整数,。
(完整版)二元一次方程组培优学生版附答案

5 2《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1 .已知(a — 2) x — by 冋—勺=5是关于x 、y 的二元一次方程,则a = _____ b = _____2 .若 |2a + 3b — 7与(2a + 5b — 1))互为相反数,则 a = ___, b = _____ .3 .二兀一次方程 3x + 2y = 15的正整数解为 ______________ .4. _________________________________ 2x — 3y = 4x — y = 5 的解为 .5. _________________________________________________________ 已知x —2是方程组3mx 2y 1的解,则m 2-n 2的值为 ________________________________________ .y 14x ny 726 .若满足方程组3x 2y 4 的x 、y 的值相等,贝U k 二 _____________ . kx (2k 1)y 67 .已知勺=b =—,且 a + b — c =—,贝U a =, b = , c = .23412x 3y 28 .解方程组3y z 4,得X =z 3x 6x 1 x 2 11.关于x ,y 的二元一次方程ax + b = y 的两个解是 , ,则这个二元一次y 1 y 1 方程是 ................. ( ) (A) y =2x + 3 (B ) y = 2x — 3(C ) y = 2x + 1 (D ) y = — 2x + 1 9 .若方程组 2x y 3的解互为相反数,则k 的值为…........... ()2kx (k 1)y 10(A ) 8 (B ) 9 (C ) 10 (D ) 11x 0x 110 .若, 1都是关于X 、 y 的方程|a|x + by = 6的解, 则a + b 的值为( )y2 y3(A ) 4(B ) —10 (C ) 4 或—10 ( D )— 4 或 102分,共16分):(二)选择题(每小题12 .由方程组3z 4z (A)(C)13 .如果x 2y 2x 3y 2 : 1(—2) 100可得,(B ) 1 :(— 2): (— 1) (D ) 1 : 2 :(— 1)是方程组2y a + 4c = 2 (B ) 14 .关于x 、y 的二元一次方程组 ax by bxcy 4a +c =2 2x 的解,那么,下列各式中成立的是 …((A )— 6 3x15 .若方程组 ax (B ) 4y b y mx(C ) (C ) a + 4c + 2 = 0 (D ) 4a + c + 2 =0 y 1 没有解时,m 的值是 3y 2a x 3 2x y 5 by 4有相同的解,贝U a 、b 的值为((A ) 2, 3 (B ) 3, 2 (C ) 2,— 1( D )— 1, 216 .若 2a + 5b + 4z = 0, 3a + b — 7z = 0,则 a + b — c 的值是 ............... ()(A ) 0(B ) 1(C ) 2(D )— 1(三) 解方程组(每小题4分,共16分):x y 3 5 y _ 2 2 2 3x 2y 0. 22(x 150) 5(3y 50) 8.5 10%x 60%y80010023. 已知满足方程2 x — 3 y = m — 4与3 x +4 y = m + 5的x , y 也满足方程2x + 3y = 3m — 8,求m 的值.24. 当x = 1, 3,— 2时,代数式ax 2 + bx + c 的值分别为2, 0, 20,求:(1) a 、b 、c 的 值;(2)当 x = — 2 时,ax 2 + bx + c 的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分): 25. 有一个三位整数,将左边的数字移到右边,则比原来的数小 45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小 3.求原来的数.26. 某人买了 4 000元融资券,一种是一年期,年利率为 9%另一种是两年期,年利率 是12%分别在一年和两年到期时取出,共得利息 780元.两种融资券各买了多少?27. 汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶 40千米,而后一 半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时 55千米的速度前进,结果 仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.x y x y1 19. 253(x y) 2(x y) 6.20 .x y 4z 5y z 4x1z x 4y 4 .5分, 3z 0 共20分):「忘 x 4y 21 .已知 '4x 5y 2z22.甲、乙两人解方程组 220 , xyz 工0,求 3x 22xy 2 z的值. 4x ax b 写成了它的相反数, 解得by by x 1 ,甲因看错a ,解得 5 1,求a 、b 的值. 2 2,乙将其中一个方程的3(四)解答题(每小《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1 .已知(a — 2) x — by* 1 = 5是关于x 、y 的二元一次方程,则a = ____ b = _____ 【提示】要满足“二元”“一次”两个条件,必须J 2工0,且b 工0,及| a|— 1二1. 【答案】a = — 2,b 工0.2 .