实验七(3)

合集下载

实验中学崇文校区七(3)班学生名单

实验中学崇文校区七(3)班学生名单

实验中学崇文校区七(3)班学生名单
【原创实用版】
目录
1.介绍实验中学崇文校区七 (3) 班
2.列出班级学生名单
正文
实验中学崇文校区七 (3) 班是一个富有活力和凝聚力的班级。

在这个班级里,学生们团结友爱,互相帮助,共同进步。

他们积极参与各类课程和活动,努力提升自己的综合素质。

以下是实验中学崇文校区七 (3) 班的学生名单:
1.张三
2.李四
3.王五
4.赵六
5.孙七
6.周八
7.吴九
8.郑十
这些学生都是这个班级的重要成员,他们为了实现自己的梦想,为了班级的荣誉,不懈努力,共同拼搏。

在这个过程中,他们结下了深厚的友谊,共同度过了许多难忘的时光。

第1页共1页。

实验七 维生素C注射液稳定性实验

实验七  维生素C注射液稳定性实验

实验七维生素C注射液稳定性实验一、实验目的1.掌握延缓药物氧化分解的基本方法.2.通过维生素C处方稳定性的考察,熟悉注射剂处方设计的一般思路.二、实验仪器与材料仪器:721型可见分光光度计,pH计,水浴锅,电炉,量瓶等.材料:维生素C,碳酸氢钠,注射用水,硫酸铜,硫酸铁,依地酸二钠,浓硫酸,蒸馏水等.三、实验内容(一)处方稳定性影响因素的考察1.加热时间的影响取购买的20支安瓿放入沸水中煮沸, 间隔一定时间取出5支安瓿,放入冷水中冷却后,将每次取出的5支安瓿内的样液于小烧杯中混合均匀,以蒸馏水作空白,用721型可见分光光度计,在420nm波长处测定各样液的透光率,按下式计算透光率比,将结果记录于表格1中.表4-1 加热时间对维生素C溶液稳定性的影响煮沸时间(min)透光率(%)透光率比(%)加热前加热后1530602.重金属离子的影响配成250g/L维生素C溶液80ml,精密量取15ml置25ml量瓶中,共5份,按下表所示,加入各种试剂,用注射用水稀释至刻度,立即测定每一份样液的透光率。

然后将每份溶液放入沸水中煮沸40min后取出,以蒸馏水作空白测定透光率,并按上式计算透光率比,将结果填于表格3中。

表4-2 重金属离子对维生素C溶液稳定性的影响3.pH的影响称取维生素C 15g,配成125g/L溶液120ml。

精密量取溶液20ml置50ml烧杯中,共量取6份。

分别加碳酸氢钠粉末0.2,0.6,0.8,1.0,1.2,1.3g左右,调节pH为4.0,5.0,5.5,6.0,6.5,7.0(用pH计测定),立即测定每一份样液透光率,然后将它们放入沸水中煮沸40min后取出,冷却,以蒸馏水为空白,测定透光率,按上式计算透光率比,并将结果填于表格4中.表4-4 pH对维生素C溶液稳定性的影响样品编号pH透光率(%)透光率比(%)加热前加热后1 4.02 5.03 6.04 6.557.0如有侵权请联系告知删除,感谢你们的配合!。

实验七 三次B样条曲线的算法实现

实验七    三次B样条曲线的算法实现

实验七 三次B 样条曲线的算法实现一、实验目的根据B 样条曲线的基础知识,对3次均匀B 样条曲线算法进行程序设计,验证算法的正确性,并修改程序,加深对B 样条曲线数学模型的理解。

二、实验任务(2学时)B 样条曲线的程序设计。

三、实验内容和实验步骤1.算法从三次B 样条曲线的定义可知:当p=3时,C i,3(t)=∑P i+l N l ,3(t)= P i N 0,3(t)+ P i+1 N 1,3(t)+ P i+2 N 2,3(t)+ P i+ 3 N 3,3(t)因为四个调和函数N 0,3(t)、N 1,3(t)、N 2,3(t)和N 3,3(t) 已知(参看教材P138-139)因此只要给出四个控制点的位置矢量的坐标,当t 在[0,1]范围内取离散的100个点时(dt=0.01),分别求出每一个曲线上点,相邻点用直线段连接起来,就可以得到相应的B 样条曲线。

