初三数学总复习知识点教学内容

合集下载

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点Chapter 1: Quadratic Radical1.A quadratic radical is an n of the form a (a≥0).Property: a (a≥0) is a non-negative number;a^2=a (a≥0);a^2=a (a≥0).2.n and n of quadratic radicals: a•b=ab (a≥0.b≥0);a/a (a≥0.b>0)=√a/b.3.n and n of quadratic radicals: when adding or subtracting quadratic radicals。

XXX form first。

then combine the quadratic radicals with the same radicand.4.Heron's formula: S=p(p-a)(p-b)(p-c)。

where S is the area ofa triangle。

and p=(a+b+c)/2.Chapter 2: XXX1.XXX that has only one unknown variable。

and the highest degree of the variable is2.2.XXX:Completing the square method: transform one side of the ninto a perfect square。

then take the square root of both sides;Quadratic formula: x=(-b±√(b^2-4ac))/2a;Factoring method: factor the left side of the n into two factors。

and set each factor equal to zero.3.ns of XXX life problems.4.Vieta's formulas: let x1 and x2 be the roots of the nax^2+bx+c=0.then we have b=-a(x1+x2) and c=a(x1x2).Chapter 3: XXX1.n of a figure: XXX it around a fixed point by a XXX.Properties: the distance from each point of the figure to the center of n remains the same;the angle een the line segment connecting each point and the center of n is equal to the angle of n;the original figure and the XXX.2.XXX to a point if the figure coincides with itself after a180-degree XXX point.A figure is XXX its image under a 180-degree n around apoint is identical to the original figure.3.Coordinates of points XXX to the origin.Chapter 4: Circle1.ns of circle。

初三一元二次函数总复习

初三一元二次函数总复习

初三一元二次函数总复习1. 引言初三研究的数学内容繁多,其中一元二次函数是重要的一部分。

一元二次函数是数学中的基础概念,掌握好这个知识点对于深入理解数学的其他领域具有重要的意义。

本文将对初三一元二次函数进行总复,包括基本概念、性质、图像以及常见问题的解答。

2. 一元二次函数的基本概念一元二次函数是一种形式为$$y = ax^2 + bx + c$$的函数,其中$a、b、c$为实数,且$a\neq 0$。

其中,$a$称为二次项的系数,$b$称为一次项的系数,$c$为常数项。

3. 一元二次函数的性质一元二次函数具有如下几个基本性质:- 首先,函数的图像呈现为抛物线的形状,开口的方向由$a$的正负决定。

- 函数的对称轴为直线$x = -\dfrac{b}{2a}$,通过对称轴上的点$(h, k)$,其中$h = \dfrac{-b}{2a}$,$k = f(h) = ah^2 + bh + c$。

- 函数的最值点为顶点,最大值或最小值由$a$的正负决定。

- 函数的零点为方程$ax^2 + bx + c = 0$的解,可以通过求根公式或配方法求解。

4. 一元二次函数的图像一元二次函数的图像可以通过绘制函数的图像点来得到,也可以通过计算对称轴以及顶点来确定图像的形状和位置。

根据函数的性质,我们可以知道:- 当$a>0$时,抛物线开口向上,最小值点为顶点;- 当$a<0$时,抛物线开口向下,最大值点为顶点。

5. 一元二次函数的常见问题解答在研究一元二次函数过程中,我们可能会碰到一些常见的问题。

下面是对一些常见问题的解答:- Q1: 一元二次方程的解的个数与什么有关?A1: 一元二次方程的解的个数与判别式$\Delta = b^2 - 4ac$的正负有关。

当$\Delta > 0$时,有两个不相等的实根;当$\Delta = 0$时,有两个相等的实根;当$\Delta < 0$时,方程没有实根。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

初三数学中考复习重点章节知识点归纳

初三数学中考复习重点章节知识点归纳

初三数学中考复习重点章节知识点归纳三角形的重心定义重心:重心是三角形三边中线的交点。

三角形的重心的性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

6.重心是三角形内到三边距离之积最大的点。

直角三角形的判定方法判定1:定义,有一个角为90°的三角形是直角三角形。

判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。

如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。

那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。

(与判定3不同,此定理用于已知斜边的三角形。

)三角形的外心定义外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。

初三数学专题复习教案

初三数学专题复习教案

初三数学专题复习教案【篇一:2016年数学中考第一轮复习整套教案(完整版)】中考数学一轮复习资料第一轮复习的目的1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会”粗心”地出错3、数学:过来人谈中考复习数学巧用“两段”法中考数学复习大致分为两个阶段。