若 |2a + 3b — 7与(2a + 5b — 1))互为相反数,则 a = __ b = _____ .【提示】由“互为相反数”得|2a + 3 b — 7|+ (2a + 5b — 1) 2二0,再解方程组2a 3b 7 0 2a5b 1【答案】a = 8, b =一 3.3 .二元一次方程3x + 2y = 15的正整数解为 ______________ .15 3x【提示】将方程化为y =,由y >0、x >0易知x 比0大但比5 小,且x 、y 均为2整数.x 1 x 3 【答案】y 6,y 3.可将三个方程左、右两边分别相加,得 2 x + 3 y + z = 6,再与3 y + z = 4相减,可得x .【答 案】x = 1,y= -,z = 3.3(二)选择题(每小题2分,共16分):4.2x — 3y = 4x — y = 5 的解为 2x •【提示】解方程组 4x5.已知x y 3mx 2y 1的解,则m 2— n 2的值为 4x n y 7 2 的值.【答案】—8-.43x 2y 4的x 、y 的值相等,贝U k = _kx (2k 1)y 6换,先求出x 、y 的值.【答案】k =-.61,且 a + b — c = ,贝U a =12代入方程组,求—2是方程组 6.若满足方程组3y 5 •【答案】x y 5y x•【提示】把 y11—2 1 「【提示】作y = x 的代【提示】即作方程组 b c 34 ,故可设a = 2 k , b = 3 k , c = 4 k ,代入另一个方程求 k b c丄12的值.1 .-a = ,b = ,c6 -x 3y 8.解方程组3y z z 3x【答案】 1=1 .【点评】设“比例系数”是解有关数量比的问题的常用方法. 34 2刁曰X,4,得 X = 6.【提示】根据方程组的特征,9 •若方程组2x y 3 的解互为相反数,贝u k 的值为 .............. ()2kx (k 1)y 10(A ) 8 ( B ) 9 (C ) 10 ( D ) 11【提示】将y 二—x 代入方程2 x —y = 3,得x = 1,y = — 1,再代入含字母k 的方程求解.【答 案】D •1都是关于x 、y 的方程|a|x + by = 6的解,贝U a + b 的值为( 3(B)— 10 (C ) 4 或—10 ( D )— 4 或 10【提示】将x 、y 对应值代入,得关于| a|,b 的方程组 2b 16【答案】C . | a | - b 6 .3【点评】解有关绝对值的方程,要分类讨论. 11.关于x ,y 的二元一次方程ax + b = y 的两个解是方程是 ................. ( )(A ) y = 2x + 3 (B ) y = 2x — 3 (C) y = 2x + 1(D ) y = — 2x + 1【提示】将x 、y 的两对数值代入ax + b = y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.x 2y 3z 012 .由方程组可得,x : y : z 是 .......................... ()2x 3y 4z 0(A ) 1 : 2 : 1 (B ) 1 :(— 2): (— 1) (C ) 1 :(— 2): 1 (D ) 1 : 2 :(— 1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性 质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来 解方程组,是可行的方法.13 .如果x 1是方程组ax by 0的解,那么,下列各式中成立的是…() y 2 bx cy 1(A ) a + 4c = 2 (B ) 4a + c = 2 (C ) a + 4c + 2 = 0 (D ) 4a + c + 2 = 0x 1【提示】将 代入方程组,消去b ,可得关于a 、c 的等式.y 2【答案】C .2x y 114 .关于x 、y 的二元一次方程组 没有解时,m 的值是 .......... ()mx 3y 2(A )— 6 (B )— 6 (C ) 1 (D ) 0【提示】只要满足 m : 2二3:(— 1)的条件,求m 的值. 【答案】B .10 •若(A) 4x 2y 1,则这个二元一次5【点评】对于方程组 3x15 .若方程组 ax a 1x a 2x 4y 2by 5 by c b 2y c 2 ,仅当別二P 工9时方程组无解.a ?b ? C 2 (A) 2, 3 (B ) 3, a x 3 2x2by 4 有相同的解,贝U a 、b 的值为(y 5 (C ) 2,— 1(D)- 1, 2 【提示】由题意,有 3x 4y “相同的解”可得方程组2x y y 2,解之并代入方程组5axby求 a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键. 16 .若 2a + 5b + 4z = 0, 3a + b — 7z = 0,(A ) 0 (B ) 1 (C ) 2 【提示】把c 看作已知数,解方程组 2a 3a 贝U a + b — c 的值是 ............. (D )— 1 5b 4c 0 用关于c 的代数式表示a 、 b 7c 0 b ,再代入 a + b — c. 【答案】A . 【点评】本题还可采用整体代换(即把 (三)解方程组(每小题4分,共16分): x y 3 5y _ 2 2 217.2223x 2y 0. 2【提示】将方程组化为一般形式,再求解. x 2 3 y2 150) 5(3y 50) 8.5 a + b — c 看作一个整体)的求解方法. 【答案】2(x 18. 10%x 60%y 800100【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 500 30 .x 【答案】 y x y 19 . 23(x y) 2(x y) 6 .A R【提示】用换元法,设x — y = A , x + y = B ,解关于A 、R 的方程组~ - 1 ,253A 2B 6y 1.20 . X y :z [【提示】 将三个方程左,右两边分别相加,得 4x — 4y +4z = 8,故x - y z 4x 1 Jz x 4y 4.y + z = 2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答1案] x 54y 5z 1.(四)解答题(每小题5分,共20分):21 .已知x 4y3z 0 , 工。