设控制点的个数为PointNum ,要求PointNum ≥4,则可以生成(PointNum-3)段三次B 样条曲线。

其中第i 段三次B 样条曲线的代数形式为:C i,3(t)x = P i x N 0,3(t)+ P (i+1) x N 1,3(t)+ P (i+2) x N 2,3(t)+ P (i+3) x N 3,3(t)C i,3(t)y = P i y N 0,3(t)+ P (i+1) y N 1,3(t)+ P (i+2) y N 2,3(t)+ P (i+3) y N 3,3(t)i=1,2,…, PointNum-32.程序实现如下:(工程名:BSpring )(1)将调和函数定义为成员函数,函数形式如下:double CBSpringView::N03(double t){return ((-pow(t,3)+3*pow(t,2)-3*t+1)/6);// pow()函数:求x 的y 次方(次幂) }double CBSpringView::N13(double t){return ((3*pow(t,3)-6*pow(t,2)+4)/6);}double CBSpringView::N23(double t)l =0 3{return ((-3*pow(t,3)+3*pow(t,2)+3*t+1)/6);}double CBSpringView::N33(double t){return (pow(t,3)/6);}(2)编写OnDraw()函数,程序如下:int n,m,pointnum,i,j;int x[10],y[10],curx,cury; //(x[i],y[i])为顶点坐标double t,dt;CPen PenRed(PS_SOLID,1,RGB(255,0,0));//定义红色笔CPen PenBlue(PS_SOLID,1,RGB(0,0,255));//定义蓝色笔n=3; pointnum=5; //5个顶点,则绘制(5-3)=2段B样条曲线x[1]=10;y[1]=200;x[2]=40;y[2]=100;x[3]=100;y[3]=100;x[4]=150;y[4]=150;x[5]=150;y[5]=200;//绘出特征多边形pDC->SelectObject(&PenBlue);pDC->MoveTo(x[1],y[1]);for (i=2;i<=pointnum;i++)pDC->LineTo(x[i],y[i]);//绘制B样条曲线m=pointnum-n; dt=0.01;pDC->SelectObject(&PenRed);for (i=1;i<=m;i++) //绘制m条(段)B样条曲线{t=0;for (j=0;j<=100;j++) // 绘制每一条(段)B样条曲线{curx=N03(t)*x[i]+N13(t)*x[i+1]+N23(t)*x[i+2]+N33(t)*x[i+3]; cury=N03(t)*y[i]+N13(t)*y[i+1]+N23(t)*y[i+2]+N33(t)*y[i+3];if (j==0)pDC->MoveTo(curx,cury);else{pDC->LineTo(curx,cury);t+=dt;}}}(3)编译程序,查看运行结果。

实验七 验证机械能守恒定律

实验七 验证机械能守恒定律

实验七 验证机械能守恒定律1.实验目的验证机械能守恒定律。

2.实验原理(如图1所示) 通过实验,求出做自由落体运动物体的重力势能的减少量和对应过程动能的增加量,在实验误差允许范围内,若二者相等,说明机械能守恒,从而验证机械能守恒定律。

图13.实验器材打点计时器、交流电源、纸带、复写纸、重物、刻度尺、铁架台(带铁夹)、导线。

4.实验步骤(1)安装器材:将打点计时器固定在铁架台上,用导线将打点计时器与电源相连。

(2)打纸带 用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,再释放纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。

(3)选纸带:分两种情况说明①若选第1点O 到下落到某一点的过程,即用mgh =12m v 2来验证,应选点迹清晰,且第1、2两点间距离接近2__mm 的纸带(电源频率为50 Hz)。

②用12m v 2B -12m v 2A =mgh AB 验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点即可。

5.实验结论 在误差允许的范围内,自由落体运动过程机械能守恒。

1.误差分析(1)测量误差:减小测量误差的方法,一是测下落距离时都从O 点量起,一次将所打各点对应重物下落高度测量完,二是多测几次取平均值。

(2)系统误差:由于重物和纸带下落过程中要克服阻力做功,故动能的增加量ΔE k =12m v 2n 必定稍小于重力势能的减少量ΔE p =mgh n ,改进办法是调整安装的器材,尽可能地减小阻力。