初三数学总复习大纲

初三数学总复习大纲

初三数学总复习大纲
第一部分数与式
●实数
●平方根和立方根
●科学计数法、近似数和有效数字
●指数
●整式运算
●因式分解
●分式
●二次根式
第二部分方程(组)和不等式(组)
●一元一次方程、一元二次方程
●分式方程
●一次方程组
●不等式(组)
●一元二次方程根的判别式
●列方程或方程组解应用题
第三部分函数
●平面直角坐标系、自变量x的取值范围
●正(反)比例函数
●一次函数的图像和性质
●二次函数的图像和性质
第四部分概率统计
●统计初步
●随机事件与简单事件的概率
●用频率估计概率、用列举法计算概率
●统计图表
●数据的收集、样本估计总体
第五部分几何基本概念
●基本概念
●平行线
第六部分空间图形
●简单的几何图形
第七部分三角形
●一般三角形
●等腰三角形
●直角三角形
●锐角三角形
●解直角三角形
●全等三角形
第八部分四边形
●平行四边形
●矩形、菱形、正方形
●梯形
第九部分图形与变换
●图形的平移、旋转与轴对称第十部分相似形
●比例线段
●相似三角形的判定与性质第十一部分圆
●远的有关概念及一些性质●和圆有关的角
●直线和圆的位置关系
●圆与圆的位置关系
●与圆相关的某些图形的计算●作图题。

初三数学总复习知识点整理归纳

初三数学总复习知识点整理归纳

初三数学总复习知识点整理归纳初三数学总复习知识点整理归纳1.有理数:〔1〕凡能写成形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;〔2〕有理数的分类:① 有理数分成整数,分数;整数又分成正整数,负整数和0;分数分成正分数和负分数。

②有理数分成正数、0、负数。

正数又分成正整数和正分数,负数分成负整数和负分数。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:〔1〕只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;〔2〕相反数的和为0, a+b=0 a、b互为相反数.4.绝对值:〔1〕正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点分开原点的间隔;〔2〕绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:〔1〕正数的绝对值越大,这个数越大;〔2〕正数永远比0大,负数永远比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,绝对值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数拓展阅读:初三数学学习方法一、学习的方案为了让学习的目的更加明确,需要合理安排学习时间,不慌不忙,稳打稳扎,它是推动学生主动学习和克制困难的内在动力。

但方案一定要实在可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。

二、错题反思我们不要笼统地抱怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

只要找到根,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能获得优良成绩。

三、复习很重要数学学习往往是通过做作业到达对知识的稳固、加深理解和学会运用,从而形成技能技巧,以及开展智力与数学才能。

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料一、教学内容1. 实数与代数式:实数的性质、运算法则,代数式的化简、求值等;2. 方程与不等式:一元一次方程、不等式的解法,一元二次方程的求根公式及应用;3. 函数:一次函数、二次函数的性质,函数图像的识别与应用;4. 图形与几何:三角形的性质,四边形的性质,圆的性质,相似与全等,解三角形;5. 统计与概率:数据的收集、整理、描述,概率的计算与应用。

二、教学目标1. 熟练掌握实数与代数式的运算,提高解题能力;2. 掌握方程与不等式的解法,并能应用于解决实际问题;3. 理解函数的性质,能分析解决与函数相关的问题;4. 掌握图形与几何的基本知识,提高空间想象能力和逻辑思维能力;5. 了解统计与概率的基本概念,能应用于实际问题的解决。

三、教学难点与重点1. 教学难点:方程与不等式的综合应用,函数的性质及图像分析,几何图形的计算与证明;2. 教学重点:实数的运算,方程与不等式的解法,函数的性质,图形与几何的计算。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、草稿纸。