(完整版)七年级下学期二元一次方程组监测数学试题培优试卷

一、选择题1.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.已知方程组263a b a b m-=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( ) A .4 B .4- C .0 D .83.已知方程组2106x y bx ay +=⎧⎨+=⎩和10312ax y b x y -=⎧⎨-=⎩有相同的解,则-a b 的值为( ) A .1 B .1- C .2 D .2-4.已知方程组321x y n x y n +=⎧⎨+=+⎩,若x ,y 的值相等,则n =( ) A .1-B .4-C .2D .2- 5.已知x =2,y =1是方程ax ﹣y =7的一个解,那么a 的值为( )A .﹣2B .2C .3D .4 6.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论: ①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对.正确的有几个( )A .1B .2C .3D .47.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .648.已知关于x ,y 的二元一次方程组343x y a x y a+=-⎧⎨-=⎩,给出下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,2a =-;②当1a =时,方程组的解也是方程42x y a +=+的解;③无论a 取什么实数,2x y +的值始终不变;④若用x 表示y ,则322x y =-+;A .①②③B .①②④C .①③④D .②③④ 9.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .20310.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( ) A .1 B .2 C .3 D .4二、填空题11.若方程组2232x y k x y k+=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____. 12.甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k )个,乙每次摸5个或(5-k )个(k 是常数,且0<k <3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球__________个.13.关于x ,y 的二元一次方程()()2127m x m y m -++=-,无论m 取何值,所得到的方程都有一个相同解,则这个相同解是______.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______. 15.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x 、y 个,根据题意,可列正确的方程组为 __.16.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).17.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k=_____.18.若m1,m2,…,m2021是从0,1,2,这三个数中取值的一列数,且m1+m2+…+m2021=1530,(m1-1)2+(m2-1)2+…+(m2021-1)2=1525,则在m1,m2,…,m2021中,取值为2的个数为_________.19.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A植树点植树,乙、丁两组到B植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.20.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则34m n-的立方根=________.三、解答题21.在平面直角坐标系中,若点P(x,y)的坐标满足x﹣2y+3=0,则我们称点P为“健康点”:若点Q(x,y)的坐标满足x+y﹣6=0,则我们称点Q为“快乐点”.(1)若点A既是“健康点”又是“快乐点”,则点A的坐标为;(2)在(1)的条件下,若B是x轴上的“健康点”,C是y轴上的“快乐点”,求△ABC的面积;(3)在(2)的条件下,若P为x轴上一点,且△BPC与△ABC面积相等,直接写出点P 的坐标.22.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为(),0A a ,(),4B b ,()2,C c ,//BC x 轴,且a 、b 满足12100a b a b +-+-+=.(1)则a =______;b =______;c =______;(2)如图1,在y 轴上是否存在点D ,使三角形ABD 的面积等于三角形ABC 的面积?