2.注意事项(1)打点计时器要竖直:安装打点计时器时要竖直架稳,使其两限位孔在同一竖直线上,以减少摩擦阻力。

(2)重物应选用质量大、体积小、密度大的材料。

(3)应先接通电源,让打点计时器正常工作,后释放纸带让重物下落。

(4)测长度,算速度:某时刻的瞬时速度的计算应用v n =h n +1-h n -12T,不能用v n =2gh n 或v n =gt 来计算。

实验七双液系气液平衡相图的测定

实验七双液系气液平衡相图的测定
5. 通过折射仪的水温要恒定,使用折射仪时,棱镜 不能触及硬物(如滴管),擦拭棱镜用擦镜纸。
数据处理
1. 将实验中测得的折射率—组成数据列表,并绘制成 工作曲线。
2. 将实验中测得的沸点—折射率数据列表,并从工作 曲线上查得相应的组成,从而获得沸点与组成的关 系。
3. 绘制沸点—组成图,并标明最低恒沸点和组成。 4. 在精确的测定中,还要对温度计的外露水银柱进行
仪器操作
使用方法
3. 调光: 转动镜筒使之垂直,调节反射镜使入射光进入棱镜,
同时调节目镜的焦距,使目镜中十字线清晰明亮。调节消 色散补偿器使目镜中彩色光带消失。再调节读数螺旋,使 明暗的界面恰好同十字线交叉点处重合。这时镜筒的轴与 掠射光线平行。 4. 读数:
从读数望远镜中读出刻度盘上的折射率数值。常用的 阿贝折射仪可读至小数点后的第四位,为了使读数准确, 一般应将试样重复测量三次,每次相差不能超过0.0002, 然后取平均值。
仪器操作
注意事项
1.使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸 等。加试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液 体不得使用阿贝折射仪。
2.每次测定时,试样不可加得太多,一般只需加2~3滴即可。 3.要注意保持仪器清洁,保护刻度盘。每次实验完毕,要在镜
面上加几滴丙酮,并用擦镜纸擦干。最后用两层擦镜纸夹在 两棱镜镜面之间,以免镜面损坏。 4.读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸 形的,这是由于棱镜间未充满液体;若出现弧形光环,则可 能是由于光线未经过棱镜而直接照射到聚光透镜上。
0.200mL、…、0.900mL的环己烷,再依次移入 0.900mL、0.800mL、…、0.100mL的异丙醇,轻 轻摇动,混合均匀,配成9份已知浓度的溶液(按 纯样品的密度,换算成质量百分浓度)。用阿贝 折射仪测定每份溶液的折射率及纯环己烷和异丙 醇的折射率。以折射率对浓度作图,即可绘制工 作曲线。

实验七_网络攻击与防范

实验七_网络攻击与防范

《网络攻击与防范》实验报告图5-1 使用traceroute 工具成功追踪192.168.1.185主机后的显示结果如果使用 traceroute 工具追踪 wwwBaiducom(61.135.169.125 是百度的IP地址.也可以直接使用域名 wwwBaiduCom).追踪成功后将显示如图 5-2 所示的结果图5-2 使用 traceroule 工具成功追踪 wwwBaiducom 的显示结果如果使用 traceroute 工具追踪 wwww3schoolcom,由于该主机不存在(已关机),因此将显示如图 5-3 所示的结果。

实验时,读者可以用一个不存在的主机域名来代替本实验中的 wwww3schoolcom。

图5-3 使用iraceroute 工具追踪 wwww3schoolcom 失败后的显示结果步骤4:dmitry工具的应用。

首先,进入/usr/local/bin 日录.找到 dmitry 工具:然后使用“./dmitry”命令查看其帮助文档;输人“./dmitry-p 192.168.168.153 -p -b”命令扫描机 192.168.68.153,操作过程和显示结果如图 5-4 所示.读者会发现该主机开放了 SSH的22端口图5-4 使用 dmitry 工具扫描主机 1921681185的显示结果如果扫描 wwwbaiducom 开放的 TCP 80 端口,将会显示如图 5-5 所示的结果。

图5-5扫描wwwbaiducom开放的TCP80端口后的显示结果步骤 5: itrace 工具的应用。

itrace 工具有 raceroute 的功能,不同之处在于itrace 使用ICMP反射请求。

如果防火墙禁止了 traceroute,但允许ICMP 的反射请求,那么仍然可以使用itrace 来追踪防火墙内部的路由。

执行“./itrace -ietho -d wwwbaiducom”命令,可以看到如图 5-6 所示的回复信息说明已经进行了成功追踪。

实验七 RLC串联谐振电路的研究(共3页)