五、教学过程1. 导入:通过一道实际问题的引入,激发学生的学习兴趣,引导学生复习所学知识;2. 知识回顾:带领学生回顾实数、代数式、方程、不等式、函数、图形与几何、统计与概率等知识点;3. 例题讲解:针对每个知识点,精选典型例题进行讲解,分析解题思路和方法;4. 随堂练习:布置与例题相关的练习题,让学生及时巩固所学知识;5. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导;六、板书设计1. 实数与代数式:性质、运算法则、化简、求值;2. 方程与不等式:解法、应用;3. 函数:性质、图像、应用;4. 图形与几何:性质、计算、证明;5. 统计与概率:概念、计算、应用。

七、作业设计1. 作业题目:(1)计算题:实数的运算,代数式的化简;(2)解答题:解一元一次方程、不等式,求解一元二次方程;(3)应用题:函数的性质,图形与几何的计算;(4)统计与概率题:数据的收集、整理、描述,概率的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学知识点 第一章 二次根式1 二次根式:形如a (0≥a )的式子为二次根式; 性质:a (0≥a )是一个非负数;()()02≥=a a a ;()02≥=a a a 。

2 二次根式的乘除: ()0,0≥≥=•b a ab b a ;()0,0>≥=b a b aba 。

3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

4 海伦-秦九韶公式:))()((c p b p p p S ---=,S 是三角形的面积,p 为2cb a p ++=。

第二章 一元二次方程 1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。

2 一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法:aacb b x 242-±-=因式分解法:左边是两个因式的乘积,右边为零。

3 一元二次方程在实际问题中的应用4 韦达定理:设21,x x 是方程02=++c bx ax 的两个根,那么有ac x x a b x x =•-=+2121, 第三章 旋转1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。

2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系d点在圆外r点在圆上 d=r点在圆内 d<r定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

6直线和圆的位置关系相交 d<r相切 d=r相离 d>r切线的性质定理:圆的切线垂直于过切点的半径;切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系外离 d>R+r外切 d=R+r相交 R-r<d<R+r内切 d=R-r内含 d<R-r8 正多边形和圆正多边形的中心:外接圆的圆心正多边形的半径:外接圆的半径正多边形的中心角:没边所对的圆心角正多边形的边心距:中心到一边的距离9 弧长和扇形面积弧长 180rn l π=扇形面积:3602r n S π=10 圆锥的侧面积和全面积 侧面积: 全面积11 (附加)相交弦定理、切割线定理第五章 概率初步1 概率意义:在大量重复试验中,事件A 发生的频率nm稳定在某个常数p 附近,则常数p 叫做事件A 的概率。

2 用列举法求概率一般的,在一次试验中,有n 中可能的结果,并且它们发生的概率相等,事件A 包含其中的m 中结果,那么事件A 发生的概率就是p (A )=nm 3 用频率去估计概率 下册第六章二次函数1二次函数 c bx ax y ++=2=a b ac a b x a 44222-+⎪⎭⎫ ⎝⎛+ a>0,开口向上;a<0,开口向下; 对称轴:ab x 2-=; 顶点坐标:⎪⎪⎭⎫⎝⎛--a b ac a b 44,22;图像的平移可以参照顶点的平移。

2 用函数观点看一元二次方程3 二次函数与实际问题第七章 相似1 图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似; 相似比:相似多边形对应边的比值。

2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。

4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

第八章锐角三角函数1锐角三角函数:正弦、余弦、正切;2解直角三角形第九章投影和视图1投影:平行投影、中心投影、正投影2三视图:俯视图、主视图、左视图。

3三视图的画法初三数学知识点一、《一元二次方程》1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式. 2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x ab x x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记)(1)两根互为相反数 ⇔ a b-= 0且Δ≥0 ⇔ b = 0且Δ≥0;(2)两根互为倒数 ⇔ a c=1且Δ≥0 ⇔ a = c 且Δ≥0;(3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ ac = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0;(6)两根异号 ⇔ ac<0 ⇔ a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ ac >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一 (设增长率为x ):(1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x 1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221 ⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ; ⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x B sin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个二、《圆》几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)E几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、弦切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、正多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形.三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180Rn π;(3)圆的面积S=πR 2.(4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高) (2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心. 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流。

相关文档
最新文档