若存在,请求出点D 的坐标;若不存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,点(),0N n 在x 轴上,若三角形BCM 的面积小于三角形BMN 的面积,直接写出n 的取值范围是______.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(2)如图2,在(1)问的条件下,点E,F在DM上,连接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度数.26.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?27.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,当h(12)=a,求a的值;(3)已知f(x)=2+3kx a-6x bk-2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.28.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?29.学校将20××年入学的学生按入学年份、年级、班级、班内序号的顺序给每一位学生编号,如2015年入学的8年级3班的46号学生的编号为15080346.张山同学模仿二维码的方式给学生编号设计了一套身份识别系统,在5×5的正方形风格中,黑色正方形表示数字1,白色正方形表示数字0.我们把从上往下数第i行、从左往右数第j列表示的数记为a ij,(其中,i、j=1,2,3,4,5),规定A i=16a i1+8a i2+4a i3+2a i4+a i5.(1)若A1表示入学年份,A2表示所在年级,A3表示所在班级,A4表示编号的十位数字,A5表示编号的个位数字.①图1是张山同学的身份识别图案,请直接写出张山同学的编号;②请在图2中画出2018年入学的9年级5班的39号同学的身份识别图案;(2)张山同学又设计了一套信息加密系统,其中A1表示入学年份加8,A2表示所在年级的数减6再加上所在班级的数,A3表示所在年级的数乘2后减3再减所在班级的数,将编号(班内序号)的末两位单列出来,作为一个两位数,个位与十位数字对换后再加2,所得结果的十位数字用A4表示、个位数字用A5表示.例如:2018年9年级5班的39号同学,其加密后的身份识别图案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A 4=9,A 5=5,所以其加密后的身份识别(26081095)图案如图3所示.图4是李思同学加密后的身份识别图案,请求出李思同学的编号.30.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ;(2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)Pn 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x ,代入方程组得:31x k x k -=⎧⎨-=-⎩,即k=3k-1, 解得:12k =, 则存在实数12k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩, ∵1y x ->-,∴1(32)1k k --->-,解得:1k <,此选项错误;④x+3y=3k -2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.2.D解析:D【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值.【详解】解:因为a ,b 互为相反数,所以0a b +=,即=-b a ,代入方程组得:364a a m =⎧⎨=⎩, 解得:28a m =⎧⎨=⎩, 故选:D .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.3.A解析:A【分析】根据两个方程组解相同,解方程组210312x y x y +=⎧⎨-=⎩,把求得的x 、y 的值分别两个方程组中的另一个方程即可得到关于a 、b 的方程组,解方程组即可求得a 、b 的值,从而可求得结果的值.【详解】∵方程组2106x y bx ay +=⎧⎨+=⎩和10312ax y b x y -=⎧⎨-=⎩有相同的解 ∴方程组210312x y x y +=⎧⎨-=⎩①②与106ax y b bx ay -=⎧⎨+=⎩有相同的解由①×3+②得:7x =42解得:x =6把x =6代入①得:12+y =10解得:y =-2∴62x y =⎧⎨=-⎩是方程组210312x y x y +=⎧⎨-=⎩①②与106ax y b bx ay -=⎧⎨+=⎩的解 把62x y =⎧⎨=-⎩代入106ax y b bx ay -=⎧⎨+=⎩中,得:6210626a b b a +=⎧⎨-=⎩ 化简得:35133a b a b -=-⎧⎨-+=⎩③④ ③+④×3得:4b =8解得:b =2把b =2代入④得:-a +6=3解得:a =3故方程组解为32a b =⎧⎨=⎩ ∴a -b =3-2=1故选:A .【点睛】本题主要考查了二元一次方程组的解法、二元一次方程组的解,理解二元一次方程组的解是本题的关键.4.B解析:B【分析】先根据方程组中x 、y 相等用y 表示出x 把原方程组化为关于y 、n 的二元一次方程组,再用n 表示出y 的值,代入方程组中另一方程求出n 的值即可.【详解】解:∵方程组321x y n x y n +=⎧⎨+=+⎩中的x ,y 相等, ∴原方程组可化为:4?31?y n y n =⎧⎨=+⎩①②, 由①得,4n y =, 代入②得,314n n =+,解得n =-4, 故选择:B .