实验七 RLC串联谐振电路的研究(共3页)

1实验七 RLC 串联谐振电路的研究一、实验目的(1)测定RLC 串联电路的谐振频率,加深对其谐振条件和特点的理解。

(2)测量RLC 串联电路的幅频特性、通频带和品质因数Q 值。

二、实验原理1.RLC 串联谐振在图7-1所示的RLC 串联电路中,电路的复阻抗:1()L C Z R j L R j R jX Z X X Cw j w 骣÷ç=+-=+-=+= ÷ç÷ç桫电路的电流:ss1U U I ZR j L C w w 贩·==骣÷ç+-÷ç÷ç桫改变输入正弦交流信号的频率(w )时,电路中的感抗、容抗都随之改变,电路的电流大小和相位也发生了变化。

当RLC 串联电路的总电抗为零,即10L Cw w -=时,电路处于谐振状态。

此时Z R =,S U ·与I ·同相。

谐振角频率:0w =0f =显然,电路的谐振频率0f 与电阻值无关,只与L 、C 的大小有关。

当0f f <时,电路呈容性,阻抗角0j <;当0f f =时,电路处于谐振状态,阻抗角0j =,电路呈电阻性,此时电路的阻抗最小,电流0I 达到最大;当0f f >时,电路呈感性,阻抗角0j >;2.品质因数Q当RLC 串联谐振时,电感电压与电容电压大小相等,方向相反,且有可能大于电源电压。

电感(或电容)上的电压与信号源电压之比,称为品质因数Q ,即0C L 0S S 1L U U Q R RCU U w w =====L 、C 不变时,不同的R 值可得到不同的Q 值。

3.幅频特性和通频带RLC 串联电路的电流大小与信号源角频率的关系,称为电流的幅频特性,其表达式为RU SU SU RU图7-1 RL C 串联电路2I ==电流I 随频率f 变化的曲线,如图7-2所示。

实验七纱线捻度测定实验

实验七纱线捻度测定实验

实验七 纱线捻度测定实验一、 实验目的1. 通过实验,熟悉捻度仪的结构原理和操作步骤;2. 掌握纱线捻度的测试原理、方法标准和相关指标计算。

二、 基础知识短纤维通过加捻才能制成无限长的具有一定物理机械性能的纱线。

长丝为了提高单丝间的紧密度,便于加工和改善织物性能,往往也需要加捻。

所谓加捻,就是将平行伸直的纤维须条(长丝),单位长度两截面间相互扭转一个角,使纤维(单丝)与须条(长丝)轴向呈一定夹角的一种加工。

根据纱线表面纤维(单丝)倾斜的方向(即捻向)分Z 捻和S 捻,加捻程度对纱线的结构、物理机械性能和织物风格,如拉伸性能、直径、体积重量、刚柔性、毛羽、织物外观和手感等有很大影响。

1. 加捻程度的表征指标 (1) 捻度t指纱线单位长度内的捻回数,即纱线绕其自身轴向的旋转度。

捻度能表示相同品种、相同粗细纱线的加捻程度,但当纱线粗细不同时,捻度不能反映纱线的加捻程度。

(2) 捻回角β即纱线表层纤维倾斜方向与纱轴的夹角。

捻回角能直观地反映纱线的加捻程度,但测量较困难、费时。

(3)捻系数α捻系数是直接与纱线表面纤维的捻回角呈函数关系的物理量,当纱线的体积重量一定时,捻系数可表示不同粗细纱线的加捻程度。

捻系数不是直接测量值,而是计算值1000Tt=α ,式中:t —捻度(捻回数/米)、T —纱线的线密度(tex )。

2. 捻度指标的测试捻度的测试方法常用的有二种:(1)直接计数法(直接退捻法):在一定张力下,将规定长度的纱线二端夹住,通过试样的一端对另一端向退捻方向回转,直至股线中的单纱或复丝中的单纤维完全平行,退去的捻回数即为该纱线试样长度内的捻回数。

适用范围:股线、缆绳、复丝及在退捻过程中纤维不易缠结的短纤维单纱。

(2)退捻加捻法:在规定张力下,夹持一定长度的试样,测量经退捻和反向加捻后回复到起始长度时的捻回数。

适用范围:短纤维单纱。

不适用于:自由端纺纱;假捻及自捻纱;张力从0.5cN/tex增至1.0cN/tex时其伸长超过0.5%的纱线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档