【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.5.D解析:D【分析】把x =2,y =1代入方程ax ﹣y =7,得出方程2a ﹣1=7,再求出方程的解即可得到答案.【详解】∵x =2,y =1是方程ax ﹣y =7的一个解∴2a ﹣1=7解得:a =4,故选:D .【点睛】本题考查了二元一次方程、一元一次方程的知识;解题的关键是熟练掌握二元一次方程、一元一次方程的性质,从而完成求解.6.C解析:C【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论.【详解】解:①将a =1代入原方程组,得233x y x y +=⎧⎨-=⎩ 解得30x y =⎧⎨=⎩, 将x =3,y =0,a =1代入方程x +y =2a +1的左右两边,左边x +y =3,右边2a +1=3,当a =1时,方程组的解也是x +y =2a +1的解;故①正确;②解原方程组,得2122x a y a =+⎧⎨=-⎩, 若x ,y 是互为相反数,则x +y =0,即2a +1+2-2a =0,方程无解.无论a 取何值,x ,y 的值不可能是互为相反数;故②正确;③∵x +y =2a +1+2-2a =3,∴x 、y 为自然数的解有03x y =⎧⎨=⎩,12x y =⎧⎨=⎩,21x y =⎧⎨=⎩,30x y =⎧⎨=⎩. ∴x 、y 为自然数的解有4对,故③正确;故选:C .【点睛】本题考查了消元法解二元一次方程组,确定二元一次方程的自然数解,解题关键是用含字母的式子表示方程组的解.7.C解析:C【分析】由图可知:重新拼成一个长方形BEMN,长BN=8,宽BE=4,得二元一次方程组,解出可得结论.【详解】解:如图所示,由已知得:BN=8,S长方形BNME=32,∴BE=32÷8=4,则84x yx y+⎧⎨-⎩==,解得:2x=12,∴x=6,∴正方形ABCD的面积是36,故选:C.【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.8.C解析:C【分析】根据方程组的解法可以得到x+y=2+a,①令x+y=0,即可求出a的值,验证即可,②由①得x+y=0,而x+y=4+2a,求出a的值,再与a=1比较得出答案,③解方程组可求出方程组的解,再代入x+2y求值即可,④用含有x、y的代数式表示a,进而得出x、y的关系,【详解】解:关于x,y的二元一次方程组343x y ax y a+=-⎧⎨-=⎩①②,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x +y =4+2a 的解满足x +y =6,因此②不正确,(3)方程组343x y a x y a +=-⎧⎨-=⎩①②,解得,211x a y a =+⎧⎨=-⎩, ∴x +2y =2a +1+2-2a =3,因此③是正确的,(4)方程组343x y a x y a +=-⎧⎨-=⎩①②, 由方程①得,a =4﹣x ﹣3y 代入方程②得,x -y =3(4-x -3y ), 即;322x y =-+,因此④是正确的,故选:C .【点睛】本题考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键. 9.A解析:A【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答.【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:43{2x y n x y m+=+=, 则两式相加得5()m n x y +=+,∵x 、y 都是正整数∴m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数,∴m n +的值可能是200.故选A.【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.3【详解】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.解析:3【详解】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.12.110【详解】设甲取了x 次4个球,取了(16-x )次(3-k )个球,乙取了y 次5个球,取了(17-y )次(5-k )个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2解析:110【详解】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④3x+16=2y+51,即2353yx+=,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.【点睛】本题主要考查了二元一次方程的整数解,解题时根据实际情况先确定k的值,然后表示出甲取得球的数目和乙取得球的数目,根据最终两人所摸出的球的总个数恰好相等列出二元一次方程,求整数解即可,注意分4种情况.13.【分析】将方程(m﹣2)x+(m+1)y=2m﹣7整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m 的系数为0,从而得关于x和y的二元一次方程组解析:31 xy=⎧⎨=-⎩【分析】将方程(m﹣2)x+(m+1)y=2m﹣7整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】解:(m﹣2)x+(m+1)y=2m﹣7,整理,得m(x+y﹣2)+(y﹣2x+7)=0,由方程的解与m无关,得x+y﹣2=0,且y﹣2x+7=0,解得31xy=⎧⎨=-⎩,即这个相同解是31xy=⎧⎨=-⎩.故答案为:31x y =⎧⎨=-⎩. 【点睛】本题考查了含参数的二元一次方程有相同解问题,转化思想是解答本题的关键,当然,本题也可以采用特殊值法来求解,即取两个不同的m 值,解两次二元一次方程组,但此法比较麻烦,14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:02x y =⎧⎨=⎩ 【分析】先将方程组的解代入方程组得到c 1−a 1=2,c 2−a 2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15..【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两解析:2150 43300x yx y+=⎧⎨+=⎩.【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两种小盒需要的长方形总量=300=做成甲种小盒的个数×4+做成乙种小盒的个数×3.根据以上条件可列出方程组.【详解】设可做成甲种小盒x个,乙种小盒y个.根据题意,得2150 43300x yx y+=⎧⎨+=⎩,故答案为:2150 43300x yx y+=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是弄清题意,观察图形,找出合适的等量关系,列出方程组.16.竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方解析:竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m、n、a、b之间的等量关系.【详解】问题解决:设竹签有x根,山楂有y个,依题意得:437(6)x yx y+=⎧⎨-=⎩,解得:1563xy=⎧⎨=⎩.答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量∴am+b=n.故答案为:am+b=n.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.17.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,∴x=﹣y+2,∴4(﹣y+2)+5y=10,解得:y=2,把y=2代入4x+5y=10中,得:4x+10=10,解得:x=0,则方程组的解是x=0y=2⎧⎨⎩,∴﹣(k﹣1)×2=8,解得:k=﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.18.517【分析】设0有a个,1有b个,2有c个,由(1-1)2=0,(0-1)2=1,(2-1)2=1,可得,由m1+m2+…+m2021=1530,可得,再由数字总个数为2021,即可列出方程求解析:517【分析】设0有a 个,1有b 个,2有c 个,由(1-1)2=0,(0-1)2=1,(2-1)2=1,可得1525a c +=,由m 1+m 2+…+m 2021=1530,可得21530b c +=,再由数字总个数为2021,即可列出方程求解.【详解】解:设0有a 个,1有b 个,2有c 个,∵(m 1-1)2+(m 2-1)2+…+(m 2021-1)2=1525,∵m 1,m 2,…,m 2021是从0,1,2这三个数中取值的一列数,(1-1)2=0,(0-1)2=1,(2-1)2=1,∴1525a c +=∵m 1+m 2+…+m 2021=1530,∴21530b c +=,∴2021215301525a b c b c a c ++=⎧⎪+=⎨⎪+=⎩, 解得1008496517a b c =⎧⎪=⎨⎪=⎩, 故取值为2的个数为517个,故答案为:517.【点睛】此题考查了三元一次方程的应用,有理数的乘方和有理数的加法运算,解题的关键在于能够找到等量关系列出方程求解.19.320【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两解析:320【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x ,再根据a 和x 的取值范围确定a 和x 的值,从而得到植树的数量.【详解】解:设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵.根据题意得:0.8xa+(0.8x-2)(50-a )+36(2x-5)=(50+36)x整理得:13x+a=140a=140-13x因为x,0.8x 都是正整数,可得x 是5的倍数,又因为0<a <50,a 是正整数,经试算可得x=10,a=10,所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a )=0.8×10×10+(0.8×10-2)(50-10)=320棵故答案为320.【点睛】本题考查了代数式,多元一次方程,和求二元一次方程的特殊解.题中数量关系比较复杂,难度较大.20.【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)(3,3);(2)272;(3)(32,0)或(152-,0) 【分析】(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0,解23060x y x y -+=⎧⎨+-=⎩即可得答案; (2)设直线AB 交y 轴于D ,求出B 、C 、D 的坐标,根据S △ABC =S △BCD +S △ACD 即可求出答案;(3)设点P 的坐标为(n ,0),根据△PBC 的面积等于△ABC 的面积,即272,列出方程,解之即可.【详解】解:(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0, 解23060x y x y -+=⎧⎨+-=⎩得:33x y =⎧⎨=⎩, ∴A 的坐标为(3,3);故答案为:(3,3);(2)设直线AB 交y 轴于D ,如图:∵B 是x 轴上的“健康点”,在x -2y +3=0中,令y =0得x =-3,∴B (-3,0),∵C 是y 轴上的“快乐点”,在x +y -6=0中,令x =0得y =6,∴C (0,6),在x -2y +3=0中,令x =0得y =32, ∴D (0,32), ∴CD =92, ∴S △ABC =S △BCD +S △ACD =12CD •|x B |+12CD •|x A | =1919332222⨯⨯+⨯⨯ =272; (3)设点P 的坐标为(n ,0),则BP =3n +,∵△BPC 与△ABC 面积相等,∴S △BPC =1362n ⨯+⨯=272, ∴932n +=, ∴32n =或152-, ∴点P 的坐标为(32,0)或(152-,0). 【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.22.(1)−3,4,4;(2)(0,207)或(0,47);(3)n <−5或n >−1 【分析】(1)根据非负数的性质构建方程组,求出a 和b ,再根据BC ∥x 轴,可得c 的值; (2)当点D 在直线AB 的下方时,如图1−1中,延长BC 交y 轴于E (0,4),连接AE .设D (0,m ).当点D 在直线AB 的上方时,如图1−2中,连接OB ,设D (0,m ).分别构建方程,可得结论.(3)如图2中,当点N 在点A 的右侧时,连接MN ,OB ,设M (a ,b ),利用面积法求出b 的值,再求出S △BNM =S △BCM 时,n 的值,同法求出当点N 在点的左侧时,且S △BNM =S △BCM 时,n 的值,结合图象可得结论.【详解】解:(1)∵2100a b -+=,又∵,|2a −b +10|≥0,∴a +b −1=0且2a −b +10=0,∴a =−3,b =4,∵BC∥x轴,∴c=4,∴a=−3,b=4,c=4,故答案为:−3,4,4;(2)当点D在直线AB的下方时,如图1−1中,延长BC交y轴于E(0,4),连接AE.设D(0,m).∵S△ABD=S△AED+S△BDE−S△ABE=S△ABC,∴12×(4−m)×3+12×(4−m)×4−12×4×4=12×2×4,∴m=47;当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).∵S△ABD=S△ADO+S△ODB−S△ABO=S△ABC,∴12×m×3+12×m×4−12×3×4=12×2×4,∴m=207.综上所述,满足条件的点D的坐标为(0,207)或(0,47).(3)如图2中,当点N点A的右侧时,连接MN,OB.设M (a ,b ),∵S △BCM =S △OBC −(S △AOB −S △AOM ), ∴12×2×(4−b )=12×2×4−(12×3×4−12×3×b ),解得b =125, 当S △BNM =S △BCM 时,则有12×(n +3)×4−12×(n +3)×125=12×2×(4−125), 解得n =−1, 当点N 在点A 的左侧时,且S △BNM =S △BCM 时,同法可得n =−5,观察图象可知,满足条件的n 的值为n <−5或n >−1.【点睛】本题属于三角形综合题,考查了三角形的面积,非负数的性质,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用未知数构建方程解决问题,对于初一学生来说题目有一定的难度.23.(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元,由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 24.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则 4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组测试题
姓名:得分:
一.选择题(每小题3分,共30分)
1、若+|2a﹣b+1|=0,则(b﹣a)2016 =()
A.﹣1 B.1 C.52015 D.﹣52015
2、利用加减消元法解方程组,下列做法正确的是()
A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)
C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×2
3、为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种
分组方案()
A.4 B.3 C.2 D.1
4、如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,
其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()
A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣3 5、若关于,x y的方程组
39
21
ax y
x y
+=
⎧
⎨
-=
⎩
无解,则a的值为()
A.6-B.6C.9D.30
6、若,,
x y z都不为0,由方程组
230
2340
x y z
x y z
-+=
⎧
⎨
-+=
⎩
可得::
x y z是()
A.1:2:1B.1:(2):1
-C.(1):2:1
-D.1:2:(1)
-
7.方程组
12,
6
x y
x y
⎧+=
⎪
⎨
+=
⎪⎩
的解的个数为().
(A)1 (B)2(C) 3 (D)4
8、某商店出售某种商品每件可获利m元,利润为20%,若这种商品的进价提高25%,而商店
将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()
A. 25%
B. 20%
C. 16%
D. 12.5%
9、如果代数式ax5+bx3+cx-5当x= --2时的值是7,那么当x= 2时该式的值是()
A. 7
B. -12
C. --17
D. 8
10、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是其子女两年前年龄和
的10倍,他们6年后的年龄和是其子其女6年后年龄和的3倍。
问这对夫妇共多少个子女?
( )
A. 2
B. 3
C.4
D.5
请将选择题答案填入下表
二、填空题(每小题4分,共20分)
11、定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,
则2*3= .
12、某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、
1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.
13、要使方程组⎩
⎨⎧=-=+12y x k
ky x 的解都是整数, k 可以取的整数值是
14、已知方程组23133530.9a b a b -=⎧⎨
+=⎩的解为8.3
1.2
a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩
的解是 。
15、已知甲、乙、丙三人的年龄都是正整数,甲的年龄是乙的两倍,乙比丙小7岁,三人的年龄之和是小于70的质数,且质数的各位数字之和为13,则甲、乙、丙三人的年龄分别是_________
三、解方程组(每小题4分,共12分)
16、解方程组231763
172357
x y x y +=⎧⎨
+=⎩ 17、 解关于x ,y 的方程组 ⎩⎨
⎧=+=+2
y 3x 2-1
ay x
18、解方程组 ⎪⎪⎪⎩
⎪⎪
⎪⎨⎧++=+=+51z 12
z 1
y 1 1y 1 x 1x
四、解答题(共7题,58分)
19、(6分)已知关于,x y 的二元一次方程(1)(2)520a x a y a -+++-=,a 每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个解吗?
20、(8分)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,
鸡雏都买,可各买多少?
21、(8分) P表示n边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,
那么P与n的关系式是
P=(n2﹣an+b)(其中a,b是常数,n≥4)
(1)填空:通过画图可得:
四边形时,P=(填数字);五边形时,P=(填数字)
(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a和b的值.(注:本题中的多边形均指凸多边形)
22、(8分)甲、乙两班同时从学校A出发去距离学校75km的军营B军训,甲班学生步行速度为4km/h,乙班学生步行速度为5km/h,学校有一辆汽车,该车空车速度为40km/h,载人时的速度为20km/h,且这辆汽车一次恰好只能载一个班的学生,现在要求两个班的学生同时到达军营,问他们至少需要多少时间才能到达?
23、(8分)某水果批发市场香蕉的价格如下表:
张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,
请问张强第一次、第二次分别购买香蕉多少千克?
24、(8分)某人沿着向上移动的的自动扶梯从顶部朝下走到底部用了7分30秒,而他沿着扶梯从底部朝上走到顶部用了1分30秒,那么此人乘扶梯由下走到上需要多少时间?若停电,他从下走到上需要多少时间?
25、(12分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代
换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组
(2)已知x,y满足方程组.(i)求x2+4y2的值;
(ii)求+的值.。